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Abstract: The increasing share of converter-based renewable energy sources in the power system has
forced the system operators to demand voltage support from the converters in case of faults. In the
case of symmetric faults, all the phases have equal voltage support, but in the case of asymmetric
faults, selective voltage support is required. The grid codes define the voltage support required in the
case of symmetric/asymmetric faults, which is the reactive current injection in the respective sequence
proportional to its voltage dip, but studies confirm that it does not result in a minimum unbalance
factor in the case of asymmetric faults. The unbalance factor is an indication of the level of imbalance
voltage among the phases. Moreover, it also results in fluctuated active power injection in the case of
asymmetric faults, which causes dc link voltage fluctuations, and the power reversal may also occur
due to such fluctuations, which leads to higher protection costs for the dc link. In order to (1) enhance
the uniformity of voltage among different phases in the case of asymmetric faults and (2) minimize
the real power fluctuations in such conditions, a novel control scheme is presented in this paper. It
optimally distributes the negative sequence current phasor into its active and reactive components to
achieve the minimum voltage unbalance factor. It also confirms the minimum real power fluctuations
by adjusting the positive and negative sequence current phasors. The proposed scheme also ensures
the current limit of the converter. The proposed scheme is developed in Matlab/Simulink and tested
under different faulty conditions. The results confirm the better performance of the proposed scheme
against the grid code recommendation under different faulty conditions.

Keywords: grid-tide converters; asymmetrical faults; minimum unbalanced factor; low-voltage
ride-through; recent grid codes; minimum real power fluctuations

1. Introduction

Renewable energy sources are gaining more attention due to the depletion of conven-
tional energy sources and increasing greenhouse gas emissions. Converter-based renewable
energy sources are the future of modern power systems. They are capable of providing
flexible control along with clean energy and low production costs. In 2022, 30% of the total
global electricity generation was from renewable sources, and it is experiencing an increas-
ing trend [1]. This share is expected to reach 75% by 2027 [2]. The shift to renewable energy
is mainly led by converter-based sources (solar and wind), as they make up 92% of the
new renewable energy installations [1]. The large penetration of converter-based sources
has a huge impact on the reliability of the system, particularly under faulty conditions.
The converter’s performance under such conditions defines the response of the modern
power system. Hence, research on the converter’s response under such conditions is vital
for the stability of modern power systems. The introduction is arranged into three different
subparts, as given below.

• Motivation and Incitement.
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• Literature Review.
• Major Contributions and Manuscript Structure.

1.1. Motivation and Incitement

Due to the increasing penetration of converter-based power sources, the grid operators
define grid codes for the response of the converter in a particular situation. Among
these situations, low-voltage ride-through (LVRT) is gaining more attention in cases of
unbalanced faults. The LVRT capability curve for the distributed generators is discussed
in [3] and presented in Figure 1.
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Figure 2. Vector representation of unbalanced system and its positive and negative sequence systems. 

Figure 1. LVRT capability curve.

The normalized voltage, given in Figure 1, is the ratio of the minimum measured line-
to-line rms voltage against the rated line-to-line rms voltage. Initially, the converters were
required just to keep feeding the power system in case of voltage dips/sags [4]. The new
converters are capable of providing capacitive reactive power in LVRT conditions that make
them suitable to support the grid voltage under such conditions. To minimize the chances
of voltage collapse, most of the power system operators demand a particular reactive
current injection in the case of LVRT to obtain the voltage support from the converters. The
conventional control schemes are able to provide the same voltage support to all phases,
irrespective of the type of fault. It often results in over voltage in the healthy phase(s)
and more voltage difference among the phases as most of the faults are asymmetric in
nature [5,6].

The relationship between the unbalanced three-phase voltage and its positive and
negative sequence systems is presented in Figure 2. It shows that an unbalanced three-
phase system can be presented into balanced positive and negative sequence systems where
the negative sequence phasor rotates in the opposite direction as compared to the positive
sequence phasor. Moreover, the resultant voltage phasor has an elliptical trajectory, but the
sequence phasors have a circular trajectory.
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The subscripts ‘p’ and ‘n’ represent the positive and negative sequence parameters,
respectively. The unbalance factor (UF) can be an indicator to confirm the uniformity of
the voltage among different phases. It is the ratio between the negative sequence voltage
phasor’s magnitude and the positive sequence voltage phasor’s magnitude (|vn|/|vp|).
During unbalanced faults, due to the presence of negative sequence systems, the UF will be
non-zero. The severe unbalanced faults result in higher negative sequence voltage phasors,
which results in a higher UF. In ideal conditions, it should be zero. To obtain selective
voltage support, the recent grid codes (VDEAR-N 4110) demand specific negative sequence
reactive current injection. This not only helps achieve selective voltage support and min-
imizes the voltage difference among the phases but also helps in selective fault clearing.
Figure 3 shows the recent grid code (VDEAR-N 4110) requirement under asymmetrical
faults [7,8].
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The symbol ‘∆’ shows the change in a particular parameter from its pre-fault value.
In various papers, the authors show that only a reactive current injection in the negative
sequence does not result in the minimum UF. To achieve the minimum UF, certain grid
characteristics at the point of connection (POC) are required, i.e., an X/R ratio of grid and
fault, short circuit power of the grid, and fault impedance, etc. These parameters are often
not easy to define in real time at the POC. Moreover, negative sequence current injection
results in real power fluctuations in most cases as the positive and negative sequence
current phasors are generated explicitly, which causes dc link voltage fluctuations and
power reversal. The motivation behind this research is to develop a new control strategy to
optimally distribute the negative sequence current into its active and reactive components
to achieve a minimum UF while ensuring the minimum real power fluctuations, which will
result in reduced protection for the dc link. Moreover, some control simplifications are also
focused, e.g., direct reference current calculation for the negative sequence in the stationary
reference frame.

