
17th Computer Vision Winter Workshop
Luka Čehovin, Rok Mandeljc, Vitomir Štruc (eds.)
Mala Nedelja, Slovenia, February 1-3, 2016

BaCoN: Building a Classifier from only N Samples

Georg Waltner Michael Opitz Horst Bischof
Institute for Computer Graphics and Vision

Graz University of Technology, Austria
{waltner, opitz, bischof}@icg.tugraz.at

Abstract. We propose a model able to learn new ob-
ject classes with a very limited amount of training
samples (i.e. 1 to 5), while requiring near zero run-
time cost for learning new object classes. After ex-
tracting Convolutional Neural Network (CNN) fea-
tures, we discriminatively learn embeddings to sep-
arate the classes in feature space. The proposed
method is especially useful for applications such as
dish or logo recognition, where users typically add
object classes comprising a wide variety of represen-
tations. Another benefit of our method is the low de-
mand for computing power and memory, making it
applicable for object classification on embedded de-
vices. We demonstrate on the Food-101 dataset that
even one single training example is sufficient to rec-
ognize new object classes and considerably improve
results over the probabilistic Nearest Class Means
(NCM) formulation.

1. Introduction

With recent advances in object recognition [7],
off-the-shelf features which are learned from a large
number of annotated images have become freely
available. As datasets grow, it will become increas-
ingly computationally demanding to extend models
built from these features to new object classes. Con-
sider images of different food types - Japanese and
European users will have quite different imaginations
of an average lunch meal. Adapting a pretrained
classifier to recognize meals that have not been seen
during the training procedure is desirable. Similar
to cognitive capabilities of humans, who can learn
new classes from only very few samples, we aim for
a computer vision system where new classes can be
added incrementally. In this work, we consider clas-
sification methods which can integrate previously un-
seen classes from a single (one-shot) or a small num-

Table 1. One-shot learning results: The top row shows the
used training sample (blue), the other rows are the first
6 results where the our proposed method yields different
results than the probabilistic NCM version. Green fram-
ing indicates our improved NCM version is correct, while
red stands for the opposite. From left to right: bibimap,
creme brulee, hot dog, lobster roll sandwich, seaweed
salad, spring rolls.

ber (n-shot) of training samples. The main purpose
of these methods is to recognize new object classes
from a very limited number of training samples. This
is especially useful for open-ended recognition sce-
narios, such as logo detection or food recognition,
where the number of object classes steadily grows
during the life cycle of an object recognition system.
However, integrating new classes in a classifier pre-
trained on different classes is not straightforward. On
the one hand a new class often exhibits large vari-
ations, on the other hand the classifier trained on
seen classes may not be capable to generalize to new
classes. Retraining state-of-the-art classifiers such as
CNN every time after such class additions leads to

Figure 1. Overview of our method: After extracting CNN features from a fine-tuned CNN, we normalize the feature
vectors and learn NCM or LMNN embeddings. These embeddings separate the classes in a way, so that newly added
classes can be inserted without much loss in overall accuracy compared to insertion without a trained embedding. We
leave the CNN and the trained embeddings fixed when adding new classes.

high accuracy, but is computationally inefficient and
requires a significant amount of memory. For practi-
cal application this is often prohibitive, especially for
embedded systems. An ideal system should there-
fore be able to integrate new object classes from few
very seen samples on the fly; without the need for
time- and memory-consuming retraining of the clas-
sifier and negligible performance loss.

2. Related Work

One approach in related works considering n-shot
settings is the use of Bayesian learning, where prob-
abilistic estimates are used to extend the algorithms
to new classes. For example, [3] fit probabilistic
density functions as category models and use them
as prior knowledge for new classes, while using
one or more samples for generation of the poste-
rior model of the new class. Hierarchical Bayesian
models are used by [12], where super-categories are
automatically discovered based on available classes
and serve as prior information to incorporate new
classes. In [8], authors investigate one-shot learn-
ing of characters using Hierarchical Bayesian Pro-

