
Security Aspects of Masking on FPGAs
Barbara Gigerl

Graz University of Technology
Graz, Austria

barbara.gigerl@iaik.tugraz.at

Kevin Pretterhofer
Graz University of Technology

Graz, Austria
kevin.pretterhofer@gmail.com

Stefan Mangard
Graz University of Technology

Graz, Austria
stefan.mangard@iaik.tugraz.at

Abstract—Many IoT and automotive use cases employ cryp-
tographic hardware implementations, which are susceptible to
physical attacks such as power analysis. Masking is a popular
approach to protect against these attacks on algorithmic level.
In general, a masked hardware implementation must be secure
in theory, but also in practice. The practical security of masked
ASIC designs has been analyzed thoroughly in literature, espe-
cially regarding physical defaults such as glitches and transitions,
and optimizations performed during synthesis. Besides ASICs,
FPGAs are often used to implement masked hardware designs,
which utilize reconfigurable look-up tables (LUTs) instead of
binary logic gates to implement arbitrary logic functions. Due
to their different structure, FPGAs apply different synthesis
flows and optimizations, whose effects on the security of masked
implementations have not been investigated yet.

In this work, we present a case study of leakage sources in
masked hardware implementations on FPGAs. We investigate
several implementations that are formally proven to be secure
even in the presence of glitches when implemented as an ASIC but
show leakage when running them on an FPGA. We demonstrate
in several practical experiments that this leakage is caused
by optimizations performed during synthesis, such as LUT
combining or register retiming. In order to identify such leaks,
we present FENIX, the first tool to formally verify any-order
masked hardware implementations directly on FPGA netlists.
FENIX takes glitches into account and automatically localizes
the leaking wire in case of an insecure design. We demonstrate
the practicality of our tool using several masked hardware
implementations, including masked multiplication gadgets, a 2nd-
order Keccak S-box, and a full Ascon round.

Index Terms—Side-Channels, Masking, Formal Verification,
FPGAs

I. INTRODUCTION

Embedded devices have become an essential part of many
IoT, automotive, and industrial applications, where they un-
avoidably get in touch with sensitive information. One key
aspect is therefore privacy, which raises the need for strong
cryptographic primitives that are able to withstand both theo-
retical (mathematical) and physical attacks. Physical attacks
assume that the adversary has direct access to the device
and can observe information about the device during the
computation. A famous example is Differential Power Anal-
ysis (DPA) [23], which works by monitoring the power
consumption of a cryptographic device during computation.
The power consumption correlates with the processed sensitive
data, such as the encryption key, which can then be extracted
using statistical tools. To defeat such attacks, implementations

employ the masking countermeasure [8], [16], [21], which
splits each sensitive variable into d + 1 random shares and
performs the cryptographic operations on these shares instead.
During the computation, the power consumption of the device
at a given point in time does not correlate with the unshared
sensitive value, but with at most one share.

The masking countermeasure can be applied to crypto-
graphic hardware implementations, which are realized using
an ASIC (Application-Specific Integrated Circuit) or an FPGA
(Field-Programmable Gate Array). While ASICs are custom
circuits designed for a specific purpose, FPGAs can be con-
figured many times with a design using configurable logic
blocks (look-up tables). In recent years, FPGAs have become
more and more important in the area of cryptography due to
their short time-to-market and reconfigurability [19], [31].

The security of a masked cipher can formally be proven on
algorithmic level by analyzing an abstract description of the
protected cipher implementation. However, even if the mask-
ing scheme is theoretically secure, a concrete implementation
of the scheme, such as a hardware implementation running on
an FPGA, might still be insecure. Hardware-related physical
side-effects such as glitches and transitions, which are not part
of the theoretical model, can still lead to the unintentional
combination of shares and therefore leak the sensitive value
[6], [7], [17], [21], [29], [32], [36]. Additionally, the synthesis
process, which transforms an HDL design into a gate-level
netlist, may introduce leaks by performing optimizations such
as reordering operations [5], [33], [34].

Consequently, the verification of masked implementations
has gained a lot of attention recently. In general, there are two
approaches to determine whether a masked implementation is
secure in practice. The first option is to perform empirical
verification by fabricating the design as an ASIC or porting
it to an FPGA, recording power traces, and manually analyz-
ing these regarding leakage using statistical tools. Empirical
verification is not only an error-prone and laborious task but
does also not guarantee leakage-freeness on other platforms
if no leak is found. As an alternative, formal verification
tools like SILVER [22], REBECCA [5], COCO [13], [20] and
maskVerif [1] have been proposed which aim at proving the
absence of leakage by verifying the respective post-synthesis
gate-level netlist. However, these verification tools are tailored
to ASIC netlists consisting of logic gates with two inputs
and one output. Currently, there does not exist a tool that
can handle the structure of FPGA netlists, which consist

of LUTs with multiple inputs and up to two outputs. The
effects of the FPGA synthesis process on the security of the
design are also not understood yet. Therefore, in practice,
to ensure security properties are preserved during synthesis,
optimizations are usually disabled globally, for example, by
selecting the keep hierarchy option [10], [27], [28], [37].
While this serves the purpose of ensuring that security-critical
design partitioning is kept, it also prevents optimizations in
parts of the design that are not security-critical.

Our contribution: It is still an open question to which
extent the FPGA synthesis process introduces leakage into
a masked design. Since existing formal verification tools are
built for ASIC netlists, no formal tool exists to detect these
leaks on FPGAs. We close this gap by providing the following
contributions:

• We present a case study to investigate whether FPGA-
specific synthesis flows introduce leakage to masked
designs. We investigate two masked multiplication gad-
gets, for which we formally prove their security on
RTL level with an existing ASIC verification tool. Using
two different FPGA synthesis tools, we show that the
produced netlist is insecure due to glitches introduced by
optimization measures such as LUT combining or register
retiming. We confirm that the leakage is observable in
practice using empirical measurements. (Section III)

• We present FENIX, a tool that can formally verify the
security of (any-order) masked FPGA implementations.
FENIX operates directly on the FPGA netlist which allows
to detect leakage introduced by optimization measures.
Instead of turning off optimizations globally by default,
which leads to inefficient designs, designers can apply
more specific optimizations and check the security of the
resulting design using the tool. (Section IV)

• We show the practicality of FENIX by verifying various
masked FPGA implementations, including masked mul-
tiplication gadgets, a 2nd-order Keccak S-box, and a full
Ascon round. We demonstrate the two operation modes,
which allow verification with and without considering
glitches. If a leak is found, the exact wire and cycle are
automatically localized. (Section V)

• We publish FENIX on GitHub1.

II. BACKGROUND AND RELATED WORK

In this section, we cover necessary background on mask-
ing, formal verification tools for masked ASIC designs, and
describe formal verification using the Fourier expansion of
Boolean functions in more detail.

A. Masking

The power consumption of a cryptographic device depends
mostly on the performed operations and the processed data
[9], [23]. Using techniques such as DPA [23], this depen-
dency can be exploited to recover the secret key used in an
encryption. The masking countermeasure aims at breaking this

1https://github.com/kevPretterhofer/FENIX

dependency by randomizing sensitive values before starting
the cryptographic operation [8], [16]. Randomization in a dth-
order Boolean masking scheme is achieved by splitting each
sensitive value s into d+1 shares such that s = s0 ⊕ ...⊕ sd,
where ⊕ denotes the exclusive OR (XOR) operation. s0...sd−1

are chosen uniformly at random and statistically independent
of s, while sd = s ⊕ s0 ⊕ ...sd−1. Consequently, an attacker
observing up to d shares cannot infer any information about
the sensitive value. In order to mask a cryptographic algorithm,
masked descriptions for the linear and non-linear parts need
to be found. Masking linear functions is simple since they
be computed individually for each share. Masking non-linear
functions is more complex because it requires operations on
all shares and usually additional insertion of fresh randomness
to avoid unintended direct combinations of shares.

