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Abstract

In this work we introduce S-TREK, a novel local feature
extractor that combines a deep keypoint detector, which is
both translation and rotation equivariant by design, with a
lightweight deep descriptor extractor. We train the S-TREK
keypoint detector within a framework inspired by reinforce-
ment learning, where we leverage a sequential procedure to
maximize a reward directly related to keypoint repeatabil-
ity. Our descriptor network is trained following a “detect,
then describe” approach, where the descriptor loss is eval-
uated only at those locations where keypoints have been
selected by the already trained detector. Extensive experi-
ments on multiple benchmarks confirm the effectiveness of
our proposed method, with S-TREK often outperforming
other state-of-the-art methods in terms of repeatability and
quality of the recovered poses, especially when dealing with
in-plane rotations.

1. Introduction

Being able to find point correspondences between images
has been of paramount importance since the early days of
computer vision. In fact, a wide range of applications, such
as Structure from Motion (SfM) [35, 1], Visual Localization
[40, 33], SLAM [23, 2], object recognition [24] and object
tracking [47] rely on image-to-image point correspondences.

After decades where SIFT [19], SURF [6], ORB [30] and
many other hand-engineered feature extractors have been
ubiquitous, the community has recently experienced a fast
shift toward learned methods, with several ones based on
deep architectures [12, 11, 27, 44]. While many of these
newly proposed methods show remarkable matching perfor-
mances, the commonly used multi-layer convolutional archi-
tecture lacks one of the properties that most hand-engineered
keypoint detectors have by design: rotation equivariance.
Rather unexpectedly, modern detectors show poor perfor-
mances when the input image undergoes in-plane rotations
unless specifically trained to handle this transformation. In

(a) DISK [44] (b) REKD [17] (c) S-TREK (ours)

Figure 1: Qualitative comparison with two state-of-the-art
feature extraction methods on the Image Matching Bench-
mark [15] (top) and on our ± 45° rotated version of it (bot-
tom). RANSAC inlier matches are color coded from green
to yellow, representing reprojection errors equal to zero and
5px, respectively; the outlier matches are in red.

order to avoid this pitfall, we take advantage of the recent
developments in the field of group-equivariant networks
[9, 10] and design the keypoint detector of our novel feature
extractor method, named S-TREK, to make use of rotation-
equivariant convolutional layers. This makes our keypoints
independent of the image orientation by design, regardless
of the dataset used for training.

The detection of keypoints in an image is a hard selection
process, where a finite set of locations is selected. Because
of the non-differentiability of this process, some keypoint
detection methods in the literature resort to training with
with proxy losses, which are applied to the entire detection
heatmaps at the network output [27, 31], while others train
for keypoints and descriptors jointly [12, 20]. To train di-
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Figure 2: Overall architecture of the S-TREK feature extractor.

rectly with the keypoints location, we propose a training
framework inspired by reinforcement learning, which per-
mits to maximize a reward formulation directly related to
the keypoints repeatability. Following [44, 7], we frame the
keypoint detection as a probabilistic process, and present
a novel sequential sampling procedure that does not suffer
from the limitations of their sampling schemes.

In contrast to the more recent “detect and describe” ap-
proach, where keypoint locations and descriptors are learnt
jointly using a shared backbone for both tasks [27, 12, 44, 31,
7], we follow a “detect, then describe” paradigm using two
different networks for the two tasks, and train the descriptors
only after the detector has been trained. This allows us to
design the two networks to have different properties.

Recent studies have also explored new research directions,
utilizing deep matching architectures like SuperGlue [32], or
developing methods able to find pointwise correspondences
directly from image pairs such as LoFTR [38]. However,
these methods require execution for each individual image
pair, which limits their applicability in scenarios where the
computational resources are constrained, or when dealing
with a large number of images. For these reasons, and the
additional benefit of an easier integration in existing systems,
local feature extraction methods remain the most popular
approach in many applications.

In summary, our main contributions are:

• We propose S-TREK, a local feature extractor that com-
bines a deep translation and rotation equivariant key-
point detector with a lightweight descriptor extractor.
Our network is trained from scratch following a “detect,
then describe” approach.

• We propose a keypoint detector training framework,
inspired by reinforcement learning, based on a novel
reward formulation that maximizes the repeatability
metric directly. Additionally, we propose a novel se-
quential keypoint probability sampling strategy that
overcomes the limitations of previous approaches.

• Extensive experiments show that the S-TREK detec-
tor achieves state-of-the-art repeatability on multiple
benchmarks. Moreover, when equipped with our
lightweight features extractor network, S-TREK pro-
vides features that are well suited for recovering ac-
curate camera poses, especially when dealing with in-
plane rotation.