gram Learning (HBPL), where characters are mod-
eled as a composition of primitives under certain
causality constraints. Another approach for exten-
sion to new classes or categories is the use of at-
tributes [9, 11], that can be seen as semantic de-
scriptors which are shared by multiple classes. New
classes are then added by generating a semantic de-
scription of the new class via attributes. Attribute-
based approaches have been used for animal catego-
rization and recognition [9] or for human-nameable
visual attributes [11]. Similar to our idea of learning
an optimal embedding, [6] statistically infers a Ma-
halanobis distance metric on similar and dissimilar
feature pairs. In [16], a classifier is trained discrimi-
natively for nearest prototype classification. Another
distance metric learning approach was presented in
[15], where the authors propose Large Margin Near-
est Neighbor (LMNN) for classification. The LMNN
classifier learns a Mahalanobis metric, so that same
class samples are contracted and samples from differ-
ent classes are pushed apart from each other. These
methods are able to generalize to previously unseen
samples, but in contrast to our approach they do not

regard insertion of previously unseen object classes.
We employ a Nearest Class Mean (NCM) clas-

sifier [10, 14] for classification. Object classes in
NCM classifiers are represented by the mean fea-
ture vector of the corresponding class samples and
can be easily extended to new classes by computing
the mean over newly added training samples. Our
method learns discriminative embeddings to better
separate the classes in feature space. Other than the
probabilistic NCM approach of [10], we use CNN
features. We propose the hinge loss for optimization
and show that this improves overall accuracy. Addi-
tionally, we show how to robustify the learned NCM
embeddings. In contrast to other approaches for one-
shot and n-shot learning, our method does not need
access to the full dataset as we do not employ clas-
sifier retraining, enabling the use of our system for
embedded platforms like smartphones, where com-
puting power and storage is limited. Furthermore, the
most one-shot algorithms are Bayesian methods and
use prior knowledge from the training data to gen-
erate posterior probabilities for new classes. We do
not model such probabilities, but rely on the learned
feature embeddings only. Figure 1 gives an overview
of our method: We use l2-normalized CNN features
and learn additional layers that embed the features
in an optimal way. After that we add new classes
to evaluate the incremental learning capability of our
classifier. Table 1 shows one-shot learning results for
some classes of the Food-101 dataset [2].

3. One-Shot and N-Shot Classification

In the n-shot classification setting the classifier ex-
tends to new classes from a very limited number of
samples (i.e. 1 to 5). NCM classifiers store a mean
vector for each object class they recognize. This has
the advantage that recognition of new classes can be
incorporated by simply computing mean vectors for
these classes. Mean vectors can be efficiently com-
puted online, eliminating the need of explicitly stor-
ing feature vectors of all training samples that the
class mean originates from. For one-shot learning,
the class mean corresponds to one added class sam-
ple, for n-shot learning the mean is calculated from
n samples of a new class. More formally, let µc be
the mean vector for the c-th class from the set C of
available classes, defined as

µc =
1

Nc

Nc∑
i=1

f(xi;θ), (1)

where Nc is the number of samples x for class c,
f is a feature extraction function and θ are model-
parameters. To predict the object class of a sample
we seek the minimum distance to all class means by
computing

argmin
c=1,...,C

‖f(x;θ)− µc‖2 , (2)

where C = |C| is the total number of classes.

3.1. Feature Extraction

Motivated by their recent success in image recog-
nition tasks, we utilize CNNs for feature extraction.
Instead of training a deep network from scratch, we
take a CNN model trained for the ImageNet Chal-
lenge [7] and fine-tune on our task-specific training
data. This can be seen as domain transfer from one
task to another and has proven to be superior to hand-
crafted features [4]. As the later layers of the net-
work correspond to high-level features, we use the
last fully connected layer as 4096-dimensional fea-
ture representation and normalize each feature vector
by dividing by its l2-norm.

3.2. Embedding

After fine-tuning the CNN, we employ several dis-
tance metric learning methods to learn a discrimina-
tive linear embedding matrix W ∈ Rd×4096, with
d ∈ {1024, 4096}. This embedding projects samples
from the same object class next to each other in a
high dimensional feature space, while simultanously
pushing samples from different object classes far
away from each other. Using the embedding W, the
class prediction from Equation (2) becomes

argmin
c=1,...,C

‖W · f(x;θ)−W · µc‖2 , (3)

In this work, we consider optimizing NCM loss func-
tions and the LMNN loss with respect to W to learn
our embedding. In the remainder of this section, we
will formally explain the different methods.

