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Abstract
This article examines the value distribution of SN( f,α) :=

∑N
n=1 f(nα) for

almost every α where N ∈ N is ranging over a long interval and f is a 1-
periodic function with discontinuities or logarithmic singularities at rational
numbers. We show that for N in a set of positive upper density, the order of
SN( f,α) is of Khintchine-type, unless the logarithmic singularity is symmet-
ric. Additionally, we show the asymptotic sharpness of the Denjoy–Koksma
inequality for such f, with applications in the theory of numerical integration.
Our method also leads to a generalized form of the classical Borel–Bernstein
Theorem that allows very general modularity conditions.

Keywords: diophantine approximation, metric theory of continued fractions,
irrational circle rotation, discrepancy theory, Birkhoff sums,
uniform distribution modulo 1
Mathematics Subject Classification numbers: 11K60, 37E10, 11K50

1. Introduction and main results

Let f : R→ R be 1-periodic with
´
[0,1) |f(x)|dx<∞ and q ∈ R. In this article, the object of

our interest is

SN( f,α,q) :=
N∑
n=1

f(nα+ q)−N
ˆ
[0,1)

f(x)dx,

∗
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which is known as a Birkhoff sum of the irrational circle rotation. We consider the temporal
value distribution along a single orbit of SN( f,α,q), that is, we fix some initial point q and
a rotation parameter α, and examine the value distribution of {SN( f,α,q) : 1⩽ N⩽M}, as
M→∞ for (Lebesgue-) almost every α.

Since the irrational rotation together with the Lebesgue measure is an ergodic system for all
irrational α, Birkhoff’s ergodic theorem implies that for 1-periodic f ∈ L1([0,1)) and almost
every q, we have |SN( f,α,q)|= o(N). If the Fourier coefficients of f ∼

∑
n∈Z cne(nx) decay at

rate cn = O(1/n2) (which holds in particular for f ∈ C2), then SN( f,α,q) is bounded for almost
everyα and all q ∈ R (see [15, 20]). Thus, the interesting functions to consider are the functions
that lack smoothness, in particular functions that have discontinuities or singularities.

In this article, we examine SN( f,α,q) where q ∈Q and all non-smooth points of f lie at
rational numbers. The first class of functions we define is the following (compare to, e.g. [14,
15]).

Definition 1.1 (Piecewise smooth functions with rational discontinuities). We call a
1-periodic function f : R→ R a piecewise smooth function with rational discontinuities if there
exist ν ⩾ 1 and 0⩽ x1 < .. . < xν < 1 with xi ∈Q,1⩽ i ⩽ ν such that the following proper-
ties hold:

• f is differentiable on [0,1) \ {x1, . . . ,xν}.
• f ′∣∣[0,1) extends to a function of bounded variation on [0,1).

• There exists an i ∈ {1, . . . ,ν} such that limδ→0 [f(xi − δ)− f(xi+ δ)] ̸= 0.

This class of functions contains several important representatives such as the sawtooth
function f(x) = {x}− 1/2 and the local discrepancy functions with rational endpoints f(x) =
1[a,b]({x})− (b− a),a,b ∈Q. These functions are not only of interest in Discrepancy theory
(see [7, 8, 33]), but are closely related to the theory of ‘deterministic random walks’ (see, e.g.
[1, 6]).

For these local discrepancy functions, a classical theorem of Kesten [25] shows that
|SN( f,α,q)| is unbounded, since b− a /∈ Z+αZ for irrational α. In addition to considering
essentially smooth f, we also examine functions with logarithmic singularities at rational num-
bers, a class of functions that falls in the framework considered in [13].

Definition 1.2 (Smooth functions with rational logarithmic singularity). We call a
1-periodic function f : R→ R with

´
[0,1) f(x)dx= 0 a smooth function with rational logar-

ithmic singularity if there exist constants c1,c2 ∈ R, a 1-periodic function t : R→ R with
bounded variation on [0,1) and x1 ∈Q such that

f(x) =

{
c1 log(∥x− x1∥)+ c2 log({x− x1})+ t(x) , if x ̸≡ x1 (mod 1)

t(x) , if x≡ x1 (mod 1).

Here and throughout the paper, {.} denotes the fractional part and ∥.∥ denotes the distance to
the nearest integer (for a proper definition see section 2.1).

If c2 = 0 and c1 ̸= 0, we call the singularity symmetric. If c2 ̸= 0, we call it asymmetric.

We examine the maximal and typical oscillations of SN( f,α,q) for Lebesgue almost every
α where q ∈Q and f is either of the form as in definition 1.1 or definition 1.2. Our methods
give rise to results in two different directions that are elaborated in detail below.
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1.1. Khintchine-type upper density results

Let us recall the classical Khintchine Theorem from the metric theory of Diophantine approx-
imation. If (ψ(q))q∈N is a non-negative sequence, and qψ(q) is decreasing, then for almost all
α, the inequality∣∣∣∣α− p

q

∣∣∣∣< 1
qψ (q)

has infinitely many integer solutions (p,q) ∈ Z×N if and only if
∑∞

k=1
1

ψ(k) diverges.
Such a convergence-divergence criterion, often called Khintchine-type result, appears in

many different statements that deal with the metric theory of Diophantine approximation and
the closely related theory of continued fractions. Classical results of this form are, among
others, the Borel–Bernstein Theorem (see section 2) and another theorem ofKhintchine [26] on
the discrepancy of the Kronecker sequence. Recall that the discrepancy of a sequence (xn)n∈N
in the unit interval is defined as

DN((xn)n∈N) := sup
0⩽a<b⩽1

∣∣∣∣ |{1⩽ n⩽ N : xn ∈ [a,b)}|
N

− (b− a)

∣∣∣∣ .
By [26], for an increasing function ψ : R+ → R+, one has DN((nα)n∈N)≫ ψ(logN)+
logN log logN infinitely often if and only if

∑∞
k=1

1
ψ(k) =∞.

Such a Khintchine-type behaviour was also discovered for a certain Birkhoff sum arising
from the logarithm of the Sudler product

∏N
r=1 2|sin(π rα)|. The analysis of this product led

to many interesting developments in various areas in mathematics in the last decades, see, e.g.
[2–5, 18, 28, 30]. Lubinsky [29] showed that if f(x) = log(2 |sin(π x)|), then, for almost every
α and every monotone increasing ψ : R+ → R+ with liminfk→∞

ψ(k)
k logk =∞, the inequalities

SN ( f,α,0)⩾ ψ (logN) , SN ( f,α,0)⩽−ψ (logN) , (1)

hold for infinitely many N, if and only if
∑∞

k=1
1

ψ(k) =∞. This result was refined by Borda
[10] in the following way: Recall that for a set of integers A⊆ N, we define its upper dens-
ity to be limsupM→∞

|AM|
M where AM := {N⩽M : N ∈ A}. It was shown in [10] that in the

diverging case, both inequalities (1) hold on a set of positive upper density. This was fur-
ther improved in [19], where it was shown that the actual upper density equals 1. Note that
f(x) = log(2 |sin(π x)|) does have a single symmetric logarithmic singularity at 0. As pointed
out in [13], the behaviour of Birkhoff sums with f having a symmetric logarithmic singularity
is expected to be similar to f being as in definition 1.1, since the decay of the Fourier coeffi-
cients is of the same order. Our first theorem supports this expected behaviour as we obtain a
Khintchine-type result on the upper density of the same form for piecewise smooth functions
with rational discontinuities.

Theorem 1. Let ψ : R+ → R+ be a monotone increasing function, f a function as in definition
1.1, i.e. f is smooth up to finitely many discontinuities 0⩽ x1 < .. . < xν < 1 at rationals, and

q ∈Q. If
∞∑
k=1

1
ψ(k) =∞, then, for almost all α ∈ [0,1), both sets

{N ∈ N : SN (f ,α,q)⩾ ψ (logN)} , {N ∈ N : SN (f ,α,q)⩽−ψ (logN)} (2)
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have positive upper density. If
∑∞

k=1
1

ψ(k) <∞, there exists a constant c> 0 such that, for
almost all α ∈ [0,1), the set

{N ∈ N : |SN (f,α,q)|⩾ ψ (logN)+ c logN log logN}

is finite.