1.2. Literature Review

There are different control strategies to inject selective current in each phase in the case
of asymmetrical faults. The selection of a particular control strategy is also dependent on
the hardware of the converter, e.g., three-phase three-leg converters, three-phase four-leg
converters, etc. In [9], the authors discussed these control strategies for different converters.
The main control strategies include the symmetrical component-based and the per-phase-
based strategies. Due to its comparatively simpler control and applicability to most of
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the converter types, the symmetrical component-based control strategy is applied in this
paper. In [5], the authors discussed possible applications of the negative sequence current
injection, e.g., to minimize the UF, improve the injected power quality, and reduce the DC
link voltage ripples, but they did not use it to achieve multiple objectives. In [8], the authors
show that the recent grid code recommendations do not result in minimum UF in most of
the faulty conditions, but they did not discuss the assessment of the optimal angle for the
negative sequence current phasor corresponding to the minimum UF. Moreover, the real
power fluctuations are also not discussed.

In [10], the authors proposed a control scheme to achieve uniform voltage among all
the phases. However, this scheme needs an estimated angle, which is hard to assess. It also
did not discuss the fluctuations in the injected real power. In [11], the authors presented
the impact of different k-values on selective fault detection. Two priority injection schemes
were discussed. However, only the reactive current injection in the negative sequence
was considered. It also did not discuss the fluctuations in real power. In [12], the authors
injected a non-zero active component of current in the negative sequence and studied its
impact on the stability of a phase-locked loop (PLL) under weak grid conditions. However,
the impact on the UF was not discussed.

In [13], the authors discussed different priority injections and observed their effect
on the UF. They introduced a new current limiting scheme to use the converter’s current
capacity effectively. However, they did not discuss the non-zero active current injection
in the negative sequence. In most of the manuscripts where the UF is discussed, only the
reactive current injection in the negative sequence is considered [14–16].

In [17], the authors investigated the impact of non-zero active current injections in
the negative sequence over real and reactive power fluctuations. However, they did not
discuss the impact of such injections on the UF. Moreover, the optimal distribution of
negative sequence currents among its components was also not discussed. In [18], the
authors used negative sequence current injection to minimize the real power fluctuations.
However, they did not discuss the impact on the UF. In [19], the authors presented a control
scheme that injects more current in the faulty phase(s) and minimizes the real power
fluctuations. It also confirmed that both real and reactive power fluctuations cannot be
minimized simultaneously. However, it did not discuss the impact on the UF, and the
associated current distribution among its components was also not discussed. In [20], the
authors presented a control scheme to minimize the real power fluctuations, but they did
not discuss its impact on the UF.

The literature review confirms that the impact of non-zero active current injection in
the negative sequence is not addressed widely, but few publications confirm its effectiveness
as far as UF is concerned. The negative sequence current injection also has an impact on the
real power fluctuations. It is important to find the optimal k-factor and current distribution
for the negative sequence current injection to achieve the minimum UF and lower real
power fluctuations while ensuring the current limit of the converter.

1.3. Major Contributions and Manuscript Structure

The aim of this paper is to design a simplified control scheme for grid-tied converters
that offers selective voltage support in the case of asymmetrical faults and results in
minimum UF and real power fluctuations while ensuring the current limit of the converter.
The proposed control scheme does not require additional measurements/information for
the estimation of the optimal angle of injection of negative sequence current. It offers a
direct reference current calculation for the negative sequence in the stationary reference
frame. Hence, the stability issues related to the PLL of the negative sequence are excluded.
It uses a unified inner current controller for both sequence injections. The major points
discussed in the manuscript are given below.

• Estimation of optimal angle injection (associated with the current distribution among
its components) for the negative sequence current to achieve the minimum possible UF.
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• Calculation of kn to achieve the minimum real power fluctuations for a particular
distribution of negative sequence current phasor.

• Ensuring the current limit of the converter while achieving minimum UF and real
power fluctuations.

• Comparison with the recommendations of recent grid codes (VDEAR-N-4110).

The optimal distribution (associated with the minimum UF) of the negative sequence
current phasor into its components is dependent on the type of fault, short circuit power at
POC, X/R ratio of the grid and fault, etc. These parameters are hard to assess in different
fault conditions. Hence, in this paper, this information is not used to estimate such a
distribution.

The layout of the manuscript is as follows: The test setup is explained in Section 2. It
also presents different parameters of the test setup. The control schemes for the minimum
UF and minimum real power fluctuations are discussed in Section 3. It also presents the
combined control scheme along with the current limiting strategy. Section 4 presents the
performance comparison of the newly developed schemes with the grid code recommenda-
tions for different types of faults. The paper is finally concluded in Section 5. It also presents
the operating limitations of the newly developed schemes, along with the possibility of
further research.

2. Layout of Test Setup

The layout of the test setup is shown in Figure 4.
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The primary energy source is connected to the grid with the help of a two-level,
three-phase, three-leg converter. An LCL filter is used to suppress the harmonic injection.
A step-up transformer in ∆-Y configuration is used to step up the voltage to the grid
voltage. The three-phase voltage and current are measured at POC. The control unit is
capable of estimating the optimal angle for the negative sequence current injection, which
corresponds to the minimum UF. It generates the reference currents for the positive and
negative sequences and ensures the minimum real power fluctuations under asymmetrical
faults. The detailed control scheme will be discussed in the coming section. The output
of the control unit is passed to the modulation unit, which uses pulse width modulation
(PWM) to generate gating pulses for the converter switches. An unbalanced fault is
introduced at POC. The parameters related to the grid, transformer, filter, and converter are
given in Table 1. 12 MVA is used as base power and 20 kV as base rms line-to-line voltage
for the per unit (p.u) calculations.
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Table 1. Test setup parameters.

Grid’s Parameters
Voltage (L-L) Frequency Short Circuit Power X/R

20 kV 50 Hz 100 MVA 10
Filter’s Parameters

Inductance (Lf) Capacitance (Cf)
4.2 µH 17.9 mF

Transformer’s Parameters
Type Rated Frequency Voltage Rated Power Reactance Resistance

Dy11 50 Hz 20 k/400 V 25 MVA 0.015 p.u 1.2 × 10−3

p.u
Converter’s Parameters

Rated Voltage (L-L) DC link voltage (vdc) Rated Power
400 V 800 V 12 MVA

3. Control Scheme

A control scheme is presented in Figure 5 to provide selective voltage support in the
case of asymmetrical faults. It transforms the measured three-phase voltage and current
into its symmetrical sequence components. As the converter is a three-phase, three-leg
converter that is unable to inject the zero-sequence component, only positive and negative
sequence controls are discussed here.
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Addressing the different blocks presented in Figure 5, the transformations from one
reference frame to the other are well defined, and their transfer functions are available in
the literature. Ignoring the zero-sequence component, the transfer matrices for different
transformations are given in (1).