2. Related works

A multitude of local feature extractors have been pro-
posed in the last decades [43, 3, 36]. In the most classical
approaches, the local feature extraction task is separated
into two distinct steps: detecting keypoints and extracting
descriptors. The two tasks are approached by means of spe-
cialized algorithms, obtaining keypoint-descriptor pairs as a
result [14, 29, 8, 19, 6]. The early deep learning approaches
have been designed following the same “detect, then de-
scribe” approach, with initial works addressing either key-
point detection [45, 37, 34, 5] or descriptor extraction from
normalized image patches [22, 41, 42]. In [13], a log-polar
sampling scheme is used to extract descriptors which result
more robust to scale differences. Later works propose to de-
sign the descriptor network to output a dense volume where
descriptors are sampled at keypoint locations [46, 11, 25],
shifting toward a “detect and describe” approach where the
two tasks are trained jointly [12, 27, 20, 31, 44, 7]. The
rationale behind this shift is keypoint matchability: a key-
point, regardless of his repeatability, could be surrounded by
a non-discriminative region (e.g. textureless patch, repeti-
tive structures) which makes it hard to match its associated
descriptor correctly. While this is true if the descriptors
are computed based solely on small patches around each
keypoint as in the early methods, increasing the descriptor
support regions permits to assign a discriminative descriptor
to most of the keypoints. Based on this observation, we adopt
a “detect, then describe” approach and design our method
with two distinct networks, each one with an architecture
specialized for the specific task.
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This allows us to design our keypoint detector network
with rotation equivariant convolutions as in REKD [17], thus
obtaining detections robust to in-plane rotation by design.

To circumvent the non-differentiability of the keypoint
selection process, REKD [17] uses a window-based keypoint
detection loss inspired by [5] that softens the keypoints se-
lection by means of a spatial softmax, but requires to fix
the number of keypoints used during training. Other recent
methods approach the local feature learning with training
frameworks that draw inspiration from reinforcement learn-
ing, such as DISK [44] and Reinforced Feature Points [7].
While these methods optimize for both keypoints and de-
scriptors at the same time, for the aforementioned reasons
we focus first on the keypoints, postponing the descriptor
learning to a later stage. DISK [44] models the probabilistic
sampling of keypoints by dividing the input image into a
regular grid and sampling one keypoint from each cell. How-
ever, this approach has some shortcomings. For instance,
even if a cell contains no stable keypoints, a keypoint will
still be sampled from it. Additionally, if two valid keypoints
are present in the same cell, only one of them can be sampled.
Moreover, if a keypoint falls on one of the cell edges, it is
likely to be sampled by both cells with only a 1px offset.
In Reinforced Feature Points [7] instead the probabilistic
sampling is modeled on top of an already trained SuperPoint
network [11], sampling multiple times from the whole image
with the danger of repeatedly sampling the same keypoint.
Our approach is to use a Sequential Sampling procedure
which solves all these issues. We do not soften the keypoint
selection by averaging coordinates like [7], but by means
of a probabilistic sampling. We do not require the image to
be divided into cells, as we normalize the whole computed
detection heatmap at once and sample from it directly, thus
avoiding all the cell related issues. We only fix the max
number of keypoints sampled during training, but not the
minimum one; our sampling procedure has an early-stopping
mechanism where no further keypoints are sampled if no
stable keypoints are left in the image. Finally, we avoid the
double-sampling of the same point by applying a sampling
avoidance radius at each sampled keypoint, which forces
the next sampled keypoint to lay at least N pixels from any
already sampled ones.

3. Preliminaries on Equivariance and Invariance

The purpose of this section is to provide the reader with
a basic understanding of the invariance and equivariance
properties. Although we will mostly deal with equivariance
in this paper, it is useful to agree on the vocabulary and spend
a few words on what invariance means.

Given the sets X , Y and a set G of actions g : X → X ,
a function f : X → Y is invariant with respect to G if, for
any g ∈ G, f [g(x)] = f(x).

For example, if f measures the area of a domain in the

Figure 3: Basis (left) and resulting filters (right) of the first
layer of our rotation equivariant keypoint detector. Each
column of filters is a linear combination, with learnable
weights, of the columns from the basis, and contributes to a
single output channel.

plane, such a function would be invariant with respect to
translations but not with respect to changes of scale.

If the domain and codomain of f are the same, that is
f : X → X , equivariance with respect to the set of actions
G is defined as the property guaranteeing f [g(x)] = g[f(x)].

With few approximations, the frequently used convolu-
tional layer can be considered equivariant with respect to
translations, and this property carries over to a network
consisting of several layers. Formally, if X = RH×W

is the set of input images, T is the set of translations
t : RH×W → RH×W , and f is the operation carried out
by our network, the following holds true:

f [t(x)] = t[f(x)],∀t ∈ T. (1)

Equivalently, if the input undergoes a translation of an in-
teger number of pixels in the x or y direction, the resulting
network output will be translated by the same amount. How-
ever, the same is not true in general for other geometric
transformations that our input might undergo.

In this work, we make use of special convolutional layers
that guarantee the equivariance property with respect to the
set of in-plane rotations TR of the input image, where the
function f represents our keypoint detector deep network fθ,
and θ represents the learnable parameters of the model.