Theorem 1 shows the following interesting behaviour: Let ψ be monotonically increasing
and liminfk→∞

ψ(k)
k logk =∞. As soon as there are infinitely manyN ∈ N such that |SN(f ,α,q)|⩾

ψ(logN), then immediately a ‘positive proportion’ of all natural numbers satisfies this property.
In section 3, we prove theorem 7, which is a slightly stronger result than theorem 1. It turns

out that for many classical functions that fall in the framework of definition 1.1, the sets (2)
have actually upper density 1.

Corollary 2. Let ψ and q be as in theorem 1 with
∑∞

k=1
1

ψ(k) =∞ . Then, for almost all α ∈
[0,1), the sets in (2) have upper density 1 for the following functions f:

• The classical saw-tooth function f(x) = {x}− 1/2.
• The local discrepancy functions with rational endpoints f(x) = 1[a,b]({x})− (b− a). In par-
ticular, this means that the set {N ∈ N : DN((nα)n∈N)⩾ ψ(logN)} has upper density 1,
improving the result in [26].

• the 1/2-discrepancy function f(x) = 1[0,1/2)({x})−1[1/2,1)({x}), which is intensively stud-
ied in, e.g. [31, 32].

Naturally, the question arises whether a similar behaviour can be expected for functions
with logarithmic singularities. Note that in many applications (see for example [16] and the
references therein), one is not only interested in symmetric, but also asymmetric singularities.
In the next statement we show that for functions f with an asymmetric singularity, there is an
analogue of theorem 1 with an additional scaling factor of logN.

Theorem 3. Let f be as in definition 1.2. Then, for any non-decreasing ψ : R+ → R+ and for
any q ∈Q, the following holds:

(i) If the logarithmic singularity is asymmetric and
∞∑
k=1

1
ψ(k) =∞, then, for almost every α ∈

[0,1), we have that both sets

{N ∈ N : SN (f,α,q)⩾ logNψ (logN)} , {N ∈ N : SN ( f,α,q)⩽− logNψ (logN)}
(3)

have upper density 1. If
∑∞

k=1
1

ψ(k) <∞, then there exists a constant c> 0 such that, for
almost all α ∈ [0,1), the set

{N ∈ N : |SN (f,α,q)|⩾ logN(ψ (logN)+ c logN log logN)}

is finite.
(ii) If the logarithmic singularity is symmetric, then for almost every α ∈ [0,1), we have

|SN ( f,α,q)| ≪ (logN)2 log logN.
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Theorem 3 shows the surprising fact that one should expect a completely different oscil-
lation between the Birkhoff sums of functions with symmetric and asymmetric singular-
ity. To see this, we note that ψ : R+ → R+ with ψ(x) := x log(x+ 1) log log(x+ 10) satisfies∑∞

k=1
1

ψ(k) =∞ and thus, for a function f with an asymmetric logarithmic singularity, the sets
in (3) have upper density 1. However, the same sets are finite if the underlying Birkhoff sum
is generated by a function g with symmetric logarithmic singularity. This is because theorem
3 (ii) tells us that

|SN( f,α,q)| ≪ (logN)2 log logN= o(logNψ(logN)).

Remark 1.3.

• One can clearly see from the proof of theorem 3(i) that it is possible to generalize the result
to functions of the form f(x) = f1(x)+ f2(x)+ f3(x), where f1(x) is a smooth function with
asymmetric singularity at a rational number x1, f 2 is a smooth function with finitely many
symmetric logarithmic singularities at rational numbers x2,x3, . . . ,xn and f 3 is a piecewise
smooth function with finitely many discontinuities.

• The actual maximal oscillation of Birkhoff sums with a symmetric logarithmic singularity
for generic α remains open. Using [10, proposition 12], the result of [29] and f being a
smooth 1-periodic function with its symmetric logarithmic singularity located at 0, we have
that, for almost every α ∈ [0,1), |SN( f,α,0)| ≪ ψ(logN)+ logN log logN for any monotone
ψ with

∑∞
k=1

1
ψ(k) <∞. Most probably, the bound (logN)2 log logN is not sharp for logar-

ithmic singularities that are located at arbitrary rationals. We did not aim to achieve the best
possible bound, but wanted to stress the different behaviour of symmetric and asymmetric
logarithmic singularities. Possibly, the upper bound for the Birkhoff sum with symmetric
logarithmic singularity coincides with the Khintchine-type behaviour in theorem 1. A proof
of this would probably need to make use of delicate estimates on shifted cotangent sums and
is beyond the scope of this paper.

1.2. Sharpness of the Denjoy–Koksma inequality

Recall the classical Denjoy–Koksma inequality (see, e.g. [20]): Let α be fixed and let pn/qn
denote its nth convergent. If f is a 1-periodic function of bounded variation Var( f) on [0,1),
then, for any q ∈ R,

|Sqn ( f,α,q)|=

∣∣∣∣∣
qn−1∑
k=0

f(kα+ q)− qn

ˆ 1

0
f(x) dx

∣∣∣∣∣⩽ Var( f) .

ForN=
∑K(N)−1

i=0 biqi being its Ostrowski expansion (see section 2.2 for details), we imme-
diately obtain the bound

|SN ( f,α,q)|⩽ Var( f)
K(N)∑
i=1

ai, (4)

where α= [0;a1,a2, . . .] is the classical continued fraction expansion and K(N) denotes the
integer K such that qK−1 ⩽ N< qK. It is natural to ask whether (4) is sharp for particular
functions f. This was essentially already proven in [26] for both the classical saw-tooth function
{x}− 1/2 and the local discrepancy functions 1[a,b]({x})− (b− a): for almost every α, there
are infinitely many N where (4) can be reverted up to an absolute positive constant. However,
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to the best of our knowledge, all results in this direction only show that this bound is essentially
obtained for infinitely many N, but there is no statement about the frequency of those N. This
is shown in the following theorem.

Theorem 4. Let f be a function with finitely many discontinuities at rationals (see definition
1.1) and let q ∈Q. For fixed α and N ∈ N, let K(N) denote the integer K such that qK−1 ⩽ N<
qK. Then, for almost all α ∈ [0,1), both setsN ∈ N | SN (f ,α,q)≫

K(N)∑
i=1

ai

 ,
N ∈ N | SN (f ,α,q)≪−

K(N)∑
i=1

ai


have positive upper density. The implied constants depend on α, f and q.

Analogously to corollary 2, the following stronger version of theorem 4 can be obtained.

Corollary 5. If f(x) = {x}− 1/2 or f(x) = 1[a,b]({x})− (b− a) we have the following: For
almost all α ∈ [0,1) and any 0< r< 1, there exists a constant C(r) = C(r, f,q)> 0 such that
both setsN ∈ N

∣∣∣ SN (f ,α,q)⩾ C(r)
K(N)∑
i=1

ai

 ,
N ∈ N

∣∣∣ SN (f ,α,q)⩽−C(r)
K(N)∑
i=1

ai


have upper density at least r.

Remark 1.4. Note that in contrast to corollary 2, we cannot include r= 1 in corollary 5
since our method of proof gives lim

r→1
C(r) = 0. This is due to the fact that the convergence-

divergence condition in the Khintchine formulation enables to hide a sufficiently large con-
stant in the divergence condition of ψ (since for ψ̃(k) := cψ(k),

∑∞
k=1

1
ψ̃(k)

converges if and

only if
∑∞

k=1
1

ψ(k) does) , which is not possible to do in this setting.

Theorem 4 has consequences in the theory of numerical integration: Assuming that there are
functions f such that the bound (4) is attained only along a very sparse subsequence (Nk)k∈N,
one could hope with a randomized approach to hit this sequence very rarely. Then, one could
generate by some (randomized) algorithm an increasing sequence of integers (Mj)j∈N and con-
sider an irrational α drawn uniformly at random from the unit interval. With high probability,
one would expect

∣∣SMj( f,a,q)
∣∣= o(

∑K(Mj)
i=1 ai). Theorem 4 implies that such an approach will

most likely fail. It shows that, almost surely, a positive proportion of those Mj satisfies

|SMj ( f,a,q)| ≫
K(Mj)∑
i=1

ai ≫ logMj log logMj.

This implies that every low-discrepancy sequence (such as the Kronecker sequences
({nα})n∈N where α is badly approximable) gives a better error bound in numerical integ-
ration, regardless of the support of the function f and the chosen algorithm to generate the
sequence (Mj)j∈N.