NCM. As proposed in [10], embeddings for NCM
classifiers are usually learned by minimizing the neg-
ative log-likelihood. The posterior probability p(c|x)
of class c given a sample x is defined as

p(c|x) = e−δ(x,µc;θ)
2∑C

i=1 e
−δ(x,µi;θ)

2
, (4)

where δ is defined as

δ(x,µ;θ) = ‖W · f(x;θ)−W · µ‖2 . (5)

To learn the embedding W, minimize the negative
log-likelihood

L = − 1

N

N∑
i=1

ln p(yi|xi) (6)

of sample xi and its corresponding class label yi. In
subsequent sections we refer to this method as prob-
abilistic NCM (NCMP), since we are optimizing a
negative log-likelihood function.

LMNN. The loss function of the LMNN embed-
ding [15] consists of two terms. One adds a penalty
for samples that share the same class label but exceed
a certain distance (margin), while the other penalizes
samples with different class labels that are close in
feature space. The loss is calculated on triplets in-
stead of pairs, where a sample is complemented by a
sample of the same and a sample of a different class.
The set of triplets is given by

D = {(i, j, k) : yi = yj , yi 6= yk} (7)

and 1 ≤ i < j < k ≤ N , the LMNN loss function
over the triplet set is then defined as

L(D) =
∑

(i,j,k)∈D

d2ij + lijk. (8)

The distance function d of two samples xi and xj is

dij = ‖W · f(xi;θ)−W · f(xj ;θ)‖2 (9)

and the triplet loss function lijk is defined as

lijk = max(0, 1 + dij − dik). (10)

This embedding maximizes the distance in feature
space between samples of different classes (xi,xk),
while concentrating samples that belong to the same
class (xi,xj). Following [13], during training we
perform “hard” negative mining of triplets which vi-
olate the margin constraint imposed by lijk. Oppo-
site to “soft” negatives, which do not violate the mar-
gin or violate the margin by only a small amount,
“hard” negatives impose a high loss and therefore
lead to faster training of the model and increased per-
formance.

3.3. Large Margin Nearest Class Mean Classifiers

Inspired by LMNN we propose a large margin loss
function for NCM classifiers. Ideally, samples from
the same class are close to their own mean vector
and are far away from other mean vectors in feature

space. Let x be a data sample, y the class label and
θ the parameters of the feature extraction function f .
We propose to train a NCM layer on top of the CNN
features with the following NCM loss function

L(x, y;θ) = λ ·δ2y+
∑

c∈C\{y}

max(0, 1+δy−δc)2, (11)

where δy = δ(x, y;θ) and δc = δ(x, c;θ) are dis-
tance functions as defined in Equation (5) and λ is a
weighting parameter. The first part enforces the sam-
ples of one class to be embedded near the class mean
of the data sample, while the second term penalizes if
samples are within the margin of other class means.
This large margin version of the NCM classifier will
be referred to as NCMLM

3.4. Robust NCM

Due to variations in shape, illumination and ap-
pearance, feature vectors from an object class usu-
ally exhibit intra-class variance. We model this un-
certainty by assuming that a feature vector for a sam-
ple x associated with class c is generated by a normal
distributionN (µc, σc). We incorporate this variation
in our model by computing the standard deviation σc
for all classes c ∈ C over the training set. During op-
timization we add random noise ε to our feature vec-
tors to account for this uncertainty. More formally,
the loss function we minimize is

L(x, y;θ) = λ · δ̂2y+
∑

c∈C\{y}

max(0, 1+ δ̂y− δ̂c)2, (12)

where

δ̂(x,µ;θ) =
∥∥∥W · f̂(x;θ)−W · µ

∥∥∥
2
. (13)

and
f̂ = f(x) + Σ

1
2
y ε · γ. (14)

Σy is the diagonal covariance matrix of class y,
ε ∈ R4096 ∼ N (0, 1) is a random vector drawn from
a normal distribution and γ is a hyper-parameter,
which defines the impact of the distortions. In our
experiments we fix λ to 0.01 and γ is set to 0.5. Dur-
ing training we first compute the standard deviation
of each feature per object class. We then add the
noise to our feature vectors, to make the embedding
W more robust against inter-class variations. This ro-
bustification is done in real time during training and
can be seen as data augmentation, making the impact
of outliers on the means smaller. We refer to this
method as NCMLM -R.