Tabc/αβ =

[
2
3
0

−1
3
1√
3

−1
3
1√
3

]
; Tαβ/abc =

 1
−1
2
−1
2

0√
3

2
−
√

3
2


Tαβ/dq =

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

]
; Tdq/αβ =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

] (1)

The major parts of the control scheme are discussed below.
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3.1. Sequence Extractor

In the literature, there are different sequence extraction schemes available [21–25].
Most of these sequence extraction techniques use the fundamental equation in the stationary
reference frame that is given in (2).


vαp(t)
vβp(t)
vαn(t)
vβn(t)

 =
1
2


vα(t)− vβ(t)

T

vα(t) + vβ(t)
T

vβ(t) + vα(t)
T

vβ(t)− vα(t)
T

 (2)

The superscript ‘T’ denotes the orthogonal of the corresponding components. To
find the orthogonal of a signal in real time, different integrator techniques are used. In
this manuscript, the second-order generalized integrator (SOGI) is used to compute the
orthogonal of a signal in real time. It also serves as an active filter because it requires the
fundamental frequency. The general layout of the SOGI is given in Figure 6.
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ωo is the fundamental frequency that is used to compute the orthogonal of the signal.
If the frequency of the input signal is ωo, then z1(t) is the same as the input, and z2(t) is the
orthogonal of the input signal. The mathematical expressions for the SOGI are discussed
in [13].

3.2. Current Limiter

The positive and negative sequence phasors rotate with the same rotational frequency
but in opposite directions, due to which the resultant phasor has an elliptical trajectory
instead of a circular trajectory [13]. The current limiter block in Figure 5 ensures that the
maximum phase current does not exceed the converter current limit. It adjusts the reference
current’s magnitude to ensure safe operation of the converter. The control layout of the
current limiter is given in Figure 7.
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The superscript ‘*’ represents the reference quantities, and ‘**’ shows the reference
values after applying the current limit. The ‘Fault_flag’ is an indication of the LVRT condi-
tion. The magnitude of negative sequence current phasors is calculated to keep real power
fluctuations to a minimum. The negative sequence current injection is prioritized over the
positive sequence current injection. The fundamental equations related to the current limit
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are given in (3), with ‘y’ being the indication of the conditions associated with the current
limitations for the positive sequence.∣∣i∗p

∣∣+ |i∗n| ≤ imax

x =

{
1.0 i f y = 0
imax−|i∗∗n |
|i∗ p| i f y = 1

(3)

From (3), it is clear that the phase angle for the reference sequence currents is not
changed by the current limiting scheme. It changes the magnitude of the circular current
for both sequence injections.

3.3. Reference Current Generator

The reference current generator is the main part of the control scheme that decides
the reference currents for both sequences in normal and faulty conditions. The reference
currents in normal conditions are proportional to the reference’s real and reactive power.
In faulty conditions, the reference currents are calculated to maintain the minimum real
power fluctuations and the minimum UF. The authors have discussed the reference current
generation for the normal conditions in detail in their other publication [13]. As the
focus of this manuscript is on the converter’s performance in asymmetrical faults, the
reference current generation in the case of asymmetrical faults will be discussed here. Before
discussing the expressions for the reference currents, the optimal angle (associated with
minimum UF) for the negative sequence injection needs to be estimated and is discussed in
the following subsection.

3.3.1. Optimal Angle Estimation

In [8], the authors presented a comparative study to observe the impact of non-zero
active current injection in the negative sequence on the UF. It confirms that in most of
the faulty conditions, the grid code recommendation does not result in a minimum UF.
The challenge, however, with the optimal angle injection is the estimation of the true
optimal angle in real time. This angle is dependent on various parameters, which are often
unknown, e.g., the X/R ratio of the grid and fault, the short-circuit power of the grid, and
the type of fault, etc. In this manuscript, a scheme is presented to estimate this angle from
the measurements at the POC. The optimum angle is estimated from the angle between the
positive and negative sequence voltage phasors.

In [8], the authors proved that the optimal angle can be between 0 and 180 degrees.
The setup given in Figure 4 is used, and a line-to-line fault is introduced; the angle of
the negative sequence current injection varies from 0 to 180 degrees with a step of 5
degrees. The UF and the angle between the positive and negative sequence voltage pha-
sors are observed and plotted against the angle of the negative sequence current phasor
(Figure 8). The magnitude of negative sequence current injections is selected according to
the recommendations of the grid codes. The fault impedance is chosen as 2 Ω.
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Figure 8 confirms that the minimum UF is achieved when the angle difference between
the positive and negative sequence voltage phasors is corrected to its pre-fault value. It can
be used to estimate the optimal angle for the negative sequence current phasor. This value
can be easily captured with the help of sample and hold functions. Different types of faults
are introduced with different X/R ratios of the fault to verify the dependence of optimal
angles of negative sequence currents on the angle between positive and negative sequence
voltage phasors. Table 2 represents the converter response for different faults with different
X/R ratios of the fault.

Table 2. Relation between optimal angle and angle between positive and negative sequence voltage
phasors; ‘A’,’B’,’C’ stands for each phase and ‘G’ for ground.