B. Leakage sources in masked designs

A masked implementation, even though proven theoretically
secure on algorithmic level, is not necessarily secure when
implemented on an FPGA. Possible reasons for this are
transient timing effects such as glitches and transitions [25],
[26], which unintentionally combine the shares of a sensitive
value. Glitches are counteracted by inserting registers, which
serve as synchronization points to balance out different sig-
nal propagation times caused by physical circumstances like
different wire lengths. Goddard et al. [14] analyze a masked
PRESENT S-box implementation without synchronization and
show that leakage can be observed when implemented on an
FPGA. Roy et al. [33] study an implementation of a first-
order masked SIMON without synchronization and show that
glitches and reordering of logic operations lead to leakage
when implemented on an FPGA. Finally, Li et al. [24] suggests
a simulation-based tool to automatically identify locations
where synchronization registers need to be inserted in an
FPGA design. Currently, there exists no work which shows
that even after inserting synchronization registers, the opti-
mizations performed by EDA tools may again lead to glitches,
which in turn cause unintentional share combinations.

C. Formal verification of masking

In order to prove that a masked circuit is algorithmically se-
cure and secure in the presence of glitches, formal verification
tools consider a specific attacker model. The probing model
introduced by Ishai et al. [21] involves an attacker with d
probing needles, which can placed on arbitrary wires/gates in a
masked circuit. A probe allows capturing the value from a wire
for an infinite amount of clock cycles. A masked hardware
implementation is dth-order secure in the probing model if the
attacker cannot infer any information about the sensitive value
by combining the d probed values. The robust probing model
[12] was introduced as an extension to the original probing
model, which allows a probe to observe temporary wire values
caused by glitches and transitions.

Several automated tools to check the security of a masked
circuit have been proposed. REBECCA [5] and COCO [13],
[20] apply Fourier-based techniques to approximate correlation

https://github.com/kevPretterhofer/FENIX

sets (leakage sets) for every gate in the circuit. The leakage
set contains all values that can be probed by the attacker by
observing the gate output. Other tools like maskVerif [1],
SILVER [22], and IronMask [3] compute these correlation sets
exactly, achieving higher accuracy at the cost of efficiency. All
these tools first synthesize a masked hardware design with a
synthesis tool such as Yosys [38] and then perform verification
directly on the gate-level ASIC netlist.

D. Fourier-based verification

REBECCA formally verifies the security of masked ASIC
circuits based on Fourier expansions of Boolean functions [5],
[30]. Given that every gate represents a Boolean function,
the correlation of the gate with respect to a sensitive value
can be determined using the Fourier expansion (Walsh expan-
sion) [4], [5], which represents the function as a multilinear
polynomial. Given the input variables X = (x1, x2, ...xn)
with xi ∈ {−1, 1}, the Fourier expansion of the function
f : {−1, 1}n → {−1, 1} with {−1, 1} = {⊤,⊥}, is defined
as:

f(X) =
∑
T⊆X

f̂(T)
∏
xi∈T

xi (1)

The real number f̂(T) is called the Fourier coefficient of
f on T , which directly describes the statistical dependence
(correlation) of a Boolean function with regard to its inputs.
That is, it does not correlate with T ⊆ X iff ∀T ′ ⊆ T it
holds that f̂(T ′) = 0 [39]. In a masked circuit, the inputs
of a gate are either shares of a sensitive variable, a fresh
random value or any unrelated value such as a control signal.
To verify that no 1st-order leakage is exhibited by a gate, we
must ensure that the output does not directly correlate with a
linear combination of shares, i.e., without fresh randomness.
This can be done by computing the Fourier coefficients, and
checking that the coefficients of linear share combinations are
zero. For dth-order security, REBECCA checks the nonlinear
combination of any tuple of d gates.

From a verification perspective it is sufficient to know
whether a Fourier coefficient is non-zero or not, while com-
puting the exact value is unnecessary. Therefore, REBECCA
groups together all linear combinations of inputs a gate cor-
relates to into correlation sets. A correlation set C of a gate g
computing a function f satisfies the following condition:

For T ⊆ X :
∏
xi∈T

xi ∈ C(g) if f̂(T) ̸= 0 (2)

Correlation sets are sound but incomplete approximations, i.e.,
linear combinations with zero Fourier coefficients might end
up in the correlation set. In order to determine the correlation
set of a gate, REBECCA applies propagation rules, starting with
the correlation sets of circuit inputs which consist only of the
respective input variable. For every gate g = a ∗ b, C(g) is
computed by applying the propagation rule for the operator *,
considering the correlation sets C(a) and C(b).

For example, considering a simple circuit with inputs X =
(p, q, r) computing g(p, q, r) = (p ⊕ q) ∧ r. The Fourier

expansion of g is 0.5+0.5pq+0.5r+0.5pqr. The correlation
set of the first gate g1(p, q, r) = p ⊕ q is C(g1) = {{pq}}.
The correlation set of g, computed by propagating C(g1) and
C(r), is C(g) = {{}, {p, q}, {r}, {p, q, r}}.

III. LEAKAGE SOURCES ON FPGAS

In this section, we present a case study of leakages intro-
duced to masked hardware implementations when synthesized
to an FPGA. We show that two masked multiplication gadgets,
which are secure in the presence of glitches, become insecure
when implemented on an FPGA. We identify glitches intro-
duced by LUT combining and register retiming, optimization
measures applied by the FPGA synthesis process, as the main
reason for the observed leakage. We give empirical evidence
using physical measurements that the leakage is observable
in practice. In the following, we first describe our evaluation
setup (Section III-A), followed by the experiments in which
we observe leakage due to LUT combining (Section III-B) and
register retiming (Section III-C). A LUT with n inputs will be
denoted as LUTn.

A. Experiment setup

In our case study, we investigate the security of masked
multiplication gadgets. Given two shared field elements in
GF (2n), A and B, a masked multiplication gadget computes
C = A ∧ B in a secure way. Many masked multiplication
gadgets have been introduced in literature [17], [21], [29], [36].
We focus on 1st-order DOM (Domain-Oriented Masking) [17]
and 2nd-order ISW (Ishai-Sahai-Wagner) [21].

We use Xilinx Vivado 2022.2 and Xilinx ISE 14.7 to process
our designs. Both tools first synthesize the RTL (register-
transfer level) design into a netlist consisting of registers,
multiplexers and LUTs, and then perform place-and-route,
where they assign the netlist components to concrete locations
on the FPGA and establish the wiring. Every LUT is physically
implemented as a six-input LUT with two outputs (LUT6 2)
[40]. For example, if the post-synthesis netlist contains a
LUT4, it is mapped to a LUT6 2 during place-and-route, leav-
ing the unused inputs unconnected. The post-place-and-route
netlist is eventually used to generate the FPGA configuration
file (bitstream file).