Figure 2. First 8 samples of randomly chosen classes from
the Food-101 dataset [2]. From top to bottom: baklava,
beef carpaccio, chicken curry, chocolate mousse, fried
rice, gnocchi, miso soup, panna cotta, scallops, tacos.

4. Experiments

For evaluation of our method we use the publicly
available Food-101 dataset [2]. It consists of 101
food classes with 1000 images per class. The images
were taken in real world environments, exhibiting a
lot of variation in illumination conditions or food ar-
rangement (see Figure 2 for some examples) and are
well suited for the targeted application case where
users add data continuously.

Following the protocol in [2], we randomly split
the 1000 samples of each class into 750 for training
and 250 for testing. For training of the CNN, we
then apply a 80%/20% split for training and valida-
tion (600 and 150 samples respectively). This results
in a training-, validation- and test-set with 60.600
(60%), 15.150 (15%) and 25.250 (25%) samples, re-
spectively. Further from the 101 classes we randomly
select 50 training classes on which we train our clas-
sifiers and 51 classes on which we evaluate the gen-
eralization capability of our method to novel classes.
For the sake of completeness, we also evaluate the
embeddings on the 50 training classes only.

For fine-tuning CaffeNet on the Food-101 dataset,

we train our network with Stochastic Gradient De-
scent (SGD) and momentum. We follow standard
fine-tuning protocols [7] and use a low initial learn-
ing rate of 0.001 and a momentum of 0.9. We anneal
the learning rate by a factor of 10 after each 20.000
iterations. To determine convergence, we measure
the accuracy on a validation set after 500 gradient
updates.

We optimize our embeddings with SGD and mo-
mentum. For training the embeddings, when not oth-
erwise stated, we fix the weights of the CNN and
train just the last embedding layer. This allows us to
use large learning rates of 0.25-0.5 with a momentum
term of 0.9. Further, we use large minibatch sizes of
1024 and train for about 20 epochs. We exponen-
tially anneal the learning rate at epoch 15 and 18. To
determine convergence, we measure the accuracy on
our validation set after each training epoch.

In our experiments we use Caffe [5] for fine-
tuning, while the evaluations on the embedding
methods are implemented in Python utilizing the
Theano library [1].

4.1. Experiments with Known Classes

To obtain feature representations and a softmax
baseline, we fine-tune the pretrained ImageNet Caf-
feNet model from [7] on the 50 training classes
from the Food-101 dataset as described above. In
the following, we compare our methods to the soft-
max classifier (CNNsoftmax) and to a probabilistic
NCM (NCMP) version related to the work of [10].
The first results are obtained by nearest class mean
classification, using euclidean (CNNeuc) and co-
sine (CNNcos) distance measures between the class
means of all trainings samples and the test sam-
ples. Subsequently we train our NCM and LMNN
embedding layers on top of the fine-tuned net-
work while leaving the net weights fixed (NCMLM ,
NCMLM -R, LMNN). A summary of the results is
depicted in Table 2.

Interestingly, the nearest class mean classifica-
tion performs better than the probabilistic version of
NCM, implying that the CNN features already sep-
arate the classes well. Our robust NCM version im-
proves results over the probabilistic version by about
2% and is very competitive in comparison to the end-
to-end trained softmax classifier of the network. The
NCM embedding trained on the hinge loss and the
LMNN embedding also reach comparable accuracy.