Next, assume that f has a singularity, but is still integrable. The singularity makes an applic-
ation of the classical Denjoy–Koksma inequality impossible since the variation of f is not
bounded. However, we can still get a nontrivial bound on SN( f,α,q) provided that the orbit
{q+ nα : 1⩽ n⩽ N} stays away from the singularity.
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Proposition 1.5 (Denjoy–Koksma inequality with singularity). Let N ∈ N,q ∈ [0,1) arbit-
rary and let N=

∑K(N)−1
i=0 biqi be its Ostrowski expansion. Assume that f is a 1-periodic func-

tion with a single singularity in x1. Let x1 ∈ AN ⊆ [0,1), where AN is an interval (modulo 1)
such that {q+ nα− x1} /∈ AN for all 1⩽ n⩽ N. Then,

|SN( f,α,q)| ≪ sup
x∈[0,1)\AN

|f(x)|
K(N)−1∑
i=0

bi+N

∣∣∣∣ˆ
AN

f(x)dx

∣∣∣∣ . (5)

In particular, we have, for K ∈ N,

max
1⩽N⩽qK

|SN( f,α,q)| ≪ sup
x∈[0,1)\AqK

|f(x)|
K∑
i=1

ai+ qK

∣∣∣∣∣
ˆ
AqK

f(x)dx

∣∣∣∣∣ .
This bound is not new but was used already in, e.g. [21, 22, 27]. The statement follows

immediately by defining

f̃(x) :=

{
f(x) if x ∈ [0,1) \AN,
0 otherwise,

and applying the classical Denjoy–Koksma inequality (4) to f̃.
The following theorem shows that for asymmetric logarithmic singularities, the estimate (5)

is also sharp in the sense of theorem 4, which in particular extends the consequences for numer-
ical integration to functions with an asymmetric logarithmic singularity.

Theorem 6. Let f be a 1-periodic smooth function with rational asymmetric logarithmic sin-
gularity in x1 as in definition 1.2. For fixed α ∈ [0,1),q ∈Q and N ∈ N, we denote by K(N) the
integer K such that qK−1 ⩽ N< qK. Further, let AN = (x1 − g(N),x1 + g(N)) be an interval
with g(N) =minn⩽N∥nα+ q− x1∥. Then, for almost all α ∈ [0,1) and any 0< r< 1, there
exists a constant C(r) = C(r, f,q)> 0 such that both setsN ∈ N | SN(f ,α,q)⩾ C(r) sup

x∈[0,1)\AN
|f(x)|

K(N)∑
i=1

ai+N

∣∣∣∣ˆ
AN

f(x)dx

∣∣∣∣
 ,N ∈ N | SN(f ,α,q)⩽−C(r) sup

x∈[0,1)\AN
|f(x)|

K(N)∑
i=1

ai−N

∣∣∣∣ˆ
AN

f(x)dx

∣∣∣∣


have upper density of at least r.

2. Prerequisites

2.1. Notation

Given two functions f,g : (0,∞)→ R, we write f(t) = O(g(t)), f ≪ g or g≫ f if
limsupt→∞

|f(t)|
|g(t)| <∞. Any dependence of the value of the limes superior above on potential

parameters is denoted by appropriate subscripts. For two sequences (ak)k∈N and (bk)k∈N with
bk ̸= 0 for all k ∈ N, we write ak ∼ bk,k→∞, if limk→∞

ak
bk
= 1. Given a real number x ∈ R,

we write {x}= x−⌊x⌋ for the fractional part of x and ∥x∥=min{|x− k| : k ∈ Z} for the
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distance of x to its nearest integer. We denote the characteristic function of a set A by 1A and
understand the value of empty sums as 0. We denote the cardinality of a set A⊆ N as |A|.
For shorter notation, we write SN( f,α) := SN( f,α,0). Let σ

(
X1,X2, . . .

)
denote the σ-algebra

generated by random variables X1,X2, . . ..

2.2. Continued fractions

In this subsection, we collect all classical results from the theory of continued fractions that we
need to prove our main results. Every irrational α ∈ R has a unique infinite continued fraction
expansion denoted by [a0;a1,a2, . . . ] with convergents pk/qk := [a0;a1, . . . ,ak] that satisfy the
recursions

pk+1 = pk+1 (α) = ak+1 (α)pk+ pk−1, qk+1 = qk+1 (α) = ak+1 (α)qk+ qk−1, k ∈ N,

with initial values p0 = a0, p1 = a1a0 + 1, q0 = 1, q1 = a1. For the sake of brevity, we just
write ak,pk,qk, although these quantities depend on α. We know that pk/qk are good approx-
imations for α and satisfy the inequalities

1
qk+1 + qk

⩽ δk := |qkα− pk|⩽
1

qk+1
, k ∈ N.

Fixing an irrational α, the Ostrowski expansion of a non-negative integer N is the unique
representation

N=
K−1∑
ℓ=0

bℓqℓ,

where bK−1 ̸= 0, 0⩽ b0 < a1, 0⩽ bℓ ⩽ aℓ+1 for 1⩽ ℓ⩽ K− 1 and if bℓ = aℓ, then bℓ−1 = 0.
So far all statements can be made for arbitrary irrational numbers, but since this article

considers the almost sure behaviour, we make use of the well-studied area of the metric theory
of continued fractions. We state several classical results below which hold for almost every
α ∈ R. We will use them frequently in the proofs of our results.

• The Borel–Bernstein theorem ([9], see also [11] for a more modern formulation without
monotonicity condition): For any non-negative function ψ : R+ → R+, we have

|{k ∈ N : ak > ψ (k)}| is


infinite if

∞∑
k=0

1
ψ(k) =∞,

finite if
∞∑
k=0

1
ψ(k) <∞.

(6)

• (Diamond and Vaaler [12]):∑
ℓ⩽K

aℓ−max
ℓ⩽K

aℓ ∼
K logK
log2

, K→∞. (7)

• (Khintchine and Lévy, see, e.g. [34, chapter 5, §9, theorem 1]):

logqk ∼ π2

12 log2k as k→∞. (8)

7072



Nonlinearity 36 (2023) 7065 L Frühwirth and M Hauke

3. Functions with discontinuities

We start this section with a decomposition lemma that is of a similar form to [15, appendix A].

Lemma 3.1 (Decomposition lemma). Let f : R→ R be as in definition 1.1, i.e. f is piecewise
smooth with (possible) discontinuities at 0⩽ x1 < .. . < xν < 1. Let g : R→ R be defined as

g(x) =

(
{x}− 1

2

) ν∑
i=1

Ai +
ν∑
i=1

ci
(
1[xi−1,xi)(x)− (xi − xi−1)

)
,

where Ai := limδ→0 [f(xi − δ)− f(xi + δ)], ci :=
∑i

j=1Aj and x0 := 0. Then, for any N ∈
N,q ∈Q and for almost every α, we have

SN ( f,α,q) = SN (g,α,q)+O(1) .

If f satisfies

ν∑
i=1

Ai ̸= 0 or
ν∑
i=1

ci (xi− xi−1) ̸= 0, (9)

then also fy(x) := f(x+ y), for any y ∈ [0,1), satisfies (9).

Proof. We define φ : R→ R as φ(x) := f(x)−
∑ν

i=1Ai
(
{x− xi}− 1

2

)
. Further, we see

{x− xi }− 1
2 = {x}− 1

2 − xi +1[0,xi)(x) and hence

f(x) =
ν∑
i=1

Ai

(
{x− xi }−

1
2

)
+φ(x)

=

(
{x}− 1

2

) ν∑
i=1

Ai +
ν∑
i=1

Ai
(
1[0,xi)(x)− xi

)
+φ(x)

=

(
{x}− 1

2

) ν∑
i=1

Ai +
ν∑
i=1

ci
(
1[xi−1,xi)(x)− (xi − xi−1)

)
+φ(x)

= g(x)+φ(x).

By the choice of f, there exists a function ψ that is differentiable with ψ ′ being of bounded
variation and ψ∣∣[0,1)\{x1,...,xν} = φ∣∣[0,1)\{x1,...,xν}. By the properties of ψ, we get SN(ψ,α,q) =
O(1) (see appendix A in [15]). Since α is irrational and q ∈Q, we have ψ(nα+ q) = φ(nα+
q) for any n ∈ N and thus,

SN ( f,α,q) = SN (g,α,q)+ SN (ψ,α,q) = SN (g,α,q)+O(1) ,

which proves the first part of the statement. For the second part, one sees immediately that∑ν
i=1Ai is invariant under translation. By a slightly longer, but elementary calculation, one

finds that under the assumption of
∑ν

i=1Ai = 0, also
∑ν

i=1 ci(xi− xi−1) ̸= 0 is invariant under
translation.