For the empirical measurements, we use the NewAE
CW305 Artix-7 FPGA evaluation board, connected to a Pi-
coScope 6404C at 1.25Gs/s sampling rate (800 ps sampling
interval). The hardware designs operate at a clock frequency
of 1.5625MHz, a submultiple of the sampling rate. We
synchronize the clocks between the FPGA and the oscilloscope
to reduce the noise level. We apply Welch’s t-test following
the guidelines of Goodwill et al. [15] to investigate whether
1st-order leakage is present. For this purpose, a random and
fixed set of traces is created. The random set is constructed by
assigning fresh random values to the shares of A and B for
every trace. For the fixed set, both A and B are set to zero,
and fresh values are generated for the shares for every trace.
The null hypothesis is that both trace sets have equal means,
which can be rejected with a confidence greater than 99.999%

A0

B0

FF

FF

FF

FF

C0

C1

LUT2

LUT2

LUT2

LUT3

LUT2

LUT3

A1

B1

A0

A1
B0

B1
r0

r0

(a) Post-synthesis (without LUT combining)

A0

B0

FF

FF

FF

FF

C0

C1

LUT2

LUT2

LUT2

LUT2

LUT6_2

A1

B1

A0

A1

B0

B1

r0

"1"

(b) Post-place-and-route (with LUT combining)

Fig. 1: Netlist of 1st-order DOM multiplier with input shares (A0, A1), (B0, B1) and fresh randomness r0, and output shares
(C0, C1). LUT combining is performed during place-and-route.

0 1000 2000 3000
time (samples)

10

5

0

5

10

t-s
ta

tis
tic

(a) Without LUT combining

0 1000 2000 3000
time (samples)

10

5

0

5

10

t-s
ta

tis
tic

(b) With LUT combining

Fig. 2: Univariate fixed-vs.-random t-test results for the 1st-order DOM multiplier using 6 million traces. No leakage is visible
without LUT combining (a), but the design leaks with LUT combining enabled (b).

if the t-score exceeds -4.5 and 4.5. The RNG is enabled for
our measurements.

B. LUT combining

LUT combining is an optimization measure that merges
several smaller LUTs into a single bigger LUT to save area
and reduce the length of the critical path [42]. LUT combining
is either applied during synthesis or during place-and-route.
LUT combining during place-and-route means that the post-
synthesis netlist contains multiple individual LUTs that get
merged when mapped to physical components on the FPGA.
In the following case study, we show that for masked hardware
designs, LUT combining may merge functions, which are
supposed to be computed individually, into a single LUT.

LUT combining during place-and-route: In our first
experiment, we investigate a 1st-order masked DOM multi-
plication gadget [17]. Given the input sharings (A0, A1) and
(B0, B1) and the fresh random variable r0, the multiplier com-
putes the output sharing (C0, C1) as follows, where registers
are indicated by parenthesis:

C0 = (A0 ×B0)⊕
(
(A0 ×B1)⊕ r0

)
(3)

C1 =
(
(A1 ×B0)⊕ r0

)
⊕ (A1 ×B1) (4)

When synthesized to an ASIC netlist with Yosys, as sketched
in Appendix A, the design is 1st-order probing secure, i.e.,

secure also in the presence of glitches, as we confirm by
verification with COCO [13], [20].

We synthesize the design with Vivado 2022.2 for an ar-
bitrary chosen 7-series FPGA (xa7s25csga225-2I) using the
default settings for synthesis and place-and-route. Figure 1a
shows the resulting FPGA netlist of the design after synthe-
sis. The partial multiplication terms

(
(A0 × B1) ⊕ r0

)
and(

(A1 ×B0)⊕ r0
)

have been realized using two LUT3s each.
The place-and-route process then merges the two LUT3 into
a single LUT6 2, as shown in Figure 1b. The first output
of the LUT6 2 refers to the first partial multiplication term,
and the second output of the LUT6 2 refers to the second
partial multiplication term. Internally, a LUT6 2 realizes the
two functions using two LUT5s and then uses a multiplexer to
realize one output while the other output is directly tied to one
of the LUT5s [36], as sketched in Appendix B. Each of the
two LUT5s however gets as an input both shares of A (A0, A1)
and both shares of B (B0, B1). The functional configurations
of the LUT5s are such that the partial multiplication terms
are computed, and the unused inputs do not influence the
function result once all inputs have stabilized. Still, before
all inputs have stabilized, the LUT outputs allow to probe a
combination of (in the worst case) all inputs temporarily. The
exact combinations that can be observed depend on several
things, including the arrival time and ordering of inputs.

A1

A0
B1
r0

 FF

B0
 FF

 FF

r2

A1

B1

C1

LUT2

LUT3

LUT2 LUT4
reg1

reg2

lutf1

lutf2

lutf3

(a) Post-synthesis without retiming

A1

A0

B1

r0 FF

B0

 FF

r2

A1

B1

LUT5 LUT4 C1

reg1,reg2

lutf1, lutf2,

lutf3

(b) Post-synthesis with retiming

Fig. 3: Netlist of 2nd-order ISW multiplier with input shares (A0, A1, A2), (B0, B1, B2) and fresh randomness r0, r1, r2, and
output shares (C0, C1, C2). Only the part of the circuit computing one output share C1 is shown.

Using an empirical evaluation over 6 million traces, we
confirm that this leakage can be seen in practical measure-
ments, as shown in Figure 2. Figure 2a presents the t-
test results when LUT combining during place-and-route is
disabled. As expected, the t-test reveals no significant peaks,
which indicates the absence of 1st-order leakage. Figure 2b
presents the t-test results when LUT combining is enabled, i.e.,
following the structure of Figure 1b, which shows significant
peaks over the 4.5 border, and therefore, indicates 1st-order
leakage. Our evaluation spans four clock cycles, capturing the
leaking LUT6 2 computation in the third cycle.

The leak introduced by LUT combining during place-and-
route can hardly be detected manually by the designer on
RTL level or by looking at the post-synthesis netlist. Manual
detection becomes infeasible for larger designs due to the
growing complexity, and a possible solution is to disable LUT
combining globally. With a formal tool capable of verification
on FPGA netlist level, it would be possible to identify single
LUTs for which LUT combining must be turned off instead.

LUT combining during synthesis: Designs containing
many multiplexers, e.g., a multiplexer tree, are realized by
combining them into LUTs during synthesis, which potentially
causes additional leakage in masked designs. For example,
Shahverdi et al. [35] introduce an area-optimized TI-Simon
implementation using three shares, which splits the round
function into three identical component functions. The com-
ponent function is instantiated exactly once, and another set
of shares is sent to the input in each cycle. In order to
determine which share is being processed, a single LUT is
used that has the shares and the select signals as an input.
When the multiplexer select signals glitch, a combination
of multiple shares might be visible on the LUT output,
resulting in leakage. In an ASIC implementation, this leakage
is more challenging to observe because the multiplexers are
still individual physical components that take at most one share
as an input, and there are many other influencing factors, such
as the concrete wiring. By contrast, on an FPGA, a glitch on
one of the input select signals might directly allow probing a
combination of all shares on the LUT output.

C. Register retiming

Register retiming, also known as register balancing, allows
improving the delay on the critical path of a design by moving

the location of registers across combinatorial logic [11], [41],
[42]. The original input/output behavior and latency in terms
of cycle count remain unchanged, but the possible clock
frequency of the resulting design is increased. Retiming is
enabled per default when performing synthesis with ISE 14.7.

In masked designs, the insertion and correct location of reg-
isters is crucial for security against glitches. Retiming changes
the location of registers and, therefore, introduces glitches
into the design. In our case study, we investigate a 2nd-order
masked ISW multiplier [21] in which retiming changes the
location of registers and share combination happens due to
glitches. Again, when synthesized to an ASIC netlist with
Yosys, as sketched in Appendix C, we confirm the 2nd-
order probing security with COCO. The multiplier computes
C = A∧B using the random variables r0, r1, r2, resulting in
the output sharing (C0, C1, C2), where registers are indicated
by parenthesis:

C0 = (A0 ∧B0)⊕ r0 ⊕ r1 (5)

C1 = (A1 ∧B1)
(
(r0 ⊕ (A0 ∧B1))⊕ (A1 ∧B0)

)
⊕ r2 (6)

C2 = (A2 ∧B2)⊕
(
(r1 ⊕A0 ∧B2)⊕A2 ∧B0

)
(7)

⊕
(
(r2 ⊕A1 ∧B2)⊕A2 ∧B1)

)
(8)

As shown in Figure 3a, when computing C1 two register
stages are required. The intermediate result (r0 ⊕A0 ∧B1) is
computed by a LUT3 (lutf1), while (A1∧B0) is computed by
a LUT2 (lutf2).