Method Emb. n = 1 n = 5 n = 10 n = 20 n = 50 n = 100
CNNeuc − 44.15± 0.08 49.30± 0.31 54.26± 0.30 57.66± 0.20 60.03± 0.15 60.83± 0.13
CNNcos − 44.92± 0.24 49.82± 0.34 53.92± 0.32 57.26± 0.21 59.86± 0.16 60.76± 0.13
LDA − 44.51± 0.01 44.92± 0.12 45.85± 0.12 48.44± 0.18 57.87± 0.17 63.61± 0.16
NCMP 1024 45.55± 0.33 50.11± 0.32 51.89± 0.25 53.08± 0.20 54.03± 0.13 54.39± 0.09
NCMP 4096 45.62± 0.34 50.23± 0.33 52.03± 0.25 53.23± 0.20 54.20± 0.14 54.57± 0.09
NCMLM 1024 46.23± 0.32 51.46± 0.34 53.49± 0.26 54.88± 0.18 56.02± 0.15 56.44± 0.11
NCMLM 4096 45.97± 0.28 51.43± 0.34 53.51± 0.27 54.93± 0.19 56.06± 0.13 56.50± 0.11
NCMLM -R 1024 46.30± 0.32 51.95± 0.35 54.15± 0.26 55.67± 0.21 56.89± 0.15 57.37± 0.11
NCMLM -R 4096 46.28± 0.32 51.94± 0.35 54.13± 0.28 55.66± 0.21 56.85± 0.15 57.31± 0.11
LMNN 1024 45.78± 0.25 51.60± 0.32 53.82± 0.28 55.34± 0.21 56.57± 0.16 57.05± 0.12
LMNN 4096 45.29± 0.18 51.58± 0.33 54.10± 0.28 55.81± 0.21 57.14± 0.14 57.63± 0.11
SVM − 46.52± 0.40 50.02± 0.35 52.25± 0.30 55.08± 0.24 59.74± 0.19 63.38± 0.17

Table 3. Classification accuracy over the full Food-101 test-set (250 samples per class) after adding
n ∈ {1, 5, 10, 20, 50, 100} training samples for each of the 51 test-classes. Accuracy and standard deviation are cal-
culated over 100 runs. The baseline accuracy for end-to-end training of the CNN on all classes with all available data is
66.63%. The best and the second best result in each column is shown in bold and underlined.

Method Emb. size Accuracy
CNNeuc − 68.60
CNNcos − 68.64
NCMP [10] 1024 67.66
NCMP [10] 4096 67.75
NCMLM 1024 69.00
NCMLM 4096 69.14
NCMLM -R 1024 69.68
NCMLM -R 4096 69.61
LMNN 1024 69.20
LMNN 4096 69.11

CNNsoftmax − 70.26
Table 2. Classification results of the 50 classes used for
fine-tuning the CNN model for feature extraction. Our
proposed robust NCM version reaches almost the same
accuracy as the end-to-end trained softmax classifier while
improving the results over the standard probabilistic NCM
classifier by 2%. Best (bold) and second best (underlined)
embeddings are marked.

4.2. Introducing Unseen Classes

To assess how our method generalizes to new
classes from only a limited number of samples, we
use n random samples from the training set of the re-
maining 51 classes to compute the mean vectors from
the output of the embeddings. The embeddings and
the CNN remain fixed and are not retrained, hence
the addition of new classes reduces to storing the new
class means. We choose n ∈ {1, 5, 10, 20, 50, 100}
and report the accuracy on the full Food-101 test-
set, where every class is represented by 250 samples.
Since for small values of n the results might have a
large standard deviation, we repeat these experiments
100 times using different training samples to com-

pute the class means that represent the new classes.
Table 3 shows, that fine-tuning the network in the
training phase (known classes) with metric learning
methods generally improves accuracy in the testing
phase for smaller values of n. Training the CNN with
Caffe on the full dataset of 101 classes converges af-
ter approximately 100.000 iterations to 66.63%.

We also trained two more standard classifiers on
the CNN features, namely SVM and LDA. It is re-
markable, that although the SVM has access to the
full dataset, the performance compared to our pro-
posed methods is inferior for n ∈ {5, 10, 20}. The
same applies for utilizing a LDA classifier, where
only a big number of new samples achieves a per-
formance improvement compared to our proposed
methods.