The definition of the quantities Ai,ci in lemma 3.1 allows us to state stronger, but more
technically involved versions of theorem 1 respectively theorem 4. This refinement will also
immediately imply corollaries 2 and 5.
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Theorem 7. Let ψ : R+ → R+ be a monotonically increasing function with
∑∞

k=1
1

ψ(k) =∞
and let f : R→ R be as in definition 1.1, i.e. f is essentially smooth with (possible) discontinu-
ities at finitely many rationals 0⩽ x1 < .. . < xν < 1. Let Ai = limδ→0 [f(xi − δ)− f(xi+ δ)],
ci =

∑i
j=1 Aj for i ∈ {1, . . . ,ν} and set x0 = 0. If

∑ν
i=1Ai ̸= 0 or

∑ν
i=1 ci (xi− xi−1) ̸= 0, for

almost all α ∈ [0,1) and all q ∈Q, both sets

{N ∈ N | SN ( f,α,q)⩾ ψ (logN)} , {N ∈ N | SN ( f,α,q)⩽−ψ (logN)} (10)

have upper density 1.
If
∑ν

i=1Ai = 0 and
∑ν

i=1 ci (xi− xi−1) = 0, for almost all α ∈ [0,1) and all q ∈Q, both
sets in (10) have positive upper density.

Theorem 8. Let ψ, f,ν,Ai and ci for i ∈ {1, . . . ,ν} be as in theorem 7. If
∑ν

i=1Ai ̸= 0 or∑ν
i=1 ci (xi− xi−1) ̸= 0, for almost all α ∈ [0,1) and all q ∈Q, we have the following:
For any 0< r< 1, there exists a constant C(r) = C(r, f,q)> 0 such that both setsN ∈ N

∣∣∣ SN (f ,α,q)⩾ C(r)
K(N)∑
i=1

ai

 ,
N ∈ N

∣∣∣ SN (f ,α,q)⩽−C(r)
K(N)∑
i=1

ai


have upper density of at least r. Here K(N) denotes the integer such that qK(N)−1 ⩽ N< qK(N).
If
∑ν

i=1Ai = 0 and
∑ν

i=1 ci (xi− xi−1) = 0, for almost all α ∈ [0,1), there exist constants
r0 = r0( f,α,q)> 0 and C= C( f,α,q)> 0 such that both setsN ∈ N

∣∣∣ SN (f ,α,q)⩾ C
K(N)∑
i=1

ai

 ,
N ∈ N

∣∣∣ SN (f ,α,q)⩽−C
K(N)∑
i=1

ai


have upper density of at least r0.

Naturally, the question arises whether the conditions
∑ν

i=1Ai ̸= 0 or
∑ν

i=1 ci(xi− xi−1) ̸=
0 give an exact characterization of functions that satisfy the statements in theorems 7 and 8.We
show that these assumptions are not necessary, but without any condition on the interplay of the
location of the discontinuities and their jump heights, one cannot hope to achieve upper density
1. In fact, we provide two classes of functions that, in general, do not satisfy

∑ν
i=1Ai ̸= 0 or∑ν

i=1 ci(xi− xi−1) ̸= 0; for one class, the sets

{N ∈ N | SN ( f,α,q)⩾ ψ (logN)} {N ∈ N | SN ( f,α,q)⩽−ψ (logN)}

both have upper density 1 for any q ∈Q. However for the other class of functions, this fails
to hold. The proofs of both these statements (propositions 3.2 and 3.4) can be found in the
appendix.

Proposition 3.2. Let

f(x) = 1[
r1
s1
,
r2
s2

] ({x})−1[
r2
s2
,
r3
s3

] ({x}) , ri,si ∈ Z \ {0} ,gcd(ri,si) = 1, r21 + r23 > 0.

(11)

Then, for every q ∈Q and almost all α ∈ [0,1), both sets

{N ∈ N | SN ( f,α,q)⩾ ψ (logN)} , {N ∈ N | SN ( f,α,q)⩽−ψ (logN)} (12)

have upper density 1.
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Remark 3.3. Let f(x) = 1[ 14 ,
1
2 ]
({x})−1[ 12 ,

3
4 ]
({x}) which satisifes the assumptions of propos-

ition 3.2. One can easily check that
∑ν

i=1Ai =
∑ν

i=1 ci (xi − xi−1) = 0. Theorem 7 (and hence
theorem 1) only shows that the sets in (2) have positive upper density. Proposition 3.2 shows
that we have indeed upper density 1, meaning that the assumptions in theorem 7 are not sharp.

The following proposition shows that there are functions of the form as in definition 1.1
where the sets in (2) do not have upper density 1.

Proposition 3.4. Let u,v,w be positive integers with u< v< w/2, gcd(u,w) = gcd(v,w) = 1
and let

f(x) = 1[ uw ,
v
w ]
({x})−1[1− v

w ,1−
u
w ]
({x}) .

Then, there exists a monotone increasing function ψ : R+ → R+ with
∑∞

k=1
1

ψ(k) =∞ and a
constant 0< δ < 1 such that, for almost every α ∈ [0,1), the set

{N ∈ N : SN (f,α)⩾ ψ (logN)}

has upper density of at most 1− δ.

Proof of theorems 1, 4 and Corollaries 2, 5. Corollary 2 follows immediately from theorem
7 since all functions considered in corollary 2 satisfy

∑ν
i=1Ai ̸= 0 or

∑ν
i=1 ci (xi− xi−1) ̸= 0.

Analogously, theorem 4 and corollary 5 follow directly from theorem 8. Theorem 7 implies the
statement in theorem 1 for the case

∑∞
k=1

1
ψ(k) =∞, so we are left with the case

∑∞
k=1

1
ψ(k) <

∞. By the Denjoy–Koksma inequality (4), we have

|SN ( f,α,q)|⩽ Var( f)

K(N)∑
i=1

ai

 ,

where qK(N)−1 ⩽ N< qK(N). We have
∑K(N)

i=1 ai = aK0 +
∑K(N)

i=1,i ̸=K0
ai with K0 =

argmaxi=1,...,K(N)ai. We define ψ̃(k) := c1ψ(c2k) for constants c1,c2 > 0 specified later. Since
ψ is monotone, it follows immediately that

∑∞
k=1

1
ψ̃(k)

<∞. Thus, (6) implies that, for suf-

ficiently large N, we have aK0 ⩽ ψ̃(K0). Moreover, by (7) there exists an absolute constant

c̃> 0 such that
∑K(N)

i=1,i ̸=K0
ai ⩽ c̃K(N) logK(N). Together, we get

|SN ( f,α,q)|⩽ Var( f)
(
ψ̃ (K0)+ c̃K(N) logK(N)

)
⩽ ψ (logN)+ c logN log logN,
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where we choose c1 and c2 such that

Var( f) ψ̃ (K0)⩽ ψ (logN)

and c> 0 in a way that c̃Var( f)K(N) logK(N)⩽ c logN log logN. Thus, there exists a constant
c> 0 such that, for almost all α ∈ [0,1), there are only finitely many N ∈ N with

|SN ( f,α,q)|⩾ ψ (logN)+ c logN log logN.

3.1. Heuristic of the proofs

We will briefly line out the main ideas of the proof of theorems 7 and 8. One of the core
tools we are using is the well-known result in metric number theory that for almost every α ∈
[0,1), there are infinitely many K ∈ N such that aK dominates the sum of the preceding partial
quotients, that is,

∑K−1
i=1 ai = o(aK). Here, K will always satisfy this property. For qK−1 <

N< qK and N= bK−1qK+N ′, N ′ < qK−1, we first get rid of SN ′( f,α) by an application of the
Denjoy–Koksma inequality. The rest of the proof is to show that essentially SbK−1qK−1( f,α)≫
aK for most N, which then implies morally both theorems 7 and 8 by an application of the
Borel–Bernstein Theorem. As {nα}qK−1

n=1 is close to being uniformly distributed in the unit
interval, it is natural to analyze

S(b+1)qK−1
( f,α)− SbqK−1 ( f,α) =

qK−1∑
n=1

f(nα+ bqk−1α)− qK−1

ˆ 1

0
f(x) dx

for every b⩽ bK−1 − 1. For f of the form considered in theorems 7 and 8 and b
ak
∈ [c ′,c] for

some 0⩽ c ′ < c< 1, one obtains

(−1)K
(
S(b+1)qK−1

( f,α)− SbqK−1 ( f,α)
)
⪆ d

with d> 0, provided that qK−1 satisfies some congruence relation that depends on the location
of the discontinuities (lemma 3.8). If b

ak
∈ [0,d ′) we get

(−1)K
(
S(b+1)qK−1

( f,α)− SbqK−1 ( f,α)
)
⪆ 0.