(]vp,n)pre UFmin θn (]vp,n)min
(X/R)f Fault Type (Deg) (%) (Deg) (Deg)

AB 78.1 76.8
BC −41.3 60.3 135 −43.2
CA −161.5 −163.2
ABG 70 66.71
BCG −50.7 48.6 135 −53.3
CAG −176.3 −173.3
AG 143.6 144
BG 22.53 33.6 110 240

(p
ur

e
re

si
st

iv
e)

CG −96.4 −96
AB 98.3 99
BC −19 49.2 115 −21
CA −141.3 −141
ABG 95.5 94.9
BCG −22.4 39.8 115 −25.1
CAG −145.4 −145.1
AG 159.6 161.5
BG 39.6 26.8 100 41.5

1

CG −79.8 −78.5
AB 113.7 115.1
BC −6.6 46.7 95 −4.9
CA −126.3 −124.9
ABG 113.8 114.6
BCG −7.4 37.8 95 −5.4
CAG −127 −125.4
AG 173.4 175.7
BG 53.6 25.3 95 55.7

5

CG −66.5 −64.3
AB 119.2 120.8
BC −1.5 46.8 90 0.8
CA −120.9 −119.2
ABG 120.1 121.4
BCG −1.1 37.9 90 1.4
CAG −120.8 −118.6
AG 178 180
BG 58.4 25.4 90 60pu

re
in

du
ct

iv
e

CG −62 −60

Where the subscript ‘pre’ stands for pre-fault conditions, subscript ‘min’ corresponds
to the minimum value, and the subscript ‘f’ stands for fault. For generating Table 2, the
X/R ratio of the grid is chosen as 10. Table 2 confirms the following points.

• If the type of fault is the same, then the optimum angle for the minimum UF is
also the same, but the corresponding angle between the voltage phasors of sequence
components can be different.

• Moreover, keeping the same test conditions, the type of fault changes the optimum
angle for the negative sequence current injection.

• When the fault is highly inductive, then the optimum angle is close to the grid code
recommendations, but this is a rare case.

• In all the scenarios, the angle between voltage sequence phasors, corresponding to the
optimal angle injection for the negative sequence current, is in good agreement with
its initial value (columns 3 and 6).

Table 2 validates the findings of Figure 8. To find the optimum angle for the negative
sequence current, a PI controller is used, where the input is the change in the angle between
the positive and negative sequence voltage phasors. The arrangement for estimating the
optimum angle is shown in Figure 9.
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The angle between the positive and negative sequence voltage phasors can be calcu-
lated from its stationary components. This is given in (4).

]vp,n = sin−1

(
vαpvβn + vβpvαn∣∣vp

∣∣|vn|

)
(4)

The proportional gain (kpo) is selected as 0.2 and the integral gain (kio) as 100 for the PI
controller shown in Figure 9. This scheme is tested against the scenarios discussed in [8],
and the estimation is fairly accurate for various types of faults.

3.3.1.1. k-Factors Calculations

The other objective is to calculate the k-factors to achieve the minimum real power
oscillations in the case of unbalanced faults. The voltage and current phasors can be
converted into symmetric positive and negative sequence phasors. The resultant phasor
is the vector sum of the respective positive and negative sequence components in the
stationary reference frame. The mathematical expressions in the stationary reference frame
are discussed in [20] and given below.[

vα(t)
vβ(t)

]
=

[
vαp(t)
vβp(t)

]
+

[
vαn(t)
vβn(t)

]
∣∣vp
∣∣ = √vαp2 + vβp

2; |vn| =
√

vαn2 + vβn
2

(5)

The reference currents corresponding to the faulty conditions are discussed in this
section. The authors presented the expressions for the reference currents in normal condi-
tions in [13]. For the sake of comparison, the reference current phasor’s magnitude for the
negative sequence is selected according to the recommendation of the VDEAR-N 4110. The
summary of VDEAR-N 4110 can be found in [7,26], and its corresponding equations are
given in (6).

i∗qp = kp∆
∣∣vp
∣∣+ i∗qp,pre; i∗dp = f

(∣∣vp
∣∣, p∗

)
i∗qn = kn∆|vn|; i∗dn = 0

(6)

The subscript ‘pre’ stands for the pre-fault value. The grid codes require a reactive
current injection in the negative sequence, but in this scheme, it is distributed between
active and reactive current components depending upon the optimum angle. Mathematical
expressions for the proposed scheme are presented in (7).

i∗qp = kp∆
∣∣vp
∣∣+ i∗qp,pre; i∗dp = f

(∣∣vp
∣∣, p∗

)
|i∗n| = kn∆|vn|
i∗qn = |i∗n|cos(θn); i∗dn = |i∗n|sin(θn)

(7)

It is clear from the above expressions that the magnitude of the negative sequence
current phasor is selected according to the recommendations of the grid codes, but it is
distributed into active and reactive components with the help of the optimum angle, which
is estimated by the arrangement given in Figure 9. This scheme is termed optimal angle
injection (OAI) in this manuscript.
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The grid codes define the range of the k-factors (kp and kn). It ranges from 2 to 6. To
achieve the minimum real power fluctuations, a suitable value of k-factors needs to be
calculated. As it is discussed in [19] that both the real and reactive power fluctuations cannot
be minimized simultaneously in a faulty situation, only the mathematical expressions will
be discussed for the minimization of the real power fluctuations. In [27], the authors
presented the mathematical expression for the real power in a stationary reference frame
that is rewritten in (8).

p = po + p̃[
po
p̃

]
=

[
vαp
vαn

vβp
vβn

vαn
vαp

vβn
vβp

]
i∗∗αp
i∗∗βp
i∗∗αn
i∗∗βn

 (8)

The first term in the expression of ‘p’ results in a constant value, while the second term
causes real power fluctuations (with double the grid frequency). To reduce the real power
fluctuations, the second term should be minimized. The detailed expressions are given
in (9).

p̃ = 0 → (vαpi∗∗αn + vβpi∗∗βn) = −(vαni∗∗αp + vβni∗∗βp)
∴ vαp =

∣∣vp
∣∣cos(ωt + ϕp); vβp =

∣∣vp
∣∣sin(ωt + ϕp)

∴ vαn = |vn|cos(−ωt− ϕn); vβn = |vn|sin(−ωt− ϕn)
∴ i∗∗αp =

∣∣i∗∗p
∣∣cos(ωt + ϕp + θp); i∗∗βp =

∣∣i∗∗p
∣∣sin(ωt + ϕp + θp)

∴ i∗∗αn = |i∗∗n|cos(−ωt− ϕn − θn); i∗∗βn = |i∗∗n|sin(−ωt− ϕn − θn)∣∣vp
∣∣|i∗∗n|cos(2ωt + ϕp + ϕn + θn) = −|vn|

∣∣i∗∗p
∣∣cos(2ωt + ϕp + ϕn + θp)

(9)

The above expression can be simplified if the angle of the positive sequence current
phasor is the same as the negative sequence current phasor. In this case, the cosine terms
cancel out, and it results in a simpler expression between the magnitude of positive and
negative sequence current phasors, which is given in (10).