For the purpose of this work, the preliminary introduction
we just provided will be sufficient to frame and understand
our contribution. We refer to [9, 21] for further details.

4. Method
In contrast to many recent works that train jointly for the

two tasks of keypoint detection and descriptor extraction,
our approach follows the “detect, then describe” paradigm.
Our architecture is inherently partitioned into two parts: the
detector and descriptor extractor, which are trained sepa-
rately. By adopting this approach, we are able to address the
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two tasks individually and employ specialized architectures
for each of them.

We define a keypoint just as repeatable point, in other
words a point that can be reliably detected again in another
image. This definition also includes points surrounded by
textureless areas or that lay on repetitive structures, which
are notoriously difficult to match. To address this challenge,
we equip our descriptor network with a very large receptive
field and train the descriptors only at the exact locations
where our keypoints are detected to avoid wasting descriptor
space for non-repeatable regions. Conversely, we argue that
the detector should concentrate solely on local structures,
designing its backbone with a small receptive field.

Our definition of keypoint requires the detections to re-
main consistent under any transformations, whether photo-
metric or geometric, applied to the image. While CNNs have
proven to be easily trained to be robust with respect to pho-
tometric distortions, and translation equivariance is inherent
in the convolutional architecture, robustness against other
transformations must be encoded in the network’s learned
weights. Recent developments in the field of Steerable Fil-
ters and Group-equivariant networks [9, 10] have made it
possible to effectively embed in-plane rotation equivariance
in neural networks. In a rotation-equivariant convolution
(ReCONV), instead of learning the kernel weights like in
a standard convolution, the layer learns a weight for each
precomputed basis and generates the convolution kernel as
a weighted basis sum. This greatly reduces the number of
learnable parameters compared to a standard convolution
with the same kernel size. In Figure 3 we show the basis and
and resulting kernels for our first detector layer.

4.1. Detector

Our detector architecture is composed by a series of Re-
CONV layers. The first layer transforms the input features
into the chosen regular representation which depends on the
encoded rotation cyclicity (i.e. the number of angles at which
the basis are computed). The middle section applies convo-
lutions on the regular representation. Finally, the last layer
converts the feature representation back to a single-channel
heatmap, which is then normalized with a temperature soft-
max operation. This network runs on the input gray-scale
image I ∈ RH×W and outputs the heatmap D ∈ RH×W . A
scheme of the network architecture is visible in Figure 2a.

In order to train the detector, we propose a simple formu-
lation that applies to the extracted keypoints, rather than to
the output heatmap D, and aims at maximizing the keypoints
repeatability directly. Typically the keypoint extraction pro-
cess relies on the argmax operation, which prevents back-
propagation to the network weights. In order to overcome
this, we draw inspiration from reinforcement learning and
frame the learning process as an expected reward maximiza-
tion. We adopt a probabilistic approach to sample keypoints

Figure 4: Sequential sampling process. A keypoint is sam-
pled from the weight map obtained by normalizing the
heatmap at the keypoint detector output. Then, all the
weights in a sampling avoidance radius are set to 0. A
new keypoint can now be sampled from the updated weight
map and the process is iterated.

and use the policy gradient [39] algorithm to update the
network weights after each training step.

4.1.1 Reward Computation

Our reward formulation is very straightforward, given two
input images I0, I1 ∈ RH×W and the invertible relation
g0→1 : R2 → R2 that projects the coordinate of a keypoint
from the first image into the second image, the reward for
the i-th keypoint k0i in the first image is computed as:

rk0
i
=

{
dmax − d if d ≤ dmax

rn otherwise
(2)

where dmax is a defined reward radius, rn is the negative
reward assigned to keypoints that are not considered repeat-
able and d is the distance between the projected keypoint k0i
and the closest keypoints in the second image. This reward
function relates directly to the repeatability measure, defined
later in Sec 6, as it is computed in an equivalent way.

4.1.2 Sequential Sampling

For the policy gradient [39] algorithm to work the expected
reward must be computed. In our scenario, this involves a
probabilistic selection of the keypoints.

The other methods in the literature [44, 7] either divide
the image into cells and sample one keypoint for each cell or
sample multiple keypoints independently from the normal-
ized detection map. The main limitation of the first approach
is that one keypoint is sampled from every cell, regardless
of whether there are two high probability points or none.
Furthermore, the grid size defines both the spacing between
the keypoints and the total number of sampled keypoints.
Finally, peaks that lie on the border between two adjacent
cells are likely to be sampled in both just with a 1px offset.
The second approach, instead is susceptible to the problem
of sampling the same keypoint multiple times. To tackle
both issues, we propose a sequential sampling procedure.
First, we normalize the heatmap D by applying the softmax
operation with temperature t:
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D = softmax

(
D

t

)
. (3)

Then, we treat D as a weight map and draw N keypoints
sequentially with a probability proportional to the corre-
sponding pixel weight. To avoid sampling both the same
keypoint twice or spatially close keypoints, after each sam-
pling we set to zero all the weights in a sampling avoidance
radius around the sampled keypoints. The sampling process
stops when the sum of all the remaining weights is below a
certain threshold, as this suggests that no stable keypoints
are left. This allows the network to tune the number of key-
points sampled during each training iteration automatically.
Figure 4 shows a graphical representation of this process.