Thus, for δ > 0 and N with (δ+ c ′)aK < bK−1(N)< caK, we have

(−1)K SN ( f,α)≈ SbK−1qK−1 ( f,α)⪆ δdaK ≫
K∑
i=1

ai.

Letting δ→ 0, we see that the desired inequality holds on a proportion of at least c−c ′

c many
elements among {1, . . . ,caK}. By a refinement of the Borel–Bernstein Theorem, we ensure that
there are infinitely many odd respectively even K that both satisfy

∑K−1
i=1 ai = o(aK) and this

certain congruence relation on qK−1. Thus, we obtain the positive upper density by considering
the subsequence caK where the K are chosen out of this infinite set, giving upper density of at
least c−c ′

c > 0.
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Under the assumptions
∑ν

i=1Ai ̸= 0 or
∑ν

i=1 ci (xi− xi−1) ̸= 0, it is possible to prove that
we can choose in the above discussion c ′ = 0 (lemma 3.7), which leads to the result with upper
density 1.

3.2. Preparatory lemmas

Before we come to the proof of theorems 7 and 8, we need a few auxiliary results. The first
lemma treats the sawtooth function, which in view of lemma 3.1 is a building block for the
decomposition of f.

Lemma 3.5. Let α ∈ [0,1) be an irrational number and f(x) =
(
{x}− 1

2

)
. If aK is sufficiently

large, then, for 0⩽ b⩽ aK, we have

SbqK−1 (f,α) = (−1)K
b
2

(
1− b

aK

)
+O(1) .

Proof. We only consider the case where K is odd since the other case can be treated analog-
ously. We thus have

1
qK+ qK−1

⩽ δK−1 = qK−1α− pK−1 ⩽
1
qK
.

Since qK = aKqK−1 + qK−2, we get the asymptotic expression δK−1 =
1

qK−1aK(1+εK)
, where

εK = O(a−1
K ). We obtain

SbqK−1 (f,α) =
bqK−1∑
n=1

(
{nα}− 1

2

)

=
b−1∑
u=0

qK−1∑
n=1

(
{nα+ uqK−1α}−

1
2

)

=
b−1∑
u=0

qK−1∑
n=1

({
n
pK−1

qK−1
+

n
qK−1

δK−1 + uδK−1

}
− 1

2

)

=
b−1∑
u=0

qK−1∑
n=1

({
n
pK−1

qK−1
+O

(
1

qK−1aK

)
+

u
qK−1aK (1+ εK)

}
− 1

2

)

=
b−1∑
u=0

qK−1−1∑
n=0

(
n

qK−1
+O

(
1

qK−1aK

)
+

u
qK−1aK (1+ εK)

)
− bqK−1

2
.

In the second last line we used that δK−1 =
1

qK−1aK(1+εK)
and we employed n⩽ qK−1 in the

inner summation. Further, we used that gcd(pK−1,qK−1) = 1 and hence the remainders of
npK−1 modulo qK−1 are precisely the integers n= 0, . . . ,qK−1 − 1. Finally, we omitted the

fractional part {·}, since n
qK−1

+O
(

1
qK−1aK

)
+ u

qK−1aK(1+εK)
< 1 holds for all n and u, provided

aK is sufficiently large. This leads to
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b−1∑
u=0

qK−1−1∑
n=0

(
n

qK−1
+O

(
1

qK−1aK

)
+

u
qK−1aK (1+ εK)

)
− bqK−1

2

=
qK−1 (qK−1 − 1)b

2qK−1
+O(1)+

b(b− 1)
2aK (1+ εK)

− bqK−1

2

=−b
2
+

b2

2aK (1+ εK)
+O(1)

=−b
2

(
1− b

aK

)
+O(1) ,

where we also made use of the estimate b⩽ aK.

The next lemma treats the local discrepancy function, which in view of lemma 3.1 is also a
building block for the decomposition of f.

Lemma 3.6. Let f = 1[
r1
s1
,
r2
s2

] with ri,si ∈ N and gcd(r1,s1) = gcd(r2,s2) = 1. Further, let α=

[0;a1,a2, . . .] be fixed and let both k ∈ N and ak be sufficiently large. Moreover, let b ∈ N such
that b⩽ ak

2s1s2
. Then, we have

Sbqk−1 ( f,α) = b

({
r1
s1
qk−1

}
+(−1)k−1

1{s1|qk−1} −
{
r2
s2
qk−1

}
− (−1)k−1

1{s2|qk−1}

)
,

where 1{si |qk−1} = 1 if si |qk−1 and 1{si |qk−1} = 0 if si ∤ qk−1.

Proof. We show the statement only in the case where k is odd and s1|qk−1 and s2 ∤ qk−1. The
other cases can be treated analogously. Thus, we need to show that

Sbqk−1 ( f,α) = b

(
1−

{
r2
s2
qk−1

})
.

We recall that Sbqk−1( f,α) =
∣∣∣{1⩽ n⩽ bqk−1 : {nα} ∈

[
r1
s1
, r2s2

]}∣∣∣− bqk−1

(
r2
s2
− r1

s1

)
. In the

following, we use that for odd k, we have 0⩽ δk−1 = qk−1α− pk−1 =
1

akqk−1(1+oak (1))
. We

obtain ∣∣∣∣{1⩽ n⩽ bqk−1 : {nα} ∈
[
r1
s1
,
r2
s2

]}∣∣∣∣
=

b−1∑
j=0

∣∣∣∣{1⩽ n⩽ qk−1 : {nα+ jqk−1α} ∈
[
r1
s1
,
r2
s2

]}∣∣∣∣
=

b−1∑
j=0

∣∣∣∣{1⩽ n⩽ qk−1 :

{
n
pk−1

qk−1
+ n

δk−1

qk−1
+ jδk−1

}
∈
[
r1
s1
,
r2
s2

]}∣∣∣∣
=

b−1∑
j=0

∣∣∣∣{0⩽ n⩽ qk−1 − 1 :

{
n

qk−1
+m(n)

δk−1

qk−1
+ jδk−1

}
∈
[
r1
s1
,
r2
s2

]}∣∣∣∣ ,
where m(n) := pk−1n mod qk−1 and we used that pk−1 and qk−1 are coprime in the last
line. Let εn := m(n) δk−1

qk−1
+ jδk−1. Now we have to count the number of 0⩽ n⩽ qk−1 − 1
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such that n
qk−1

+ εn ∈ [ r1s1 ,
r2
s2
]. Since k is odd and we assume that b⩽ ak

2s1s2
, we have 0⩽

εn ⩽ 1
akqk−1(1+oak (1))

+ 1
2s1s2qk−1(1+oak (1))

. Using s1 | qk−1 and εn ⩾ 0, we see that the smallest

integer n with 0⩽ n⩽ qk−1 − 1 such that n
qk−1

+ εn ⩾ r1
s1

is n= r1
s1
qk−1. Since s2 ∤ qk−1 and

εn ⩽ 1
akqk−1(1+oak (1))

+ 1
2s1s2qk−1(1+ok(1))

< 1
s2qk−1

(since ak ⩾ 2s1s2, if ak is sufficiently large,

where also 1+ oak(1) is close to 1), we have that the largest integer n with 0⩽ n⩽ qk−1 − 1
such that n

qk−1
+ εn ⩽ s2

r2
is n= ⌊ r2s2 qk−1⌋. This means, the number of integers 0⩽ n⩽ qk−1 − 1

such that n
qk−1

+ εn ∈ [ r1s1 ,
r2
s2
] is equal to ⌊ r2s2 qk−1⌋− r1

s1
qk−1 + 1= 1−{ s2r2 qk−1}+ qk−1(

r2
s2
−

r1
s1
). This leads to

b−1∑
j=0

∣∣∣∣{1⩽ n⩽ qk−1 :

{
n
pk−1

qk−1
+ n

δk−1

qk−1
+ jδk−1

}
∈
[
r1
s1
,
r2
s2

]}∣∣∣∣
= b(1−

{
s2
r2
qk−1

}
+ qk−1

(
r2
s2

− r1
s1

)
.