∣∣vp
∣∣|i∗∗n| = −|vn|

∣∣i∗∗p
∣∣ → |i∗∗n| =

−|vn|
∣∣i∗∗p

∣∣∣∣vp
∣∣ (10)

If the same procedure is repeated to minimize the reactive power, the following
expression can be derived:

∣∣vp
∣∣|i∗∗n| = |vn|

∣∣i∗∗p
∣∣ → |i∗∗n| =

|vn|
∣∣i∗∗p

∣∣∣∣vp
∣∣ (11)

Hence, from (10) and (11), it is clear that the fluctuations in both real and reactive
power cannot be minimized simultaneously. The mathematical expressions for the reference
currents corresponding to the minimum real power fluctuations are given in (12).

i∗qp = kp∆
∣∣vp
∣∣+ i∗qp,pre; i∗dp =

∣∣∣ i∗qp
tan(θ)

∣∣∣
|i∗n| = kn∆|vn|
i∗qn = |i∗n|cos(θ); i∗dn = |i∗n|sin(θ)

(12)

The active component of the positive sequence current is computed from its reactive
component and the negative sequence current phasor’s angle. This is performed to ensure
that both the phasors are in line, which is one of the conditions to achieve minimum real
power fluctuations and is also important for the current limitation. In (12), if θ is 90◦, the
grid code recommendations are fulfilled for LVRT conditions along with the minimum real
power fluctuations. This scheme is termed the minimum real power fluctuation (MRPF)
scheme in the rest of this paper. It will result in zero real power injections in the case of
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unbalanced faults. If θ is the same as θn, then the minimum UF is achieved along with
the minimum real power fluctuations. As the combined scheme provides the benefits of
the OAI and MRPF schemes, it is denoted as (OAI&MRPF) in this paper. By using the
expressions given In (10) and (12), the expression for the k-factor of a negative sequence
can be derived, which corresponds to the minimum real power fluctuations.

kn∆|vn| =
−|vn|

∣∣i∗∗p
∣∣∣∣vp

∣∣ ∴∆|vn |=−|vn |→ kn =

∣∣i∗∗p
∣∣∣∣vp
∣∣ (13)

In (13), the magnitude of reference positive sequence currents is used after passing
through the current limiter block. If the expressions given in (3), (12), and (13) are used, the
expression for the k-factor of negative sequence injections can be further simplified, which
is given in (14).

kn =
|i∗∗ p|
|vp|

∴|i∗∗ p |=x|i∗ p |→
∴x= imax−|i∗∗n |

|i∗ p |

kn = imax−|i∗∗n |
|vp|

kn = imax−|i∗∗n |
|vp|

∴|i∗∗n |=kn∆|vn |→ kn = imax
|vp|+∆|vn |

(14)

In this manuscript, reference currents for the positive sequence are computed in
a synchronously rotating reference frame, whereas reference currents for the negative
sequence are calculated in a stationary reference frame. Only one PLL is used in this
scheme. The control gains for PLL are discussed in [28]. The expressions for the negative
sequence of current components are discussed in [8] and given in (15).

i∗∗αβ,n =
|i∗∗n|
|vn|

[{
vαncos(θn) + vβnsin(θn)

}
+ j
{

vβncos(θn)− vαnsin(θn)
}]

(15)

A detailed layout of the reference current generation schemes is given in Figure 10.
The governing equations for the rest of the reference current generation schemes have
already been explained.
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Figure 10. Detailed layout of reference current generation block.

A combined inner current controller is used, which is a quasi-proportional controller.
Its control gains are discussed in [29]. The authors also discussed the true fault detection
scheme in [8]. The overall test setup, along with the combined control scheme, is developed
in Matlab/Simulink and given in Figure 11.
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4. Results and Discussions

In this section, three different reference current generation strategies, i.e., MRPF, OAI,
and OAI&MAPF, are compared with the grid code recommendation (GCR). The current
limiter scheme works well for all four different reference current generation schemes. The
optimal angle injection does not affect the performance of the current limiter, as it just
distributes the total negative sequence current magnitude into its components without
changing its magnitude. The performance of the current limiter with these strategies can
be presented in the form of a numerical example.

4.1. Numerical Example

A line-to-line fault is introduced at the POC on the network, as shown in Figure 11. The
measured and calculated quantities discussed in this section are per unit. The corresponding
base quantities are given in Section 2. The fault impedance is 2 Ω, and it is purely resistive.
It results in |vp| ≈ 0.66 p.u and |vn| ≈ 0.414 p.u. The reference real power is 0.95 p.u,
while the reference reactive power is 0. The maximum current capacity of the converter
(imax) is 1.2 times its rated current.

4.1.1. GCR Scheme

The reference currents for the GCR are calculated from (6). The k-factors are selected as
2. The active component of current for the positive sequence is also limited to the maximum
rating of the converter before passing it to the current limiter; otherwise, its value may be
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very high in cases of low impedance faults, which can allow a very small reactive current
injection in the positive sequence. The reference currents are given below.

|i*qp| ≈ 0.68; |i*dp| ≈ 1.439; |i*qn| ≈ 0.827; |i*dn| ≈ 0
|i*p| ≈ 1.592; |i*n| ≈ 0.827

|i**
n| = Minimum (imax, |i*n|) ≈ 0.827

|i**
qn| ≈ 0.827; |i**

dn| ≈ 0
x ≈ 0.234; |i**

qp| ≈ 0.159; |i**
dp| ≈ 0.337

|i**
p| ≈ 0.373

|i**
p| + |i**

n| ≈ 1.2

4.1.2. MRPF Scheme

The reference currents corresponding to the minimum real power fluctuations can be
computed using the expressions given in (12). The negative sequence injection is purely
reactive. To keep real power fluctuations at a minimum, the initial angle of the positive and
negative sequence currents is the same. The k-factor for the positive sequence current is
chosen as 2, and the k-factor for the negative sequence is calculated using (14) to correspond
to the minimum real power fluctuations. This scheme results in |vp| ≈ 0.695 p.u and
|vn| ≈ 0.462 p.u. The reference currents and corresponding limits are given below.