4.1.3 Weight update

For each training iteration we run our detector network on a
pair of images and then sample from the obtained heatmaps
the two sets of keypoints K0 and K1.

We compute the reward for each keypoint and estimate
the total expected reward as follows:

E
[
R(K0,K1)

]
=

∑
k∈K0

p(k)rk +
∑
k∈K1

p(k)rk (4)

where p(k) refers to the probability of sampling the key-
points k, which is approximated with the value of the nor-
malized heatmap D at the coordinate of the keypoint.

Using the policy gradient [39] technique we can then
estimate the gradient of the expected reward with respect to
the network parameters θ as follows:

∇θ E
[
R(K0,K1)

]
=

mean
k∈K0

[∇θ log (p(k)) rk] + mean
k∈K1

[∇θ log (p(k)) rk]
(5)

and use this gradient to optimize the network weights.

4.2. Descriptor extraction

We design our descriptor network as a four-level U-Net
[28] with a single convolutional layer per level, as shown in
Figure 2b. The network is fed with the same grayscale image
I and outputs a dense L2-normalized descriptor volume
V ∈ RH×W×d where d is the descriptor dimension. The
descriptor associated to a detected keypoint is simply read
from the volume at the keypoint location. We employ a
hinged triplet loss formulation [22]:

LDescriptor = mean
t∈T

[
max(0,m+ stn − stp)

]
(6)

where t is a triplet from the pool T of all the chosen anchor-
positive-negative triplets, m is the margin, sn is the anchor-
negative score and sp is the anchor-positive score. The
triplets are built following the hardest strategy [22], where
we pick the closest non-matching descriptor for each anchor.

Figure 5: Repeatability as a function of image rotation angle.
The curves are smoothed with a 15 degrees moving average.

5. Training Setup

We train the two networks sequentially on the subset of
MegaDepth [18] provided by [44]. The dataset comprises
images, camera poses, camera intrinsics and depth maps of
3D reconstructed touristic locations. The subset includes a
total of 135 scenes and is the result of removing the scenes
with unreliable depths and those overlapping with the Image
Matching Benchmark [15]. We draw random image pairs
from the provided list of 10k image pairs per scene. We
rescale each image such that the shortest edge measures
512px and crop the other dimension to obtain 512×512
image patches. For the descriptor training, we apply an addi-
tional random rotation sampled from a uniform distribution
[-30, 30] degrees to each image.

The first training involves only the detector network,
where we use the ESCNN library [9] for the ReCONV and
set the cyclicity to 8 (the basis are generated for each 2π/8
rotation). We train from scratch using the Pytorch framework
[26], Adam optimizer [16] with betas (0.9, 0.999), learning
rate 1e-4 and batch size 4. We set the sampling avoidance
radius to 6px, the reward radius dmax to 3px, the number
of max sampled points to 1000 and start with the negative
reward rn set to 0, decreasing it from the 1000th iteration
onward on with a linear slope of -1e-5. We fix the softmax
temperature to 100. We train for 5k iterations, which takes
only 5h on a single Nvidia RTX 2080Ti.

Only after the keypoint detector training is complete, the
learned keypoints can be used to train the descriptor net-
work. Consequently, the descriptor network can concentrate
solely on distinguishing the areas surrounding the detected
keypoints and ignore all other regions. We set the triplet
margin m to 0.5, the descriptor dimensionality d to 128 and
train with the same batch size and learning rate as above.
The anchor-positive pairs are built from keypoint pairs that
projects closer than 3px. We found it beneficial to start by
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sampling random negatives instead of the hardest, lowering
this random sampling probability exponentially and setting
it to 0 after 10k iterations. We train for 90k iterations, which
takes around 24h on a single Nvidia RTX 2080Ti.

6. Experiments
We evaluate our method and compare with other state-

of-the-art feature extraction methods via three different ex-
periments. The first experiment regards only the keypoint
detector and is meant to evaluate its ability to find repeatable
keypoints under in-plane rotation. The other two experi-
ments regard two commonly used benchmarks in the litera-
ture and test the performances of keypoints and descriptors
jointly. The metrics evaluated are the following:

• Repeatability: measures the capability of a method to
detect the same keypoints in a pair of images depicting
the same scene. It is computed as the fraction of key-
points from the first image whose projection into the
second image has at least one keypoint from the second
image within T pixel distance [11].

• MMA: The Mean Matching Accuracy is computed as
the number of correct matches (up to T pixels) over the
total number of matches proposed [12].

• MS: The Matching Score is computed as the number
of correct matches (up to T pixels) over the average
number of detected keypoints in the overlap area [11].