This implies that Sbqk−1(f,α) = b(1−{ s2r2 qk−1}), as claimed.

Lemma 3.7. Let f be as in Definition 1.1, and let Ai,ci,g as in lemma 3.1. Further, assume
that

∑ν
i=1Ai ̸= 0 or

∑ν
i=1 ci (xi− xi−1) ̸= 0. Then, there exist constants c,c ′ > 0, and integers

αj,βj,γj, δj, j = 1,2 (depending on f) such that the following holds:

• If K≡ α1 (mod β1), qK−1 ≡ γ1 (mod δ1), then for any integer b with 0⩽ b⩽ caK, we
have for sufficiently large K and aK,

SbqK−1 (g,α)⩾ bc ′ +O

(
K−1∑
i=1

ai

)
. (13)

• If K≡ α2 (mod β2), qK−1 ≡ γ2 (mod δ2), then for any integer b with 0⩽ b⩽ caK, we
have for sufficiently large K and aK,

SbqK−1 (g,α)⩽−bc ′ +O

(
K−1∑
i=1

ai

)
. (14)

Proof. We only prove (13), the inequality (14) can be shown analogously. First, assume that∑ν
i=1Ai > 0. Let xi =

ri
si
with gcd(ri,si) = 1. We set c := 1

4s1···sν and choose α1 := 1,β1 :=
2,γ1 := 0 and δ1 := s1 · · ·sν . Assume that K ∈ N satisfies K≡ α1 (mod β1) and qK−1 ≡
γ1 (mod δ1).

By lemma 3.1, we can write g(x) =
(∑ν

i=1Ai
)(

{x}− 1
2

)
+
∑ν

i=1 ci (1[xi−1,xi]({x})− (xi−
xi−1)), where we set x0 := 0. This leads to

SbqK−1 (g,α) =

(
ν∑
i=1

Ai

) bqK−1∑
n=1

(
{nα}− 1

2

)
+

bqK−1∑
n=1

ν∑
i=1

ci
(
1[xi−1,xi] ({nα})− (xi− xi−1)

)
.
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By lemma 3.6, the second sum above is equal to 0. Since K− 1 is even, we get by lemma 3.5(
ν∑
i=1

Ai

) bqK−1∑
n=1

(
{nα}− 1

2

)
⩾
(

ν∑
i=1

Ai

)
b
2

(
1− b

aK

)
+O(1)

⩾
(

ν∑
i=1

Ai

)
b
2
(1− c)+O(1) .

We define c ′ := 1
2

(∑ν
i=1Ai

)
(1− c)which is a positive constant, since c< 1. This finishes the

proof in case of
∑ν

i=1Ai > 0. The case
∑ν

i=1Ai < 0 can be handled analogously.
Now assume

∑ν
i=1Ai = 0, but

∑ν
i=1 ci (xi − xi−1) ̸= 0. This implies ν ⩾ 2 and we

assume without loss of generality x1 > 0. Further let
∑ν

i=1 ci (xi − xi−1)> 0, the case where∑ν
i=1 ci (xi − xi−1)< 0 can be treated analogously. Let xi =

ri
si
with gcd(ri,si) = 1 for i =

0, . . . ,ν. We chooseα1 = 0, β1 = 2, γ1 = s1 · · ·sν − 1 and δ1 = s1 · · ·sν (we note that s1 · · ·sν ⩾
2). Let K ∈ N such that K≡ α1 (mod β1), qK−1 ≡ γ1 (mod δ1) and define c := 1

4s1···sν . Then,
for 0⩽ b⩽ caK, we get

SbqK−1 =

bqK−1∑
n=1

ν∑
i=1

ci
(
1[xi−1,xi] ({nα})− (xi − xi−1)

)
= b

ν∑
i=2

ci

({
ri−1

si−1
qK−1

}
−
{
ri
si
qK−1

})
+ bc1

(
1−

{
r1
s1
qK−1

})
.

In the last line, we applied lemma 3.6 and used that si ∤ qK−1 for every i = 1, . . . ,ν. By the
choice of γ1 and δ1, we have qK−1 ≡−1 (mod si) for all i = 1, . . . ,ν and therefore

b
ν∑
i=2

ci

({
ri−1

si−1
qK−1

}
−
{
ri
si
qK−1

})
+ bc1

(
1−

{
r1
s1
qK−1

})
= b

ν∑
i=1

ci

(
ri
si
− ri−1

si−1

)
.

By now defining c ′ =
∑ν

i=1 ci
(
ri
si
− ri−1

si−1

)
=
∑ν

i=1 ci (xi − xi−1)> 0, the proof is finished.

Next, we consider the analogue of the previous lemma in the case
∑ν

i=1Ai =
∑ν

i=1 ci (xi−
xi−1) = 0, where we aim for a positive upper density.

Lemma 3.8. Let f be as in definition 1.1, and let Ai,ci,g as in lemma 3.1. Further, assume
that

∑ν
i=1Ai =

∑ν
i=1 ci (xi− xi−1) = 0. Then, there exist constants c,c ′,d> 0with c ′ < c and

integers αj,βj,γj, δj, j = 1,2 (all depending on f) such that the following holds:

• If K≡ α1 (mod β1), qK−1 ≡ γ1 (mod δ1), then for c ′aK ⩽ b⩽ caK, we have for suffi-
ciently large K and aK

SbqK−1 (g,α)⩾ daK. (15)

• If K≡ α2 (mod β2), qK−1 ≡ γ2 (mod δ2), then for c ′aK ⩽ b⩽ caK, we have for suffi-
ciently large K and aK

SbqK−1 (g,α)⩽−daK. (16)
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Proof. We only show (15), since (16) can be shown analogously. By assumption c1 =∑ν
i=1Ai = 0, thus there exist at least two Ai ̸= 0. To keep notation simple we assume A1 ̸= 0

and thus c2 =
∑ν

i=2Ai ̸= 0. We assume c2 > 0 and note that the case where c2 < 0 can be
handled similarly.

Let xi =
ri
si
for all i = 0, . . . ,ν. We choose α1 = 1, β1 = 2, γ1 = 1 and δ1 = s1 · · ·sν . We take

K ∈ NwithK≡ α1 (mod β1), qK−1 ≡ γ1 (mod δ1) and aK > 8
(x2−x1)c2

. Moreover, let c ′ = x1+x2
2

and c= x2, which implies 0< c ′ < c. Let b ∈ N with c ′aK < b< caK and consider

SbqK−1 (g,α) =
bqK−1∑
n=1

ν∑
i=1

cj
(
1[xi−1,xi] ({nα})− (xi − xi−1)

)
=

ν∑
i=1

ci (|{1⩽ n⩽ bqK−1 : {nα} ∈ [xi−1,xi]}|− bqK−1 (xi − xi−1)) .

Now, for every 1⩽ i ⩽ ν, we provide a suitable estimate for

|{1⩽ n⩽ bqK−1 : {nα} ∈ [xi−1,xi]}|− bqK−1(xi − xi−1)

from below. Starting with the case i ⩾ 3, we observe that

|{1⩽ n⩽ bqK−1 : {nα} ∈ [xi−1,xi]}|=
b−1∑
u=0

|{1⩽ n⩽ qK−1 : {nα+ uqK−1α} ∈ [xi−1,xi]}| .

For 0⩽ u⩽ b− 1, we have

|{1⩽ n⩽ qK−1 : {nα+ uqK−1α} ∈ [xi−1,xi]}|

=

∣∣∣∣{1⩽ n⩽ qK−1 :

{
n
pK−1

qK−1
+ εn

}
∈ [xi−1,xi]

}∣∣∣∣ ,
where εn := uqK−1

(
α− pK−1

qK−1

)
+n
(
α− pK−1

qK−1

)
. Since 2|(K− 1) and u< b⩽ x2aK, we have

that 0⩽ εn ⩽ x2
qK−1

.Thus, we get∣∣∣∣{1⩽ n⩽ qK−1 :

{
n
pK−1

qK−1
+ εn

}
∈ [xi−1,xi]

}∣∣∣∣
⩾
∣∣∣∣{0⩽ n⩽ qK−1 − 1 :

n
qK−1

⩾ xi−1,
n

qK−1
+

x2
qK−1

⩽ xi

}∣∣∣∣
= ⌊xi qK−1⌋− ⌈xi−1qK−1⌉+ 1,

where we used that, for i ⩾ 3, we have xi > x2 and thus, the largest integer n such that n
qK−1

+
x2

qK−1
⩽ xi is n= ⌊xi qK−1⌋. Moreover, the smallest n such that n

qK−1
⩾ xi−1 is n= ⌈xi−1qK−1⌉.