|i*qp| ≈ 0.61; |i*dp| ≈ 0; |i*p| ≈ 0.61
kn ≈ 1.037; |i*n| ≈ 0.479; |i*qn| ≈ 0.479; |i*dn| ≈ 0

|i**
n| = Minimum (imax, |i*n|) ≈ 0.479

|i**
qn| ≈ 0.479; |i**

dn| ≈ 0
x ≈ 1.182; |i**

qp| ≈ 0.721; |i**
dp| ≈ 0

|i**
p| ≈ 0.721

|i**
p| + |i**

n| ≈ 1.2

4.1.3. OAI Scheme

The reference currents corresponding to the optimal angle injection can be computed
from the expressions given in (7). The negative sequence current is not purely reactive but
is distributed between its active and reactive components corresponding to the optimal
angle, which is estimated by a control scheme presented in Figure 9. The k-factors for
the positive and negative sequence injections are chosen as 2. The optimal angle scheme
estimates the angle at 131.2◦. This scheme results in |vp| ≈ 0.687 p.u and |vn| ≈ 0.414 p.u.
The reference currents and corresponding limits are given below.

|i*qp| ≈ 0.627; |i*dp| ≈ 1.384; |i*p| ≈ 1.519
|i*n| ≈ 0.827; |i*qn| ≈ 0.622; |i*dn| ≈ 0.545

|i**
n| = Minimum (imax, |i*n|) ≈ 0.827
|i**

qn| ≈ 0.622; |i**
dn| ≈ 0.545

x ≈ 0.246; |i**
qp| ≈ 0.154; |i**

dp| ≈ 0.34
|i**

p| ≈ 0.373
|i**

p| + |i**
n| ≈ 1.2

4.1.4. OAI&MRPF Scheme

The reference currents corresponding to the optimal angle injection along with the min-
imum real power fluctuations can be computed from the expressions given in (12) and (14).
The optimum angle is estimated by the control scheme given in Figure 9, and its value is
passed on to (12). The value of the k-factor for the positive sequence injection is chosen as 2
here as well. The optimal angle scheme estimates the angle at 141.6◦. This scheme results
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in |vp| ≈ 0.714 p.u and |vn| ≈ 0.464 p.u. The reference currents and corresponding limits
are given below.

|i*qp| ≈ 0.572; |i*dp| ≈ 0.722; |i*p| ≈ 0.921
kn ≈ 1.019; |i*n| ≈ 0.473; |i*qn| ≈ 0.294; |i*dn| ≈ 0.371

|i**
n| = Minimum (imax, |i*n|) ≈ 0.473
|i**

qn| ≈ 0.294; |i**
dn| ≈ 0.371

x ≈ 0.789; |i**
qp| ≈ 0.451; |i**

dp| ≈ 0.57
|i**

p| ≈ 0.727
|i**

p| + |i**
n| ≈ 1.2

It confirms the safe operation of the converter, as the current limit is ensured in each
scheme. Moreover, it also shows that the magnitude of the voltage phasors of the positive
sequence increases from the MRPF scheme to the combined scheme, while the magnitude
of the voltage phasors for the negative sequence decreases. This confirms a better UF. The
further comparison will be performed in time-domain simulations.

4.2. Simulation Results

The four schemes discussed in the numerical example are tested consecutively on the
test setup. Different types of faults are applied to test the performance of the proposed
control scheme. The first fault occurs after achieving the steady state for the pre-fault
condition. The faults are repeated with a period of 0.65 s and a fault duration of 0.4 s. There
is a post-fault duration of 0.25 s in which the control scheme settles to its pre-fault steady
state condition.

In the first fault event, the reference currents for the positive and negative sequence
injections are generated according to the GCR scheme with k-factors equal to 2. In the
second fault event, the MRPF scheme, with a k-factor for the positive sequence equal to 2,
is activated. In the third fault event, the reference currents are calculated based on the OAI
scheme. This scheme also considers both k-factors equal to 2. In the last fault event, the
combined scheme of optimum angle injection along with minimum real power fluctuations
(OAI&MRPF) is activated. This scheme also considers the k-factor for the positive sequence
injection as 2.

For these simulations, the reference real power is 0.95 p.u, while the reference reactive
power is zero. Similarly, the maximum current capacity of the converter is 1.2 times its
rated current, and the fault impedance is 2 Ω. Moreover, the active current component of
the positive sequence is rate-limited for normal conditions; thus, it does not allow a sudden
change in its reference value.

4.2.1. Single Line to Ground Fault

A single line to ground (SLG) fault is repeatedly introduced at the POC on phase ‘b’.
The responses of the four different schemes are given in Figure 12. The subplot (a) presents
the phase-to-ground voltages at the POC. The converter’s line currents are shown in subplot
(b). The UF and real power are plotted in subplot (c), and, finally, the negative sequence
current injection angle is plotted in subplot (d). All the quantities are plotted in p.u except
for subplot (d), which is in degrees. The ‘NC’ stands for normal operating conditions.
When an unbalanced fault occurs, the scheme does not inject the negative sequence current
immediately but waits for a definite period to let the sequence extraction settle down, so
for one initial cycle, the balanced three-phase currents are fed to the fault.

Subplot (a) shows that the voltage of faulty phase(s) is higher with the OAI scheme
compared to the GCR scheme and results in more uniform voltage among the phases
compared to the GCR scheme, which is also evident with the help of UF. As the MRPF
scheme results in lower kn compared to the GCR scheme, it causes a small increase in the
healthy phase(s) voltage. Subplot (b) confirms the working of the current limiting scheme,
as no phase current exceeds the maximum current capacity of the converter. Moreover, it
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also shows that the maximum current is fed to the faulty phase in all four schemes, which
is one of the requirements for selective fault detection and improving the UF.
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From subplot (c), it is clear that the real power fluctuations in the case of the GCR
scheme and the OAI scheme are quite high compared to the MRPF and combined scheme.
Among all the control strategies, the OAI&MRPF scheme offers non-zero real power with
minimum fluctuations. Moreover, the UF’s graph confirms that the OAI scheme offers a
lower UF compared to the GCR scheme. As the k-factor also affects the UF, it is fair to
compare the GCR scheme with the OAI scheme to determine the performance of the OAI,
and it is clear that it offers a lower UF. The subplot (d) shows that the optimum angle is
different from GCR, and it deviates more with the low kn.