The result of lutf1 needs to be stored to a register reg1 to
ensure the refreshing with r0 is finished before combining it
with the result of lutf2. Figure 3b shows the netlist of the
circuit after synthesis with ISE 14.7 where register retiming is
applied. The registers reg1 and reg2 are moved forward, i.e.,
they are swapped with lutf3. Then, the synthesizer merges lutf1,
lutf2 and lutf3 into a single LUT5, and registers reg1 and reg2
can be merged. The area of the design is reduced, since the
resulting circuit only requires two LUTs instead of four, and
two registers instead of three. However, reg1 ensuring proper
refreshing is removed and consequently, an attacker probing
the output of the LUT5 can learn a function of two shares
of A and B respectively due to glitches, for example, if the
randomness r0 arrives later at the LUT5 input. Note that in this
example, LUT combining happens besides register retiming,
but the leakage would also be present if LUT combining was

0 1000 2000 3000 4000
time (samples)

5

0

5

t-s
ta

tis
tic

(a) Without register retiming

0 1000 2000 3000 4000
time (samples)

5

0

5

t-s
ta

tis
tic

(b) With register retiming

Fig. 4: Univariate fixed-vs.-random t-test results for the 2nd-order ISW multiplier using 30 million traces. No leakage is visible
without register retiming (a), but the design leaks with retiming enabled (b).

Masked
hardware
design

(Verilog, VHDL, ...)

Netlist
(Verilog)

Circuit graph
(JSON)

Input signal Label

clk
A0
A1
B0
r0
...

unimportant
share 0
share 0
share 1

fresh randomness
...

SAT
formula

FPGA Synthesis/
Place-and-route

tool
(Vivado, ISE,

Intel Quartus, ...)

Yosys,
Python

FENIX

z3

✓Secure ✗Insecure
Leaking gate: ...,
Leaking cycle: ...

1
2

3

4

5

6

Fig. 5: Verification flow of FENIX, consisting of 1⃝- 3⃝ three preprocessing steps, 4⃝ the actual verification step, 5⃝ the SAT
solving step and 6⃝ the interpretation step.

disabled.
Intuitively, the computations of C0, C1, and C2 individually

must be 1st-order secure such that the whole gadget can be
2nd-order secure. Therefore, in the empirical measurements,
we assess the 1st-order security of the part of the circuit
computing C1. Figure 4 shows the results of our empirical
leakage evaluation using 30 million traces, which confirms that
register retiming introduces 1st-order leakage to the design.
More specifically, we compare the security of the design
without register retiming (Figure 4a) to the security of the
design when retiming is enabled (Figure 4b). In the latter
case, we perceive peaks in the t-score over the 4.5 border
as expected, indicating 1st-order leakage.

The leak introduced by register retiming was not detected
by COCO because the ASIC netlist did not contain the retimed
registers. To spot the leakage, the post-synthesis FPGA netlist
needs to be considered.

IV. FENIX

In this section, we describe how we built FENIX, the first
tool for the formal verification of masked FPGA implementa-
tions. FENIX operates directly on post-place-and-route netlist
level and therefore easily detects leaks introduced by synthesis
and place-and-route. Similar to REBECCA/COCO, our tool

utilizes Fourier expansions and approximates correlation sets
for LUTs, registers, and multiplexers, which are part of the
FPGA netlist. The correlation sets are encoded and then
checked with a SAT solver. First, we describe the high-level
verification flow of FENIX, give a precise description of the
input netlist produced by 1⃝, and describe the verification step
(4⃝) in detail.

A. Verification Flow

The verification flow implemented by FENIX consists of six
steps, as shown in Figure 5, divided into three preprocessing
steps 1⃝- 3⃝, the verification step 4⃝, the solving step 5⃝, and
the interpretation step 6⃝:

1⃝ The masked hardware design written in an HDL such
as Verilog or VHDL is processed by the FPGA design flow,
which typically consists of synthesis and place-and-route.
In our experiments, we focus on Xilinx tools, although the
verification flow could, in principle, be used with tools from
other vendors such as Intel or Lattice as well. The result of this
process is the post-place-and-route netlist in Verilog format.
LUTs that are combined into a LUT6 2 are marked as pairs
using dedicated annotations.

2⃝ Using Yosys [38], we parse the netlist and transform it
into a circuit graph with gates as nodes and wires as edges.

TABLE I: Overview of propagation rules

Gate type Function Propagation rule
Stable St(g) Transient T t(g)

Input x ∈ X {x} {x}
Register Copy St−1(g) St−1(g)

Multiplexer g = g3?g1 : g2 St(g1) ∪ St(g2) ∪
(St(g3)△St(g1)) ∪
(St(g3)△St(g2))

△i(∅ ∪ T t(gi)) for 1 ≤ i ≤ 3

LUTn g = f(g1, ...gn) Derived from INIT △i(∅ ∪ T t(gi)) for 1 ≤ i ≤ n

LUT6 2
g = f1(A), A ⊆ (g1, ...g5) Derived from INITg △i(∅ ∪ T t(gi)) for 1 ≤ i ≤ 5

h = f2(B), B ⊆ (g1, ...g5) Derived from INITh △i(∅ ∪ T t(gi)) for 1 ≤ i ≤ 5

The graph is stored in JSON format. Using a dedicated prepro-
cessing script, we merge the LUTs, which are marked as pairs
in the netlist, into a single LUT6 2 element. Additionally, we
remove cycles in the circuit by unrolling and then topologically
sort the graph such that the root nodes are registers and circuit
inputs.

3⃝ A label is assigned to every circuit input bit, which
expresses its purpose in the masking scheme. An input bit
can either be a share, random or unimportant.

4⃝ For each node in the circuit graph, FENIX computes the
respective correlation set according to the propagation rules
and encodes them into a SAT formula with regard to the
masking order. For LUTs, FENIX determines the propagation
rules in a precomputation step. This process is repeated for
a specific number of clock cycles for a specific masking
order chosen by the user. Similar to REBECCA/COCO, FENIX
supports both stable and transient verification.

5⃝, 6⃝ The resulting SAT formula is given to the Z3
Theorem Prover, which searches for leaks in the correlation
sets over all cycles. If a leak is found, the SAT formula is
satisfiable, and a possible variable assignment is given to the
FENIX tool. The tool interprets the model and reports the
leaking gate and cycle. If no leak is found, the SAT formula
is unsatisfiable, and the tool reports that the circuit is secure.

B. Input netlist

FENIX operates on the post-place-and-route netlist in
Verilog format. In Vivado, it can be extracted using the
write_verilog TCL command. The netlist describes the
design as a graph where nodes are either circuit inputs, outputs,
LUTs, registers, or multiplexer cells, and edges are wires.
For every LUT, the netlist contains the initialization (INIT)
string, which represents the output values of the LUT for every
possible assignment of the inputs and eventually allows to
determine the logic function.