• Homography accuracy AUC: It is computed as the
Area Under the Curve of the fraction of recovered ho-
mographies that have a corner error [11] below T pixels.
The corner error is computed as the average distance
between the reference image corners and the corners
of the source image reprojected using the homography
estimated from the matches.

• mAA: The mean Average Accuracy is computed as
the Area Under the Curve of the fraction of recovered
relative camera poses with an error within a specified
threshold [15].

During inference, our ReCNN architecture comes at no addi-
tional cost compared to a standard CNN, and the probabilis-
tic sequential sampling is replaced with a Non-Maximum
suppression with a 3px radius and extracts the N keypoints
with highest score. On Hpatches and IMB we run both our
networks on a 5-level image pyramid with scale factor 1/

√
2.

6.1. Repeatability under rotations

We replicate the experiment conducted in [17]. Specifi-
cally, we select the first ten images from HPatches [4], we
generate in-plane rotated versions of these images with an
increment of 1° from 0° to 360° and we center-crop them
to size 224×224. As in the original experiment [17], we

Method
Rep ↑ MMA ↑ MS ↑ Hom. Acc.

@1px @2p @3px @1px @2p @3px @1px @2px @3px AUC@3px

st
an

da
rd

DISK [44] 0.29 0.45 0.54 0.45 0.67 0.76 0.28 0.40 0.45 0.438
SuperPoint [11] 0.23 0.41 0.54 0.31 0.51 0.62 0.19 0.32 0.38 0.413

R2D2 [27] 0.31 0.50 0.60 0.34 0.61 0.74 0.16 0.27 0.32 0.441
REKD [17] 0.22 0.42 0.54 0.26 0.49 0.62 0.17 0.31 0.39 0.416

S-TREK (ours) 0.31 0.51 0.61 0.35 0.58 0.71 0.22 0.35 0.42 0.449

±
20

°

DISK [44] 0.23 0.42 0.52 0.36 0.62 0.71 0.20 0.33 0.38 0.329
SuperPoint [11] 0.17 0.37 0.51 0.22 0.45 0.57 0.13 0.27 0.34 0.289

R2D2 [27] 0.27 0.48 0.57 0.27 0.55 0.68 0.09 0.18 0.22 0.293
REKD [17] 0.17 0.38 0.51 0.20 0.44 0.58 0.12 0.26 0.34 0.224

S-TREK (ours) 0.27 0.48 0.58 0.30 0.56 0.67 0.17 0.30 0.36 0.336

±
45

°

DISK [44] 0.18 0.36 0.47 0.21 0.37 0.43 0.11 0.18 0.21 0.182
SuperPoint [11] 0.14 0.33 0.47 0.16 0.33 0.42 0.09 0.19 0.24 0.181

R2D2 [27] 0.22 0.42 0.53 0.16 0.33 0.40 0.05 0.09 0.11 0.165
REKD [17] 0.16 0.36 0.48 0.17 0.39 0.51 0.10 0.22 0.29 0.184

S-TREK (ours) 0.25 0.44 0.53 0.24 0.45 0.54 0.13 0.23 0.28 0.248

Table 1: Comparison on HPatches - keypoints budget 2048.

apply a light gaussian noise to each rotated image. We set
a budget of 50 keypoints and run all the learnt methods
single-scale. Keypoints are extracted from each image and
the repeatability is computed against the angle 0° image.
The results are depicted in Figure 5, where S-TREK obtains
high and very stable repeatability at any angle, showing only
minor oscillations. REKD [17], despite employing a similar
rotation-equivariance backbone, shows a more pronounced
oscillation. While SIFT [19] has lower but consistent repeata-
bility, ORB [30] displays remarkable repeatability values but
also more oscillation. Finally, while SuperPoint [11] shows
modest robustness to rotation, the other deep methods per-
form poorly with angles higher than 90°, with DISK [44]
reaching values close to zero at 180°. Additional experi-
ments on this dataset are performed in Sec 7.1.

6.2. HPatches

HPatches [4] is a dataset composed by two sets of pic-
tures: planar scenes captured from different angles and static
photos captured in different lighting conditions. We run
our evaluation using the 108 scenes subset of [12]. Each
scene is composed by one reference image and five source
images; all the metrics are computed between the reference
and all the sources. To test the method stability with respect
to rotation, we generate two additional versions of the whole
dataset applying random rotations, sampled uniformly be-
tween ±20° and ±45° to each source image. Each rotated
image is cropped to match the rectangle with the largest area
possible to avoid any border artifacts. This makes the ro-
tated version of the benchmark even more challenging due to
the lower overlap between each source and reference image.
We compute the relative homography using the OpenCV
findHomography function (10k iterations) with multiple
RANSAC thresholds (0.125, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0,
2.5, 3.0). For each method, we compute the homography
accuracy AUC at each RANSAC threshold and then pick the
best value. For a more fair evaluation, we run all the multi-
scale methods starting from the original image resolution,
fix the keypoints budget to 2048 and always use the same
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Method
Repeatability@3px ↑ N. matches inliers ↑ mAA@10 ↑