4.2.2. Line-to-Line Fault

A line-to-line (L-L) fault is applied between phases ‘b’ and ‘c’ repeatedly at the POC,
and the response of the different control schemes is given in Figure 13. From subplot
(a), it is clear that the healthy phase(s) voltage is higher in the case of MRPF, followed
by OAI&MRPF. The reason for this is the lower kn with the MRPF scheme, which allows
more currents in the positive sequence. Similarly, the OAI provides more voltage in the
faulty phase(s) compared to the GCR and causes lower UF than the GCR scheme. Due to
the optimal angle injection, the combined scheme also provides a better voltage profile as
compared to the MRPF scheme.

Subplot (b) shows that phase currents do not exceed the current rating of the converter
for any control strategy, which confirms the safe operation of the converter. From subplot
(b), it is also clear that the selective voltage support among the faulty phases is better with
the combined scheme compared to the GCR.

Subplot (c) shows that the real power fluctuations are suppressed with the MRPF
scheme. Moreover, instantaneous real power is negative for the GCR scheme, which
requires a dc chopper for the safety of the dc link, and it also has a negative impact on the
frequency stability. Moreover, the combined scheme offers a non-zero constant real power
injection in such conditions. Its value depends on the optimum angle corresponding to
the minimum UF. Moreover, the UF is minimal with the OAI strategy as compared to the
GCR. Similarly, if MRPF and OAI&MRPF are compared, the latter scheme provides lower
UF. Subplot (d) confirms that the optimum angle corresponding to the minimum UF is
different than that of GCR, and it is also dependent on the kn.
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4.2.3. Double Line to Ground Fault

Phases ‘a’ and ‘b’ are grounded to introduce a double line to ground (DLG) fault
at the POC. The response of the different control schemes for the DLG fault is shown in
Figure 14. Subplot (a) confirms the better voltage profile with the OAI scheme compared
to the GCR. This effect is dominant in weak grids. Subplot (b) shows that the maximum
phase current in GCR is less than the maximum allowed limit. This is because the initial
angles of the sequence current phasors are not the same, due to which it is unable to utilize
the converter’s current capacity effectively. Moreover, like previous faults, there is more
current in the faulty phase(s), and the distribution among the faulty phases is dependent
on the particular control strategy.
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Subplot (c) confirms the minimum real power fluctuations with the MRPF scheme
compared to the GCR. Similarly, it also confirms the low UF with the OAI scheme com-
pared to the GCR. The combined scheme provides non-zero constant real power with an
acceptable UF. The UF in this case is a bit higher compared to GCR due to the fact that a
lower value of kn results in a higher UF and minimum real power fluctuations result in a
lower kn. Subplot (d) presents the angle of the negative sequence current, which shows
that the angle corresponding to the minimum UF is different than that of GCR.

Table 3 provides a quantitative comparison of the above-discussed control schemes
for the different types of faults. The key indicators for these comparisons are the UF, real
power fluctuations’ amplitude, and peak current in the faulty phase(s). Different colors are
used to rank the performance of these schemes against a particular indicator. The green
color represents the best performance, followed by the light green, orange, and red color,
respectively. Additionally, the numeric summation of the positive and negative sequence
currents is performed to verify the current limiter performance. The percentage reduction
in UF and real power fluctuations are computed with respect to the GCR scheme.

Table 3. Comparison of the control schemes.

Fault Type Parameter GCR
≈

MRPF
≈

OAI
≈

OAI&MRPF
≈

UF Reduction
with OAI (%)

Real Power
Fluctuation

Reduction with
OAI, MRPF and
OAI&MRPF (%)

Voltage unbalance
factor (%) 34 36.58 33.61 37

1.15 [14.32, 97.3, 97.7]

Real power
fluctuation
amplitude

0.782 0.021 0.67 0.0182

Peak current in faulty
phase(s) (p.u) 1.15 1.15 1.19 1.17

Positive sequence
current magnitude 0.661 0.879 0.662 0.876

Negative sequence
current magnitude 0.539 0.321 0.538 0.324

SLG

Numeric sum of pos.
and neg. seq.
currents

1.2 1.2 1.2 1.2

Voltage unbalance
factor (%) 62.73 66.51 60.28 65.01

3.9 [12.03, 97.5, 97.9]

Real power
fluctuation
amplitude

0.945 0.024 0.8313 0.02

Peak current in faulty
phase(s) (p.u) 1.11 1.19 1.142 1.185

Positive sequence
current magnitude 0.372 0.721 0.372 0.727

Negative sequence
current magnitude 0.828 0.479 0.828 0.473

L-L

Numeric sum of pos.
and neg. seq.
currents

1.2 1.2 1.2 1.2

Voltage unbalance
factor (%) 50.26 52.14 48.56 50.91

3.4 [34.2, 96.8, 97]

Real power
fluctuation
amplitude

0.543 0.0176 0.341 0.0164

Peak current in faulty
phase(s) (p.u) 1.06 1.2 1.19 1.2

Positive sequence
current magnitude 0.613 0.789 0.617 0.795

Negative sequence
current magnitude 0.587 0.411 0.583 0.405

DLG

Numeric sum of pos.
and neg. seq.
currents

1.2 1.2 1.2 1.2
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For the SLG fault, it is clear from Table 3 that the OAI scheme results in a minimum
UF compared to the GCR. It is important to mention here that normally the higher kn value
results in a lower UF, but the kn corresponding to the minimum real power fluctuations
has a lower value. This is the reason why the UF is higher with OAI&MRPF compared to
GCR. Furthermore, it is also clear that the OAI results in smaller real power fluctuations
compared to the GCR scheme, and the combined scheme results in minimum real power
fluctuations among all the schemes. As far as the better utilization for the converter’s
current rating is concerned, the OAI and OAI&MRPF schemes inject maximum current in
the faulty phase compared to the other schemes. The numeric summation of the positive
and negative sequence current phasors’ magnitudes confirms the safer operation of the
converter, as the sum is limited to the converter’s current rating.