On the FPGA, LUTs are grouped into slices, and slices
are grouped into CLBs (Configurable Logic Blocks), which
are connected to a switch matrix for routing [40]. Slices are
categorized into SLICEL and SLICEM. SLICEL consist of
four LUT6 2, eight registers, several cascade multiplexers,
and logic elements to realize carry logic efficiently. SLICEM
additionally support storing data using distributed RAM and
contain shift registers. Which features are used depends on the

configuration of the slice. For most cryptographic implemen-
tations, SLICEL are configured to process an input using the
LUTs and storing either the result to the register or forwarding
it to another LUT. In this case, the post-place-and-route netlist
verified by FENIX will contain only the LUTs and registers
if used because the post-place-and-route netlist replicates the
exact configuration of slices. The cascade multiplexers and
carry logic are not included in the netlist, and therefore not
considered by the verification, even though they are physically
present. However, it is valid to exclude these logic elements
from the verification because they are inactive, i.e., do not
actively compute anything, and can therefore not cause any
share-dependent combinations leading to leakage in the design.
For example, as sketched in Appendix D, the three cascade
multiplexers each connect two LUT6 2 outputs, and the third
multiplexer connects the output of the two multiplexers before.
If the multiplexer select signals glitch, the attacker could, in
the worst case, probe a combination of the output of all four
LUTs in the slice. However, in practice, the select signals are
stable and never change their value, which allows to probe
only the output of a single LUT and therefore does not give
the attacker any advantage. In case any implementation ever
requires the use of the cascade multiplexers and carry logic,
which is very rare for cryptographic implementations, the
slice configuration is changed, and the respective elements are
added to the netlist.

C. Verification of LUTs

Before starting verification with FENIX, the user needs to
provide a label file indicating the purpose of each input signal.
We incorporate the labeling system of REBECCA/COCO, that
is, a share represents a share of a sensitive bit, random means
a fresh and uniformly-distributed random bit, and unimportant
means that it is not relevant for the masked implementation,
e.g., a control signal or the clock input. These labels are
directly translated into correlation sets for the input signals
of the circuits. Then, FENIX propagates these correlation sets
through the circuit according to the propagation rules. Which
propagation rule is used depends on the gate type (input,
register, LUT) and the verification mode (stable or transient).
The stable verification mode refers to checking the security in
the classic probing model [21], while the transient verification
mode allows glitch-extended probes. In this work, we propose
propagation rules for LUTs for both stable and transient veri-

fication for the first time . The propagation rules for registers
and multiplexers are carried over from REBECCA/COCO.

Like COCO, FENIX generally performs verification in the
time-constrained probing model. The time-constrained probing
model [13] restricts the temporal scope of a probe to one
clock cycle, i.e., a probe is used to observe information in
one specific clock cycle at one specific location. By that,
FENIX can be used to verify non-pipelined circuits, although
it is restricted to verifying circuits without state machines
and control signals. Therefore, we formulate propagation rules
(correlation sets) implemented by FENIX in a cycle-aware
fashion, which allows a more intuitive interpretation of results
and several optimizations. In Table I we give an overview
of the propagation rules used by FENIX. △ refers to the
symmetric set difference.

Propagation rules for LUTn: In the stable case, the
correlation set computed according to the propagation rule
reflects the correlation at the LUT output, assuming no glitches
on the input. Before verification starts, we determine a stable
propagation rule for each LUT in the netlist by computing
the Fourier representation of the LUT’s function. In order
to determine these propagation rules for a LUT representing
the function g = f(g1, ...gn), we apply a three-step process
inspired by [30]:

1) Every LUTn in the circuit graph is associated to a hex-
adecimal initialization string which represents the output
values of the LUT for every possible assignment of inputs
in ascending order. We convert the initialization string to a
2n-digit binary number INIT = {−1, 1}n, and then compute
the truth table Y :

∀a ∈ {−1, 1}n : Y [a] = INIT[pos(a)] (9)

The function pos(a) converts the n-bit binary vector a into
the index such that f(a) = INIT[pos(a)].

2) We compute the indicator polynomials 1a. Intuitively,
1a(g1, ...gn) = 1 if a = (g1, ...gn), else it is 0:

∀a ∈ {−1, 1}n : 1a(g1, ...gn) =

n∏
i=1

1 + aigi
2

(10)

3) Using the indicator polynomials we arrive at the Fourier
representation of f by computing and summarizing the
following expression:

f(g1, ..gn) =
∑

a∈{−1,1}n

Y [a] · 1a(g1, ...gn) (11)

From that expression, we extract the linear combinations
of the inputs and the Fourier coefficients, which enables
the construction of the correlation set St(g) according to
Equation (2). The propagation rule is then formed by replacing
the abstract LUT inputs by the respective input correlation sets
St(g1), ...St(gn).

In the transient case, FENIX makes the worst case assump-
tion and extends the attacker’s abilities by assuming any arbi-
trary Boolean function from the LUT’s original inputs may be
probed, independent of the INIT string or the concrete ordering

of inputs. This is reflected by the respective propagation rule
as shown in Table I.

Example: Consider a LUT3 with initialization string
0x78 = (01111000)2, representing the function f(g1, g2, g3) =
(g1 ∧ g2)⊕ g3. To compute the propagation rule for the stable
mode we first convert 0x78 to INIT = (1,-1,-1,-1,-1,1,1,1). By
computing the truth table and indicator polynomials we arrive
at the Fourier expansion f(g1, g2, g3) = 0.5g3 + 0.5g1g3 +
0.5g2g3 − 0.5g1g2g3, and the correlation set with regard to
abstract inputs S (g) = {{g3}, {g1, g3}, {g2, g3}, {g1, g2, g3}}.
This yields the propagation rule St(g) = St(g3)△(St(g1) ∪
St(g3))△(St(g2) ∪ St(g3))△(St(g1) ∪ St(g2) ∪ St(g3)). In
the transient case, the propagation rule says to propagate all
possible combinations of the transient correlation sets, i.e.,
T t(g) = ({∅} ∪ T t(g1))△({∅} ∪ T t(g2))△({∅} ∪ T t(g3)).

Propagation rules for LUT6 2: A LUT6 2 consists of
two LUTs connected by a multiplexer (cf. Appendix B), that
have the common inputs (g1, ...g5). Each LUT operates on a
subset of inputs, i.e., the first LUT computes g = f1(A), A ⊆
(g1, ...g5) and the second LUT computes h = f2(B), B ⊆
(g1, ...g5). The sixth input is driven high, which ensures that
the output of the first LUT is forwarded to the first output port,
and the output of the second LUT is forwarded to the second
output port. In the stable case, we compute the propagation
rules for the two individual LUTs, and use the rules to assign
the correlation sets to the respective output. Conceptually, we
treat the two LUT5s independently from each other. In the
transient case, we however need to take into account that
all five inputs are forwarded to each of the two LUTs, and
an attacker might probe an arbitrary combination of all five
inputs even though not all inputs are processed functionally.
Therefore, we assign the same correlation set to both outputs
to capture the fact that all inputs (g1, ...g5) enter both LUTs.
Similar to the regular LUTn, we assume the attacker can probe
an arbitrary function of input signals.

V. EVALUATION

In this section, we first describe the evaluation setup and
then discuss and interpret the results obtained from verifying
different masked implementations. We compare our tool to
others, including REBECCA [5], COCO [13], maskVerif [1],
SILVER [22], and discuss possible optimizations to improve
the tool for the future.