BM FLC LM LB MC MR PSM SF SPC AVG BM FLC LM LB MC MR PSM SF SPC AVG BM FLC LM LB MC MR PSM SF SPC AVG

St
an

da
rd

DISK [44] 0.58 0.42 0.39 0.47 0.53 0.43 0.36 0.38 0.47 0.448 572 400 327 350 556 393 265 367 408 404 0.41 0.69 0.59 0.58 0.53 0.38 0.26 0.58 0.59 0.512
SuperPoint [11] 0.42 0.36 0.37 0.35 0.38 0.41 0.30 0.35 0.34 0.364 113 122 115 101 102 130 48 174 82 110 0.23 0.44 0.46 0.33 0.22 0.20 0.14 0.38 0.24 0.295

R2D2 [27] 0.50 0.40 0.36 0.38 0.53 0.50 0.34 0.43 0.43 0.429 215 192 220 148 229 271 150 217 172 202 0.25 0.60 0.60 0.43 0.33 0.30 0.18 0.42 0.40 0.390
REKD [17] 0.54 0.43 0.48 0.40 0.49 0.45 0.41 0.41 0.44 0.450 284 298 490 217 273 310 212 325 254 296 0.26 0.66 0.66 0.41 0.37 0.28 0.18 0.49 0.50 0.423

S-TREK (ours) 0.54 0.41 0.47 0.43 0.54 0.47 0.34 0.46 0.48 0.460 325 322 419 245 377 319 222 345 323 322 0.33 0.67 0.53 0.47 0.43 0.34 0.23 0.54 0.58 0.458

±
20

°

DISK [44] 0.55 0.39 0.39 0.47 0.53 0.43 0.36 0.37 0.45 0.438 288 198 147 195 315 224 150 206 221 216 0.16 0.44 0.39 0.37 0.35 0.22 0.17 0.38 0.40 0.320
SuperPoint [11] 0.39 0.35 0.31 0.34 0.37 0.39 0.29 0.33 0.31 0.342 39 42 34 44 42 51 18 68 29 41 0.13 0.23 0.27 0.22 0.13 0.11 0.06 0.24 0.12 0.168

R2D2 [27] 0.45 0.40 0.36 0.39 0.52 0.49 0.34 0.43 0.42 0.422 102 105 110 89 126 140 82 110 89 106 0.11 0.38 0.36 0.27 0.24 0.19 0.13 0.26 0.25 0.243
REKD [17] 0.49 0.42 0.46 0.42 0.50 0.46 0.40 0.41 0.43 0.443 249 267 386 219 291 273 194 291 226 266 0.16 0.56 0.58 0.36 0.32 0.23 0.17 0.44 0.41 0.359

S-TREK (ours) 0.52 0.41 0.43 0.46 0.54 0.47 0.35 0.45 0.45 0.453 308 288 329 252 348 258 196 280 272 281 0.18 0.59 0.46 0.42 0.38 0.28 0.20 0.47 0.48 0.384

±
45

°

DISK [44] 0.48 0.35 0.37 0.42 0.48 0.39 0.32 0.31 0.41 0.392 125 92 68 80 138 109 69 96 86 96 0.07 0.19 0.19 0.14 0.16 0.10 0.07 0.18 0.15 0.139
SuperPoint [11] 0.37 0.33 0.30 0.31 0.35 0.36 0.28 0.31 0.30 0.323 18 18 18 20 18 25 10 27 14 19 0.04 0.08 0.11 0.07 0.04 0.04 0.02 0.09 0.04 0.059

R2D2 [27] 0.39 0.38 0.32 0.36 0.49 0.47 0.32 0.39 0.40 0.391 56 53 53 45 65 71 43 56 43 54 0.04 0.15 0.16 0.10 0.10 0.08 0.06 0.11 0.08 0.098
REKD [17] 0.46 0.41 0.40 0.39 0.50 0.45 0.37 0.40 0.42 0.422 178 178 207 146 212 186 138 184 145 175 0.09 0.35 0.36 0.20 0.21 0.13 0.13 0.28 0.21 0.218

S-TREK (ours) 0.49 0.41 0.36 0.44 0.52 0.44 0.33 0.43 0.43 0.428 201 176 160 150 205 150 114 147 154 162 0.10 0.35 0.27 0.21 0.24 0.16 0.13 0.28 0.26 0.222

Table 2: Experiments on Image Matching Benchmark [15]. The keypoints budget is 2048.