Since qK−1 ≡ 1 (mod s1 . . .sν), we have {qK−1xi }= xi for any 1⩽ i ⩽ ν (recall that the si
denote the denominators of the rationals xi) and thus, in case of i ⩾ 3, we have shown that

|{1⩽ n⩽ qK−1 : {nα+ uqK−1α} ∈ [xi−1,xi]}|⩾ (xi − xi−1)qK−1 − (xi − xi−1)

holds for any 0⩽ u⩽ b− 1. For the case i= 1, a similar argument as before shows that for
any 0⩽ u⩽ b− 1, we have

|{1⩽ n⩽ qK−1 : {nα+ uqK−1α} ∈ [0,x1]}|⩾ x1qK−1 − x1.
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Now we turn our attention to the case of i= 2, where we establish a slightly dif-
ferent lower bound for |{1⩽ n⩽ qK−1 : {nα+ uqK−1α} ∈ [x1,x2]}|. First, we consider
those u with 0⩽ u< x1aK(1+ ε). We choose ε> 0 small enough such that x1(1+
4ε)< x2. In that case, we get the same lower bound as before, i.e. we establish
|{1⩽ n⩽ qK−1 : {nα+ uqK−1α} ∈ [x1,x2]}|⩾ (x2 − x1)qK−1 − (x2 − x1). We are now in the
case, where x1aK(1+ ε)⩽ u⩽ x2aK− 1 (which is a complete case distinction, since u< b⩽
x2aK), we get

|{1⩽ n⩽ qK−1 : {nα+ uqK−1α} ∈ [x1,x2]}|

=

∣∣∣∣{1⩽ n⩽ qK−1 :

{
n
pK−1

qK−1
+ εn

}
∈ [x1,x2]

}∣∣∣∣ ,
where we again set εn = uqK−1

(
α− pK−1

qK−1

)
+ n
(
α− pK−1

qK−1

)
. Since 2|(K− 1) and aKx1(1+

ε)⩽ u⩽ aKx2 − 1, we have that for any 1⩽ n⩽ qK−1,
x1(1+ε)

qK−1(1+oaK (1))
⩽ εn ⩽ x2

qK−1
. Further, we

use that 1+ε
1+oaK (1)

⩾ 1 if K is sufficiently large and hence x1
qK−1

⩽ εn. This gives us the estimate∣∣∣∣{1⩽ n⩽ qK−1 :

{
n
pK−1

qK−1
+ εn

}
∈ [x1,x2]

}∣∣∣∣
⩾
∣∣∣∣{0⩽ n⩽ qK−1 − 1 :

n
qK−1

+
x1
qK−1

⩾ x1,
n

qK−1
+

x2
qK−1

⩽ x2

}∣∣∣∣ .
Here we used gcd(pK−1,qK−1) = 1 which implies that npK−1 runs through all remainder
classes modulo qK−1. The smallest 0⩽ n⩽ qK−1 − 1 such that n

qK−1
+ x1

qK−1
⩾ x1 is n=

⌊x1qK−1⌋= x1qK−1 − x1, which follows from the congruence relation satisfied by qK−1. The
largest n such that n

qK−1
+ x2

qK−1
⩽ x2 is n= ⌊x2qK−1⌋= x2qK−1 − x2. These estimates lead to∣∣∣∣{0⩽ n⩽ qK−1 − 1 :

n
qK−1

+
x1
qK−1

⩾ x1,
n

qK−1
+

x2
qK−1

⩽ x2

}∣∣∣∣
= ⌊x2qK−1⌋− ⌊x1qK−1⌋+ 1

= (x2 − x1)qK−1 +(1− (x2 − x1)) .

Now we can combine all the estimates we obtained before, in order to get

ν∑
i=1

ci

b−1∑
u=0

|{1⩽ n⩽ qK−1 : {nα+ uqK−1α} ∈ [xi−1,xi]}|− (xi − xi−1)qK−1

⩾−
ν∑
i=1

ci

b−1∑
u=0

(xi − xi−1)+ c2 |{0⩽ u⩽ b− 1 : aKx1 (1+ ε)⩽ u⩽ aKx2 − 1}|

= 0+ c2 (b−⌈aKx1 (1+ ε)⌉)⩾ aKc2

(
x1 + x2

2
− (1+ ε)x1

)
− 2

⩾ aKc2

(
x1 + x2

2
− (1+ 2ε)x1

)
.

We used the overall assumption of
∑ν

i=1 ci (xi − xi−1) = 0 and −2⩾−c2aKε, since aK is
large. The proof is now finished by defining d := c2

(
x1+x2

2 − (1+ 2ε)x1
)
> 0.
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3.3. Refining the Borel–Bernstein theorem

We see that lemmas 3.7 and 3.8 give us lower bounds on Birkhoff sums, provided that aK does
not only dominate the sum of the preceding partial quotients, but both K and qK−1 additionally
satisfy certain modularity conditions. Without having to satisfy these extra conditions, the
existence of infinitely many such aK for generic α could be deduced from a combination of
the Borel–Bernstein Theorem and the estimate (7) on the trimmed sum of partial quotients.
The aim of this section is to establish a version of the Borel–Bernstein Theorem (lemma 3.12)
that allows to include additional assumptions on K and qK−1. We make use of some known
auxiliary results that are stated for the reader’s convenience in full detail below.

Lemma 3.9 (lemma C in [17]). Let (Ω,F ,P) be a probability space with events (An)n∈N such
that

∑∞
n=1P[An] =∞ and

limsup
N→∞

(∑N
K=1P [AK]

)2
∑N

K,L=1P [AK ∩AL]
= 1.

Then,

P
[
limsup
n→∞

An

]
= 1.

Lemma 3.10 (lemma 2.5 in [23]). Let v ∈ N with v⩾ 2, and 0⩽ u⩽ v− 1 and define
k= k(v) := |{(u1,u2) : 0⩽ u1,u2 < v : gcd(u1,u2,v) = 1}|. Further, let m,p ∈ N, α∼
Unif([0,1)), define F := σ

(
a1(α), . . .,am(α)

)
and let E ∈ σ

(
am+p+1(α),am+p+2(α), . . .

)
.

Then, there exist constants C> 0 and λ ∈ (0,1) such that∣∣∣∣P [qm+p (α)≡ u (mod v) ,α ∈ E |F ]− 1
k
P [α ∈ E]

∣∣∣∣⩽ Cλ
√
p. (17)

Remark 3.11. In [23], the quantity k from lemma 3.10 is not given explicitly. The fact that
all pairs (u1,u2) with gcd(u1,u2,v) = 1 are admissible and thus k(v) can be defined as in
Lemma 3.10 follows from [24]. The decay rate of (17) was improved in [35] to be exponential,
that is of the form Cλp.

Lemma 3.12. Let ψ : R+ → R+ be a monotonically increasing function such that∑∞
K=1

1
ψ(K) =∞ and let b,d ∈ N with b,d⩾ 2. Then, for any fixed 0⩽ a⩽ b− 1 and 0⩽

c⩽ d− 1, for almost all α ∈ [0,1), the set{
K ∈ N

∣∣∣∣∣ K≡ a (mod b) ,qK−1 ≡ c (mod d) ,ψ (K)< aK < K2,
K−1∑
i=1

ai ⩽ 2K logK

}

has infinite cardinality.

Remark 3.13. In particular, Bernstein’s Theorem can be strengthened in the following way:
For any monotonic increasing function ψ : R+ → R+ and any positive integers a,b,c,d we
have, for almost every α ∈ [0,1),

|{K ∈ N : aK > ψ (K) ,K≡ a (mod b) ,qK−1 ≡ c (mod d)}| is

{
infinite if

∑∞
K=0

1
ψ(K) =∞,

finite if
∑∞

K=0
1

ψ(K) <∞.
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The method of proof even allows replacing the condition K≡ a (mod b) with a condition
of the form K ∈ A⊆ N, where A has positive lower density. For our purpose the given version
is sufficient.

Proof. We first show that for almost every α ∈ [0,1), the set
{
K ∈ N | K≡ a (mod b),ψ(K)<

aK < K2
}

has infinite cardinality. We can assume without loss of generality that

liminfK→∞
ψ(K)
K logK =∞ since the result then also follows for all slower growing ψ. Now we

define

ψ̃ (K) :=

{
ψ (K) if K≡ a (mod b),

K2 else.