5. Conclusion

We introduced embedding methods for one-shot
and n-shot object class recognition. Our proposed
extensions to NCM classifiers consistently improve
the accuracy over the standard NCM training formu-
lation in a scenario where the amount of classes to
be recognized by the classifier doubles. Our meth-
ods perform best for settings where only very few
new samples (n ≤ 10) per class are available. The
extension of the classifier to new object classes is in-
dependent of the old training data and is efficient in
terms of computational expense and memory. This is
especially useful for recognition systems running on
embedded devices, where CPU power and memory
is limited.

Acknowledgements

This work was supported by the Austrian Re-
search Promotion Agency (FFG) under the projects
MANGO (836488) and DIANGO (840824).

References
[1] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin,

R. Pascanu, G. Desjardins, J. Turian, D. Warde-
Farley, and Y. Bengio. Theano: a CPU and GPU
Math Expression Compiler. In Proceedings of the
Scientific Computing with Python Conference, June
2010.

[2] L. Bossard, M. Guillaumin, and L. Van Gool. Food-
101 – Mining Discriminative Components with Ran-
dom Forests. In European Conference on Computer
Vision, 2014.

[3] L. Fei-Fei, R. Fergus, and P. Perona. One-Shot
Learning of Object Categories. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
28(4):594–611, 2006.

[4] R. Girshick, J. Donahue, T. Darrell, and J. Malik.
Rich Feature Hierarchies for Accurate Object Detec-
tion and Semantic Segmentation. In IEEE Confer-
ence on Computer Vision and Pattern Recognition,
2014.

[5] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,
J. Long, R. Girshick, S. Guadarrama, and T. Darrell.
Caffe: Convolutional Architecture for Fast Feature
Embedding. arXiv preprint arXiv:1408.5093, 2014.

[6] M. Köstinger, P. Wohlhart, P. M. Roth, and
H. Bischof. Joint Learning of Discriminative Pro-
totypes and Large Margin Nearest Neighbor Clas-
sifiers. In IEEE International Conference on Com-
puter Vision, 2013.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Ima-
geNet Classification with Deep Convolutional Neu-
ral Networks. In Advances in Neural Information
Processing Systems, 2012.

[8] B. M. Lake, R. R. Salakhutdinov, and J. Tenen-
baum. One-Shot Learning by Inverting a Compo-
sitional Causal Process. In Advances in Neural In-
formation Processing Systems, 2013.

[9] C. H. Lampert, H. Nickisch, and S. Harmel-
ing. Learning to Detect Unseen Object Classes by
Between-class Attribute Transfer. In IEEE Confer-
ence on Computer Vision and Pattern Recognition,
2009.

[10] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka.
Distance-Based Image Classification: Generalizing
to New Classes at Near-Zero Cost. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
35(11):2624–2637, 2013.

[11] D. Parikh and K. Grauman. Relative Attributes. In
IEEE International Conference on Computer Vision,
2011.

[12] R. Salakhutdinov, J. B. Tenenbaum, and A. Torralba.
One-Shot Learning with a Hierarchical Nonparamet-
ric Bayesian Model. In Workshop on Unsupervised
and Transfer Learning in conjunction with the Inter-
national Conference on Machine Learning, 2012.

[13] F. Schroff, D. Kalenichenko, and J. Philbin.
FaceNet: A Unified Embedding for Face Recogni-
tion and Clustering. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2015.

[14] A. R. Webb and K. D. Copsey. Statistical Pattern
Recognition. Wiley, 3rd edition, 2011.

[15] K. Q. Weinberger, J. Blitzer, and L. K. Saul. Dis-
tance Metric Learning for Large Margin Nearest
Neighbor Classification. In Advances in Neural In-
formation Processing Systems, 2005.

[16] P. Wohlhart, M. Köstinger, M. Donoser, P. M. Roth,
and H. Bischof. Optimizing 1-Nearest Prototype
Classifiers. In IEEE Conference on Computer Vision
and Pattern Recognition, 2013.