For the L-L fault, the OAI scheme results in a minimum UF compared to the GCR
scheme. The minimum real power fluctuations are caused by OAI&MRPF, followed by
MRPF, OAI, and GCR, respectively. In such faulty conditions, the maximum phase current
is caused by MRPF, followed by OAI&MRPF, OAI, and GCR, respectively. One reason for
this is that the MRPF and combined scheme ensure the same initial angle for the positive
and negative sequence current phasors, which is also assumed in the current limiting
strategy. As far as the performance of the current limiter scheme is concerned, it works
fine with all four reference current generation strategies. For the DLG fault, the ranking
of the control schemes is the same as in the case of the L-L fault for the minimum UF and
minimum real power fluctuations. The difference between the performance of the MRPF
and OAI&MRPF is further reduced against the maximum faulty phase current.

If the performance of the OAI scheme is compared with the GCR scheme against all
types of faults, it is clear that it provides better results than GCR as far as minimum UF,
minimum real power fluctuations, and maximum current in faulty phase(s) are concerned.
There is a higher percentage reduction in the UF for the severe unbalanced faults that
occur, i.e., L-L, DLG, and SLG, respectively. However, a higher reduction in real power
fluctuations is observed for the DLG fault, followed by the SLG and L-L faults, respectively.
Similarly, the MRPF scheme provides a huge reduction in real power fluctuations compared
to the GCR against all types of faults. As the OAI also causes a reduction in real power
fluctuations, the combined control scheme provides even more reduction in real power
fluctuations when compared to the response of the GCR scheme against all types of faults.

From the grid’s perspective, the uniform voltage among phases is a key parameter
that is improved by using the OAI scheme. From the converter’s perspective, the higher
real power fluctuations can cause a higher rating of the dc chopper and more protection for
the dc link, which can be minimized using the MRPF scheme. In order to achieve a better
UF with minimum real power fluctuations, the OAI&MRPF scheme can be implemented.

5. Conclusions

In this manuscript, the optimum angle for the negative sequence current injection
corresponding to the minimum unbalanced factor is estimated. The estimation strategy
works fine for different types of faults. Furthermore, the expression for the k-factor of
the negative sequence current is derived, which corresponds to the minimum real power
fluctuations. A current limiter scheme is presented, which ensures the safe operation of the
converter under unbalanced faults with any of the discussed reference current generation
schemes. Some comparisons of these schemes are also presented to discuss the performance
of these schemes under different faulty conditions.

The results show that the optimum angle injection for the negative sequence results in
a better UF compared to the grid code recommendations. The percentage reduction in UF
is higher for more severe faults. The effect of OAI will be dominant in future grids with
higher penetration of renewable energy sources and lower short-circuit power. Moreover,
the results confirm the minimum real power fluctuations with a combined scheme followed
by the MRPF scheme, which can reduce the dc link protection cost. The current limiting
strategy confirms the safe operation of the converter under different fault conditions.
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The limitations of the proposed scheme are given below.

• The angle between the positive and negative sequence voltage phasors is used for
the estimation of the optimal angle for the negative sequence current injection. The
angle between the positive and negative sequence voltage phasors is dependent on the
sequence extraction scheme and may cause inaccuracy due to the extraction scheme.

• Similarly, if the fault type changes during a fault, it can cause the wrong angle estima-
tion for the negative sequence current injection.

Future works must study the impact of the OAI&MRPF scheme on fault detection
schemes, which use negative sequence currents for this purpose. This also involves modi-
fying the estimation scheme for the optimum negative sequence angle to work well if the
fault type changes during a fault.
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Nomenclature

Symbol Description
vdc DC link voltage
vg Grid’s voltage phasor
Lg Grid’s inductance
Rg Grid’s resistance
Cf Filter’s capacitance
Lf Filter’s inductance
kp,n k-factor for the positive and negative sequence currents
imax Maximum converter’s current
p* Reference real power
q* Reference reactive power
vpoc Three-phase voltage at point of connection (POC)
vαβ Measured voltage components in stationary reference frame
vαβ,p Positive sequence voltage components in stationary reference frame
ωp Angular frequency for the positive sequence voltage
vdq,p Positive sequence voltage components in rotating reference frame
vαβ,n Negative sequence voltage components in stationary reference frame
|vp| Positive sequence voltage phasor’s magnitude
|vn| Negative sequence voltage phasor’s magnitude
ϕp,n Initial angle of the corresponding voltage phasors
]vp,n Angle between positive and negative sequence voltage phasors
iabc Converter’s line currents
iαβ Measured current components in stationary reference frame
|∆iqp| Change in magnitude of reactive current injection for positive sequence
|∆iqn| Change in magnitude of reactive current injection for negative sequence
i*dq,p Positive sequence reference current components in rotating reference frame



Energies 2023, 16, 7511 21 of 22

|i*p| Magnitude of the reference positive sequence current phasor
i*αβ,n Negative sequence reference current components in stationary reference frame
i*dq,n Negative sequence reference current components in rotating reference frame
|i*n| Magnitude of the reference negative sequence current phasor
θp,n Initial angle of the corresponding current phasors
x Positive sequence current multiplier to ensure current limit
i**

dq,p Reference positive sequence current components in rotating reference frame after
applying current limit

|i**
p| Magnitude of the reference positive sequence current phasor after applying

current limit
i**

dq,n Reference negative sequence current components in rotating reference frame after
applying current limit

|i**
n| Magnitude of the reference negative sequence current phasor after

applying current limit
i**

αβ Reference current components in stationary reference frame after current limiter
v*

αβ Reference voltage components in stationary reference frame
v*

abc Converter’s reference phase voltage
ωo Fundamental angular frequency for second-order generalized integrator
X/R Reactance to resistance ratio
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