Mutual-Nearest-Neighbor matching strategy.
The results of our evaluation are reported in Table 1. We

can observe that the S-TREK detector holds the best repeata-
bility values at every threshold on each rotation set, thus
validating our proposed detector architecture and training
scheme. Regarding MMA and MS, DISK [44] is the clear
winner for the standard and ±20° sets, with S-TREK fol-
lowing it closely on the ±20° and overtaking it on the ±45°
set. For the homography recovery task, MMA is not cru-
cial, as most of the wrong proposed matches are filtered
out by RANSAC. While MS is a better predictor for the
homography accuracy, it does not capture how the matches
are distributed in the image, which is of primal importance
for a precise homography recovery. The high homography
accuracy obtained by S-TREK backs our “detect, then de-
scribe” approach and confirms our method capabilities to
find repeatable, reliable and well distributed local features.

6.3. Image Matching Benchmark

We evaluate the performance of local features for the
task of stereo pose recovery on the restricted keypoint cat-
egory (2048 keypoints per image) of the Image Matching
Benchmark [15] phototourism set. The benchmark consists
of 9 scenes of famous tourism sites, each comprising 100
images with various degrees of overlaps. The online eval-
uation server has recently been disabled. For this reason,
all the evaluations reported on this paper for methods that
were not available in the online leaderboard have been run
locally. Similarly to the previous experiment in Sec 6.2,
we generated two additional instances of the benchmark by
applying random ±20° and ±45° rotations, which also in
this case become more challenging due to the decreased
overlap between images. We run all the methods without
any additional outlier rejection stage and using the Mutual-
Nearest-Neighbor matcher. Where available, we use the
matcher parameters and RANSAC threshold suggested by
the authors. Specifically, for S-TREK we use a minimum
matching score of 0.5 and a RANSAC threshold of 1.0 px.

The results for repeatability, number of inlier matches

and mAA@10 for each scene in the dataset are reported in Ta-
ble 2. Similarly to the HPatches experiments, S-TREK is the
method with the highest repeatability in all the benchmark
sets. While DISK [44] obtains the best number of inlier
matches and mAA@10 in the standard instance, S-TREK
follows it closely with a competitive 0.458 mAA@10. On
the rotated versions of the benchmark DISK falls behind
S-TREK and REKD, which achieve similar performance
regarding the number of inlier matches. S-TREK provides
the best mAA@10 for both angle sets, confirming again the
effectiveness of our approach. Figure 1 shows a qualitative
comparison between the best performing methods where
S-TREK is the only method which provides well distributed
matches in both standard, and ±45° benchmark instances.

7. Ablation Studies
7.1. Rotation equivariant architectures comparison

We repeat the experiment from Section 6.1 using three
different keypoint detector architectures:

• ReCNN cyclic 8: Baseline S-TREK detector architec-
ture (∼20k learnable params).

• smaller ReCNN cyclic 8: shallow ReCNN with cyclic-
ity 8 (∼5k learnable params).

• smaller ReCNN cyclic 16: shallow ReCNN with
cyclicity 16 (∼10k learnable params).

The results are shown in Figure 6. It can be observed that
the smaller ReCNN with cyclicity 8 exhibits a repeatability
with lower mean and larger fluctuations than the baseline.
Increasing the cyclicity to 16 smooths out the fluctuations but
does not increase the mean repeatability. The baseline, i.e.
S-TREK detector, is able to reduce the fluctuations without
requiring higher cyclicity thanks to the deeper expressivity
given by the larger number of convolutional layers (7 vs 4).

7.2. Different losses and architectures

We compare our sequential and reinforcement learning
inspired keypoint training against the commonly used peaky

7



Figure 6: Comparison between keypoint detector architec-
tures in terms of keypoint repeatability as a function of image
rotation angle. ReCNN cyclic = 8 is the S-TREK detector.

and similarity losses [27, 31], which need to be used in
conjunction and are applied to the detection heatmap. The
peaky loss encourages local peaks and is controlled by a
window-size parameter, while the similarity loss promotes
similar detection heatmaps in a dense manner.

To analyse the convergence properties of the different
training formulations, we train on a synthetic dataset gener-
ated by drawing random grayscale lines plus random gaus-
sian noise. Every pair of images is obtained applying two
random homography warpings to a generated lines image.

The heatmap evolution during training is shown in Fig-
ure 7 and provides insights on the convergence process.
Regardless of the training strategy, the network starts by
highlighting both edges and corners, progressively favouring
corners more. However, in this process, the peakyness loss
tends to loose good points. In contrast, our training frame-
work remains more stable in terms of number of the detected
points, regardless of the number of chosen samples. This is
confirmed by the numerical values in Table 3. The middle
section reports the results of our S-TREK keypoint detector
trainings using different peaky window sizes. It can be no-
ticed that the number of detected keypoints during inference
varies significantly depending on the chosen peaky window
size, ranging from 27 to 60. The first section instead shows
the results with a varying number of sequential samples, for
which the number of keypoints is more stable, confirming
the ability of our training scheme to adapt the number of
keypoints to the number of existing stable points.