A. Setup

For evaluating FENIX in terms of verification runtime,
we use a notebook with an AMD Ryzen 5 4500U CPU
with 16GB of RAM. To synthesize the designs, we use
Vivado 2021.1 and a Xilinx 7 Series FPGA as the target
device (XC7S75-FGGA676-1). For our experiments, we use
the default synthesis options of Vivado with a few exceptions.
First, we set the Verilog attribute extract_reset to the
reset signals in our designs. This ensures that the reset signal
is directly connected to the respective register instead of being
used as an input to the LUT before the register. Unless stated
otherwise, we set the options -no_lc to true to prevent

TABLE II: Verification of masked implementations using FENIX. ✖ indicates intentionally broken implementations. Nodes
include inputs, outputs, registers, multiplexers and LUTs.

Name Nodes Cycles Input Fresh Runtime
shares randomness Stable Transient

1st-order
DOM-AND [17] 107 2 4 × 8 bit 8 bit 0.1 s 0.1 s
DOM-AND [17] with LUT combining 20 2 4 × 1 bit 1 bit 0.1 s < 0.1 s ✖

DOM-AND [17] without registers [17] 74 1 4 × 8 bit 8 bit <0.1 s <0.1 s ✖

TI-AND [29] 96 1 6 × 8 bit - <0.1 s <0.1 s
ISW-AND [21] 155 3 4 × 8 bit 8 bit 0.3 s 0.6 s
Trichina-AND without registers [36] 64 1 4 × 8 bit 8 bit <0.1 s 0.6 s ✖

DOM Keccak S-box [18] 62 2 10 × 1 bit 5 bit <0.1 s 0.6 s
DOM Ascon Round 5136 3 10 × 64 bit 320 bit 9min 9.5h
DOM AES S-box [17] 409 5 2 × 8 bit 28 bit 4.5min -

2nd-order
DOM-AND [17] 219 2 6 × 8 bit 24 bit 2.1 s 19 s
ISW-AND [21] 315 3 6 × 8 bit 24 bit 42 s 1.8m
ISW-AND [21] with retiming 29 4 6 × 1 bit 3 bit 0.3 s < SI0.1s
DOM Keccak S-box [18] 62 2 15 × 1 bit 15 bit 0.3 s 1.7 s

3rd-order
DOM-AND [17] 49 2 8 × 1 bit 6 bit <0.1 s 0.1 s
DOM-AND [17] 371 2 8 × 8 bit 48 bit 1.3min 1.9h

LUT combining (cf. Section III-B), and -retiming to false
to prevent register retiming (cf. Section III-C) to construct
secure FPGA designs. Instead, we could also have placed
dont_touch attributes on selected wires.

B. Results

The verification results of the masked hardware implemen-
tations and the verification runtime are shown in Table II. We
evaluate several 1st-, 2nd- and 3rd-order masked hardware im-
plementations. Table II shows the name of the masked design,
the number of nodes (inputs, outputs, registers, multiplexers,
LUTs) in the circuit graph, the number of verified cycles,
and the number of labels provided by the user (shares and
fresh randomness). In terms of runtime, we report the total
verification runtime for the stable and transient mode, which
includes the steps 4⃝- 6⃝.

The selection of masked circuits covers various 1st-order
masked AND gadgets [17], [21], [29], [36] which can all
be verified in less than a second. We include a DOM-AND
implementation without a register stage, which is secure in
the stable case but exhibits leakage in the transient case due
to glitches, which is correctly detected by FENIX. During our
analysis, we make an interesting observation about the security
of the Trichina-AND gadgets, which we implement without
a register stage. In the transient case, the implementation
is therefore insecure due to glitches, as confirmed by our
tool. However, the Trichina-AND gadget passes the stable
verification on the FPGA netlist with FENIX, but fails stable
verification with REBECCA when implemented on an ASIC
as shown in [5]. The reason for this is that in the case of
REBECCA, the ASIC synthesis tool reorders the individual
binary gates, but the specific order of gates is crucial for
stable security. By contrast, when implemented on an FPGA,
the binary gates are merged into a single LUT, leaving less
possibilities for reordering.

FENIX can also be applied to bigger designs, like the
Keccak S-box. We successfully verify a complete Ascon round

consisting of more than 5000 nodes using 64-bit input shares
in less than 10 hours in the transient mode. By verifying
2nd- and 3rd-order DOM-AND gadgets, and a 2nd-order ISW-
AND gadget, we show that FENIX can be applied to higher
orders. We successfully verify a 1st-order masked AES S-
box protected by DOM with a latency of five cycles in 5
minutes for the stable case. In the transient case, the solver
returned no result after one week, although FENIX managed
to build the formula in 3 seconds. This is mainly due to
the complex structure of an AES S-box, and to choosing Z3
as a solver. Also, in the original publication of REBECCA
[5], the authors mention that they checked each sensitive bit
separately while treating the others as constants and starting
the verification eight times instead of labeling all sensitive bits
at once, which significantly reduces the complexity of the SAT
problem. The reduction of the complexity can, for example,
be seen very well when comparing the verification runtimes
of FENIX when verifying a 3rd-order DOM-AND gadget. For
1 bit, the verification finishes in 0.1 s, while for 8 bits, it takes
1.9 h.

C. Comparison and Future Work

Currently, no verification tool operating on FPGA netlists
exists, which does not allow for a direct and fair comparison
with another state-of-the-art tool. Also, comparisons with other
ASIC verification tools need to be made with caution, as these
tools often use parallelization instead of only one CPU core.
Compared to REBECCA, FENIX provides similar and, in most
cases, even better verification runtimes, given the fact that
REBECCA uses multithreading and focuses on 1-bit imple-
mentations. COCO, which was built on top of REBECCA for
verifying masked software implementations on CPU netlists,
was recently extended for hardware implementations [20].
COCO is able to provide very low verification runtimes due
to extensive simplification of correlation sets based on the
behavior of ASIC gates. For example, it tracks whether the
input of an AND gate is zero and glitch-free, allowing to safely

assume that the output will also be zero and glitch-free. Such
assumptions are not possible in the case of LUTs since the
exact internal structure of LUTs, and therefore, their glitch
behavior, is unknown. Additionally, COCO considers control
signals by reading simulation traces of the respective designs,
which also helps to simplify stable correlation sets. A similar
technique could be integrated into FENIX’ stable verification
mode and would require to re-compute the propagation rules
for LUTs in every cycle depending on the value of a concrete
control signal.

The verification runtimes of basic gadgets are also com-
parable to the ones reported by maskVerif and SILVER.
For future work, it would be very interesting to check other
properties such as composability, e.g., strong non-interference
(SNI) [2] with FENIX as it is already done by maskVerif
and SILVER.

The total verification runtime of FENIX is largely deter-
mined by the time it takes to solve the generated SAT formula.
For example, for verifying the ASCON Round, it took only
15 s to create the SAT formula (step 4⃝), while it took 9min
to solve it. The evaluation of different solvers is therefore also
an open point for future work, as we believe a solver better
suited for our problem would further decrease the verification
runtimes drastically.

VI. CONCLUSION

In this paper, we investigated the effect of the FPGA synthe-
sis process on the security of masked hardware designs. We
showed that optimization measures such as LUT combining
and register retiming could introduce additional leakage into
a design that was formally verified to be secure even in
the presence of glitches. Using empirical measurements, we
demonstrated that the leakage is also observable in practice.
These leaks can hardly be detected manually by the designer
on RTL level and usually require a close inspection of the
post-synthesis or post-place-and-route netlist, which becomes
infeasible for larger designs due to the growing complexity.
Based on this case study, we therefore presented FENIX, the
first formal verification tool to verify masked FPGA designs
directly on netlist level. More concretely, we show how the
Fourier analysis of Boolean functions can be used to determine
propagation rules for LUTs in a circuit, which can then be
used to estimate correlation sets during the verification. We
evaluated the tool using several masked designs, including
multiplication gadgets and a full Ascon round.

ACKNOWLEDGEMENTS

This research is supported by the Austrian Science Fund
(FWF SFB project SPyCoDe F8504). We thank the anony-
mous reviewers for their valuable feedback.

APPENDIX A
1ST-ORDER DOM MULTIPLIER

A0

A1

B0

B1

r0

FF

FF

FF

FF

C0

C1

Fig. 6: 1st-order DOM multiplication gadget [17] represented
as an ASIC netlist.

APPENDIX B
INTERNAL STRUCTURE OF LUT6 2 PRIMITIVE

LUT6_2

LUT5 O6

O5

I5

I4

I3

I2

I1

I0 LUT5

1

0

Fig. 7: Internal structure of a LUT6 2, which consists of two
LUT5 and a multiplexer [43].

APPENDIX C
2ND-ORDER ISW MULTIPLIER

A1

A0

B1

r0

 FF

B0

 FF

 FF

r2

A1

B1

C1

Fig. 8: 2nd-order ISW multiplication gadget [21] represented
as an ASIC netlist.

APPENDIX D
SLICEL WITH CASCADE MULTIPLEXERS

LUT6_2

LUT6_2

LUT6_2

LUT6_2

Fig. 9: Simplified sketch of SLICEL connecting four LUT6 2s
and cascade multiplexers.

REFERENCES

[1] Barthe, G., Belaı̈d, S., Cassiers, G., Fouque, P., Grégoire, B., Standaert,
F.: maskverif: Automated verification of higher-order masking in pres-
ence of physical defaults. In: Computer Security - ESORICS 2019 - 24th
European Symposium on Research in Computer Security, Luxembourg,
September 23-27, 2019, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 11735, pp. 300–318. Springer (2019)

[2] Barthe, G., Belaı̈d, S., Dupressoir, F., Fouque, P., Grégoire, B., Strub,
P., Zucchini, R.: Strong non-interference and type-directed higher-order
masking. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C.,
Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October
24-28, 2016. pp. 116–129. ACM (2016)

[3] Belaı̈d, S., Mercadier, D., Rivain, M., Taleb, A.R.: Ironmask: Versatile
verification of masking security. In: 43rd IEEE Symposium on Security
and Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022. pp.
142–160. IEEE (2022). https://doi.org/10.1109/SP46214.2022.9833600,
https://doi.org/10.1109/SP46214.2022.9833600

[4] Bhasin, S., Carlet, C., Guilley, S.: Theory of masking with codewords in
hardware: low-weight dth-order correlation-immune boolean functions.
IACR Cryptol. ePrint Arch. p. 303 (2013), http://eprint.iacr.org/2013/303

[5] Bloem, R., Groß, H., Iusupov, R., Könighofer, B., Mangard, S., Winter,
J.: Formal verification of masked hardware implementations in the
presence of glitches. In: Advances in Cryptology - EUROCRYPT 2018
- 37th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018
Proceedings, Part II. Lecture Notes in Computer Science, vol. 10821,
pp. 321–353. Springer (2018)

[6] Cassiers, G., Grégoire, B., Levi, I., Standaert, F.: Hardware private
circuits: From trivial composition to full verification. IEEE Trans.
Computers 70(10), 1677–1690 (2021)

[7] Cassiers, G., Standaert, F.: Trivially and efficiently composing masked
gadgets with probe isolating non-interference. IEEE Trans. Inf. Forensics
Secur. 15, 2542–2555 (2020)

[8] Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches
to counteract power-analysis attacks. In: Wiener, M.J. (ed.) Advances
in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999,
Proceedings. Lecture Notes in Computer Science, vol. 1666, pp. 398–
412. Springer (1999)

[9] Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: CHES. Lecture
Notes in Computer Science, vol. 2523, pp. 13–28. Springer (2002)

[10] Cnudde, T.D., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rij-
men, V.: Masking AES with d+1 shares in hardware. In: Gierlichs,
B., Poschmann, A.Y. (eds.) Cryptographic Hardware and Embedded
Systems - CHES 2016 - 18th International Conference, Santa Barbara,
CA, USA, August 17-19, 2016, Proceedings. Lecture Notes in Computer
Science, vol. 9813, pp. 194–212. Springer (2016)

[11] Dudha, C.: Retiming in vivado synthesis (2023), https:
//support.xilinx.com/s/article/934201?language=en US, https:
//support.xilinx.com/s/article/934201?language=en US. Retrieved
on 23/05/2023

[12] Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.:
Composable masking schemes in the presence of physical defaults &
the robust probing model. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(3), 89–120 (2018)

[13] Gigerl, B., Hadzic, V., Primas, R., Mangard, S., Bloem, R.: Coco: Co-
design and co-verification of masked software implementations on cpus.
In: Bailey, M., Greenstadt, R. (eds.) 30th USENIX Security Symposium,
USENIX Security 2021, August 11-13, 2021. pp. 1469–1468. USENIX
Association (2021)

[14] Goddard, Z.N., LaJeunesse, N., Eisenbarth, T.: Power analysis of the
t-private logic style for fpgas. In: IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2015, Washington, DC,
USA, 5-7 May, 2015. pp. 68–71. IEEE Computer Society (2015)

[15] Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for
side-channel resistance validation. In: NIST Non-Invasive Attack Testing
Workshop (2011)

[16] Goubin, L., Patarin, J.: DES and differential power analysis (the ”du-
plication” method). In: Koç, Ç.K., Paar, C. (eds.) Cryptographic Hard-
ware and Embedded Systems, First International Workshop, CHES’99,
Worcester, MA, USA, August 12-13, 1999, Proceedings. Lecture Notes
in Computer Science, vol. 1717, pp. 158–172. Springer (1999)

[17] Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: Compact
masked hardware implementations with arbitrary protection order. In:
Proceedings of the ACM Workshop on Theory of Implementation
Security, TIS@CCS 2016 Vienna, Austria, October, 2016. p. 3. ACM
(2016)

[18] Groß, H., Schaffenrath, D., Mangard, S.: Higher-order side-channel
protected implementations of KECCAK. In: Euromicro Conference on
Digital System Design, DSD 2017, Vienna, Austria, August 30 - Sept.
1, 2017. pp. 205–212. IEEE Computer Society (2017)

[19] Güneysu, T.: Fpgas in cryptography. In: van Tilborg, H.C.A., Jajodia, S.
(eds.) Encyclopedia of Cryptography and Security, 2nd Ed, pp. 499–501.
Springer (2011)

[20] Hadzic, V., Bloem, R.: COCOALMA: A versatile masking ver-
ifier. In: Formal Methods in Computer Aided Design, FMCAD
2021, New Haven, CT, USA, October 19-22, 2021. pp. 1–10. IEEE
(2021). https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 9, https:
//doi.org/10.34727/2021/isbn.978-3-85448-046-4 9

[21] Ishai, Y., Sahai, A., Wagner, D.A.: Private circuits: Securing hard-
ware against probing attacks. In: Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003, Proceedings. Lecture Notes in
Computer Science, vol. 2729, pp. 463–481. Springer (2003)

[22] Knichel, D., Sasdrich, P., Moradi, A.: SILVER - statistical independence
and leakage verification. In: Moriai, S., Wang, H. (eds.) Advances in
Cryptology - ASIACRYPT 2020 - 26th International Conference on
the Theory and Application of Cryptology and Information Security,
Daejeon, South Korea, December 7-11, 2020, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 12491, pp. 787–816. Springer
(2020)

[23] Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: CRYPTO.
Lecture Notes in Computer Science, vol. 1666, pp. 388–397. Springer
(1999)