In the last section of the same table we compare the results
of training different standard Convolutional Networks. The
CNN same channels refers to a standard CNN with the same
number of layers and channels shown in Figure 2a, while
CNN equivalent refers to a standard CNN with the same
number of layers shown in Figure 2a where the channel
count has been multiplied by the S-TREK cyclicity. The
ReCNN, in conjunction with our training framework, obtains
the highest max repeatability values while still keeping a
high keypoints count, confirming the ability of our method
to learn to detect the stable points available in the dataset.

(a) N. samples 200 (b) N. samples 50 (c) Peaky W=64
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Figure 7: Visual comparison between different training meth-
ods on our lines dataset. Last row: input images and detected
keypoints (Green - repeatable, Red - non repeatable, Yellow
- non overlapping). First three rows: detector heatmaps evo-
lution during training. Our training framework excels at
finding repeatable points without any direct supervision.

Architecture Training n. kpts
Rep. max. ↑ Learnable

Parameters@1px @2px @3px

ReCNN

Sequential n. samples 50 39 0.77 0.92 0.93 20k
Sequential n. samples 100 53 0.78 0.93 0.95 20k
Sequential n. samples 200 56 0.72 0.91 0.94 20k
Peaky + Similarity W 32 60 0.51 0.72 0.78 20k
Peaky + Similarity W 64 36 0.58 0.82 0.88 20k
Peaky + Similarity W 96 27 0.61 0.85 0.90 20k

CNN same channels Sequential n. samples 100 19 0.61 0.85 0.90 6k
CNN equivalent Sequential n. samples 100 38 0.68 0.90 0.92 377k

Table 3: Comparison between different training approaches
on the validation set of our lines dataset (see Figure 7).

8. Conclusion and future works
This paper presents S-TREK, a local feature extractor

method that combines a deep keypoint detector that is both
translation and rotation equivariant with a lightweight deep
descriptor extractor. The proposed training framework and
reward formulation, inspired by reinforcement learning, max-
imizes the keypoint repeatability score directly. Moreover,
we model the probabilistic keypoint sampling process adopt-
ing a sequential scheme that overcomes the limitation of
previous approaches. Extensive experiments show that the
S-TREK detector often outperforms the state-of-the-art in
the repeatability metric. Paired with our learnt descriptors,
S-TREK achieves competitive matching performance, espe-
cially in applications with strong in-plane rotations.

A possible direction for future improvements of the S-
TREK features could be to incorporate scale equivariance
in the network architecture. This could further reduce the
number of learnable parameters and, therefore, the amount of
data and the computational efforts required by the training.

Acknowledgement: This work has been supported by
the FFG, Contract No. 881844: ”Pro2Future”.
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9. Supplementary material

We include additional qualitative comparisons on Image
Matching Benchmark [15] and our rotated versions with all
the tested methods in Figure 8, Figure 9 and Figure 10.

In Figure 11 we include an extended version of the main
paper figure which shows the detector heatmaps evolution
during training. We include the additional 32 and 96 Peaky
loss window sizes and our training framework run using 100
serial samples.

(a) DISK [44] (b) SuperPoint [11] (c) R2D2 [27] (d) REKD [17] (e) S-TREK (ours)

Figure 8: Qualitative comparison with state-of-the-art feature extraction methods on the Image Matching Benchmark [15] (top)
and on our ±20° and ±45° rotated version of it. RANSAC inlier matches are color coded from green to yellow, representing
reprojection errors equal to zero and 5px, respectively; the outlier matches are in red.
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(a) DISK [44] (b) SuperPoint [11] (c) R2D2 [27] (d) REKD [17] (e) S-TREK (ours)

Figure 9: Qualitative comparison with state-of-the-art feature extraction methods on the Image Matching Benchmark [15] (top)
and on our ±20° and ±45° rotated version of it. RANSAC inlier matches are color coded from green to yellow, representing
reprojection errors equal to zero and 5px, respectively; the outlier matches are in red.
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(a) DISK [44] (b) SuperPoint [11] (c) R2D2 [27] (d) REKD [17] (e) S-TREK (ours)

Figure 10: Qualitative comparison with state-of-the-art feature extraction methods on the Image Matching Benchmark [15]
(top) and on our ±20° and ±45° rotated version of it. RANSAC inlier matches are color coded from green to yellow,
representing reprojection errors equal to zero and 5px, respectively; the outlier matches are in red.

(a) N. samples 200 (b) N. samples 100 (c) N. samples 50 (d) Peaky W=32 (e) Peaky W=64 (f) Peaky W=96
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Figure 11: Visual comparison between different training methods on the validation set of the synthetic lines dataset. Last row:
input images and detected keypoints (Green - repeatable, Red - non repeatable, Yellow - non overlapping). First three rows:
detector heatmaps evolution during training. Our training framework excels at finding the repeatable points without any direct
supervision.

11



References
[1] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Si-

mon, Brian Curless, Steven M Seitz, and Richard Szeliski.
Building rome in a day. Communications of the ACM,
54(10):105–112, 2011.

[2] Josep Aulinas, Yvan Petillot, Joaquim Salvi, and Xavier
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