[24] Li, Y., Tang, M., Li, Y., Zhang, H.: A pre-silicon logic level security
verification flow for higher-order masking schemes against glitches on
fpgas. Integr. 70, 60–69 (2020)

[25] Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked
CMOS gates. In: Menezes, A. (ed.) Topics in Cryptology - CT-RSA
2005, The Cryptographers’ Track at the RSA Conference 2005, San
Francisco, CA, USA, February 14-18, 2005, Proceedings. Lecture Notes
in Computer Science, vol. 3376, pp. 351–365. Springer (2005)

[26] Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked
AES hardware implementations. In: Rao, J.R., Sunar, B. (eds.) Cryp-
tographic Hardware and Embedded Systems - CHES 2005, 7th Inter-
national Workshop, Edinburgh, UK, August 29 - September 1, 2005,
Proceedings. Lecture Notes in Computer Science, vol. 3659, pp. 157–
171. Springer (2005)

[27] Masure, L., Méaux, P., Moos, T., Standaert, F.: Effective and efficient
masking with low noise using small-mersenne-prime ciphers. In: Hazay,
C., Stam, M. (eds.) Advances in Cryptology - EUROCRYPT 2023 -
42nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Pro-
ceedings, Part IV. Lecture Notes in Computer Science, vol. 14007, pp.
596–627. Springer (2023)

[28] Meyer, L.D., Reparaz, O., Bilgin, B.: Multiplicative masking for AES in
hardware. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 431–
468 (2018)

[29] Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations
against side-channel attacks and glitches. In: Information and Commu-
nications Security, 8th International Conference, ICICS 2006, Raleigh,
NC, USA, December 4-7, 2006, Proceedings. Lecture Notes in Computer
Science, vol. 4307, pp. 529–545. Springer (2006)

[30] O’Donnell, R.: Analysis of Boolean Functions. Cambridge University
Press (2014)

[31] Pramstaller, N., Mangard, S., Dominikus, S., Wolkerstorfer, J.: Efficient
AES implementations on asics and fpgas. In: Dobbertin, H., Rijmen, V.,
Sowa, A. (eds.) Advanced Encryption Standard - AES, 4th International
Conference, AES 2004, Bonn, Germany, May 10-12, 2004, Revised Se-
lected and Invited Papers. Lecture Notes in Computer Science, vol. 3373,
pp. 98–112. Springer (2004)

[32] Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.:
Consolidating masking schemes. In: Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 9215, pp. 764–783. Springer (2015)

https://doi.org/10.1109/SP46214.2022.9833600
http://eprint.iacr.org/2013/303
https://support.xilinx.com/s/article/934201?language=en_US
https://support.xilinx.com/s/article/934201?language=en_US
https://support.xilinx.com/s/article/934201?language=en_US
https://support.xilinx.com/s/article/934201?language=en_US
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_9
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_9

[33] Roy, D.B., Bhasin, S., Guilley, S., Danger, J., Mukhopadhyay, D.: From
theory to practice of private circuit: A cautionary note. In: 33rd IEEE
International Conference on Computer Design, ICCD 2015, New York
City, NY, USA, October 18-21, 2015. pp. 296–303. IEEE Computer
Society (2015). https://doi.org/10.1109/ICCD.2015.7357117, https://doi.
org/10.1109/ICCD.2015.7357117

[34] Sadhukhan, R., Saha, S., Mukhopadhyay, D.: Shortest path to secured
hardware: Domain oriented masking with high-level-synthesis. In: 58th
ACM/IEEE Design Automation Conference, DAC 2021, San Francisco,
CA, USA, December 5-9, 2021. pp. 223–228. IEEE (2021)

[35] Shahverdi, A., Taha, M., Eisenbarth, T.: Silent simon: A threshold
implementation under 100 slices. In: IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2015, Washington, DC,
USA, 5-7 May, 2015. pp. 1–6. IEEE Computer Society (2015)

[36] Trichina, E.: Combinational logic design for AES subbyte transformation
on masked data. IACR Cryptol. ePrint Arch. 2003, 236 (2003)

[37] Wei, Y., Yao, F., Pasalic, E., Wang, A.: New second-order threshold
implementation of AES. IET Inf. Secur. 13(2), 117–124 (2019)

[38] Wolf, C.: Yosys open synthesis suite. https://yosyshq.net/yosys/
[39] Xiao, G., Massey, J.L.: A spectral characterization of correlation-

immune combining functions. IEEE Trans. Inf. Theory 34(3), 569–571
(1988)

[40] Xilinx: 7 series fpgas configurable logic block user guide (ug474)
(2016), https://docs.xilinx.com/v/u/en-US/ug474 7Series CLB,
https://docs.xilinx.com/v/u/en-US/ug474 7Series CLB. Retrieved
on 21/05/2023

[41] Xilinx: Vivado design suite user guide implementation
(ug904) (2016), https://docs.xilinx.com/v/u/2016.2-English/
ug904-vivado-implementation, https://docs.xilinx.com/v/u/2016.
2-English/ug904-vivado-implementation. Retrieved on 23/05/2023

[42] Xilinx: Ultrafast design methodology guide for fpgas
and socs (ug949) (2022), https://docs.xilinx.com/r/en-US/
ug949-vivado-design-methodology, https://docs.xilinx.com/r/en-US/
ug949-vivado-design-methodology. Retrieved on 23/05/2023

[43] Xilinx: Vivado design suite 7 series fpga and zynq 7000 soc
libraries guide (ug953) (2022), https://docs.xilinx.com/r/en-US/
ug953-vivado-7series-libraries/LUT6 2, https://docs.xilinx.com/
r/en-US/ug953-vivado-7series-libraries/LUT6 2. Retrieved on
23/05/2023

https://doi.org/10.1109/ICCD.2015.7357117
https://doi.org/10.1109/ICCD.2015.7357117
https://yosyshq.net/yosys/
https://docs.xilinx.com/v/u/en-US/ug474_7Series_CLB
https://docs.xilinx.com/v/u/en-US/ug474_7Series_CLB
https://docs.xilinx.com/v/u/2016.2-English/ug904-vivado-implementation
https://docs.xilinx.com/v/u/2016.2-English/ug904-vivado-implementation
https://docs.xilinx.com/v/u/2016.2-English/ug904-vivado-implementation
https://docs.xilinx.com/v/u/2016.2-English/ug904-vivado-implementation
https://docs.xilinx.com/r/en-US/ug949-vivado-design-methodology
https://docs.xilinx.com/r/en-US/ug949-vivado-design-methodology
https://docs.xilinx.com/r/en-US/ug949-vivado-design-methodology
https://docs.xilinx.com/r/en-US/ug949-vivado-design-methodology
https://docs.xilinx.com/r/en-US/ug953-vivado-7series-libraries/LUT6_2
https://docs.xilinx.com/r/en-US/ug953-vivado-7series-libraries/LUT6_2
https://docs.xilinx.com/r/en-US/ug953-vivado-7series-libraries/LUT6_2
https://docs.xilinx.com/r/en-US/ug953-vivado-7series-libraries/LUT6_2

	Introduction
	Background and Related Work
	Masking
	Leakage sources in masked designs
	Formal verification of masking
	Fourier-based verification

	Leakage Sources on FPGAs
	Experiment setup
	LUT combining
	Register retiming

	Fenix
	Verification Flow
	Input netlist
	Verification of LUTs

	Evaluation
	Setup
	Results
	Comparison and Future Work

	Conclusion
	Appendix A: 1st-order DOM multiplier
	Appendix B: Internal structure of LUT6_2 primitive
	Appendix C: 2nd-order ISW multiplier
	Appendix D: SLICEL with cascade multiplexers
	References