Since ψ is monotone, we have that
∑∞

K=1
1

ψ̃(K)
=∞ (since

∑Nb
K=1

1
ψ̃(K)

⩾ 1
b

∑Nb
K=b

1
ψ(K)

→
N→∞

∞). By (6), there exist infinitely many K such that aK > ψ̃(K). Again by (6), there are

only finitely many K ∈ N such that aK > K2 and thus, we can conclude that there are infinitely
many K ∈ N with K≡ a (mod b) and ψ(K)< aK < K2. Now we introduce the sets

EK :=
{
α ∈ [0,1) | K≡ a (mod b),ψ(K)< aK < K2

}
,

AK :=
{
α ∈ [0,1) | K≡ a (mod b),qK−1 ≡ c (mod d),ψ(K)< aK < K2

}
.

In the following, we show that lemma 3.9 can be applied to the sequence of sets (AK)K∈N. To
that end, we define k= |{0⩽ u1,u2 ⩽ d− 1 | gcd(u1,u2,d) = 1}| and we note that EK only
depends on aK . Further, we will denote the 1-dimensional Lebesgue measure on [0,1) by P.
Using lemma 3.10, we get

P [AK] =
1
k
P [EK] +O

(
λ
√
K
)
, (18)

with λ ∈ (0,1). This gives us
∑∞

K=1P [AK] =∞, since there exist infinitely many K ∈ N such
that P[EK] = 1 by the first part of this proof. This shows the first assumption in lemma 3.9, i.e.∑∞

K=1P[AK] =∞. Now we take K,L ∈ N with L+ 1⩽ K and consider

P [AK ∩AL] = P [AL]P [AK|AL]
= P [AL]P

[
ψ (K)< aK < K2,qK−1 ≡ c (mod d) ,K≡ a (mod b) |AL

]
= P [AL]

(
1
k
P [EK] +O

(
λ
√
K−L
))

= P [AL]P [AK] +P [AL]O
(
λ
√
K−L
)
,

where we employed lemma 3.10 and used the estimate from (18) in the last line. We fix N ∈ N
sufficiently large and consider

N∑
K,L=1

P [AK ∩AL] =
N∑

K,L=1

P [AK]P [AL] + 2
∑

L+1⩽K⩽N

P [AL]O
(
λ
√
K−L
)

+
N∑

K=1

(
P [AK]−P [AK]2

)
. (19)
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Next, we obtain an upper bound for two of the sums in (19). First, we get

2
∑

L+1⩽K⩽N

P [AL]O
(
λ
√
K−L
)
= 2

N−1∑
L=1

P [AL]
N∑

K=L+1

O
(
λ
√
K−L
)
⩽ O(1)

N∑
L=1

P [AL] ,

where we used that λ ∈ (0,1). Moreover, we get

N∑
K=1

(
P [AK]−P [AK]2

)
⩽

N∑
K=1

P [AK]

and thus, we have

∑
L+1⩽K⩽N

P [AL]O
(
λ
√
K−L

)
+

N∑
K=1

(
P [AK]−P [AK]

2
)
⩽O(1)

N∑
K=1

P [AK] = o

( N∑
K=1

P [AK]

)2
 .

For the equality in the previous equation, we used that
∑∞

K=1P[AK] =∞. In total, we have
shown that

limsup
N→∞

(∑N
K=1P [AK]

)2
∑N

K,L=1P [AK ∩AL]
= limsup

N→∞

1
1+ oN (1)

= 1.

Lemma 3.9 now gives us that P [limsupK→∞AK] = 1 or, in other words, for almost all α ∈
[0,1), there are infinitely many K ∈ N such that ψ(K)< aK < K2 , K≡ a (mod b) and qK−1 ≡
c (mod d).

For K sufficiently large, we have ψ(K)> K logK
log(2) , so (7) shows that max

ℓ⩽K−1
aℓ < aK and thus,

applying (7) again leads to
∑K−1

i=1 ai ⩽ 2K logK (note that 1
log2 ⩽ 2).

We have now all ingredients to turn our attention to the proofs of theorems 7 and 8.

3.4. Proofs of theorems 7 and 8

Note that the class of functions considered in both theorems 7 and 8 is closed under trans-
lation by rational numbers, and by lemma 3.1 the same holds for the condition

∑ν
i=1Ai ̸=

0 or
∑ν

i=1 ci(xi− xi−1) ̸= 0. Thus, we can assume without loss of generality that q= 0.

Moreover, we can assume that limK→∞
ψ(K)
K logK =∞ since the result then follows also for slower

growing ψ.
Assume first that

∑ν
i=1Ai ̸= 0 or

∑ν
i=1 ci (xi− xi−1) ̸= 0. Let c,c ′,α1,β1,γ1, δ1 be as in

lemma 3.7. By lemma 3.12, for almost every α, there exist infinitely many K such that{
K ∈ N

∣∣∣∣∣K≡ α1 (mod β1) ,qK−1 ≡ γ1 (mod δ1) , ψ̃ (K)< aK < K2,
K−1∑
i=1

ai ⩽ 2K logK

}
,

where ψ̃(k) = C1ψ(C2k) with C1,C2 > 0 specified later. Denote by (kj)j∈N the increasing
sequence of integers such that the above holds. Now let N⩽ cakjqkj−1 be arbitrary. Thus, we
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can write N= bkj−1qkj−1 +N ′ where N ′ < qkj−1 and bkj−1 ⩽ cakj . Defining g as in lemma 3.1
and g̃(x) = g(x+ bkj−1qkj−1α), we have

SN ( f,α) = SN (g,α)+O(1)

= Sbkj−1qkj−1 (g,α)+ SN ′ (g̃,α)+O(1)

⩾ bkj−1c
′ +O

kj−1∑
i=1

ai

 , (20)

where we used lemma 3.7 and the Denjoy–Koksma inequality in the last line. Let Mj :=

⌊cakjqkj−1⌋ and, for δ > 0, we define the set Aδj :=

{
1⩽ N⩽Mj : δ ⩽

bkj−1(N)

akj

}
. We note

that limδ→0 |Aδj |=Mj. Thus, fixing ε> 0, we can choose δ > 0 such that
|Aδ

j |
Mj

⩾ 1− ε for

all sufficiently large j. Let C1,C2 > 0 such that, if akj ⩾ ψ̃(kj) = C1ψ(C2kj) it follows that

bkj−1c ′ +O
(∑kj−1

i=1 ai
)
⩾ ψ(logN) for all N ∈ Aδj . We note that C1,C2 only depend on δ > 0,

since kj is chosen such that
∑kj−1

i=1 ai ⩽ 2kj log(kj) = o(ψ(kj)). This yields

|{1⩽ N⩽Mj : SN (f,α)⩾ ψ (logN)}|
Mj

⩾

∣∣∣{N ∈ Aδj : bkj−1c ′ +O
(∑kj−1

i=1 ai
)
⩾ ψ (logN)

}∣∣∣
Mj

⩾
|
{
N ∈ Aδj : akj ⩾ ψ̃ (kj)

}
|

Mj

=
|Aδj |
Mj

⩾ 1− ε.

By taking the limes inferior as j →∞ and letting ε→ 0, we get

liminf
j→∞

|{1⩽ N⩽Mj : SN (f,α)⩾ ψ (logN)}|
Mj

= 1.

This shows the claimed upper density 1 in theorem 7 for the set {N ∈ N SN(f,α)⩾ ψ(logN)}
in case of

∑ν
i=1Ai ̸= 0 or

∑ν
i=1 ci (xi− xi−1) ̸= 0.

In order to prove the first part of theorem 8, let 0< r< 1 be fixed. Choosing δ = δ(r) suf-

ficiently small such that
|Aδ

j |
Mj

⩾ r, we can deduce from (20) that, for N ∈ Aδj , we have

SN ( f,α)⩾ c ′δakj +O

kj−1∑
i=1

ai

 .
By choosing C(r) := c ′δ

2 , the first statement of theorem 8 follows, since the sequence (kj)j∈N

is chosen such that akj dominates
∑kj−1

i=1 ai.
Now we prove the remaining parts of theorem 7, where we need to show that if

∑ν
i=1Ai =∑ν

i=1 ci (xi− xi−1) = 0, then the set {N ∈ N : SN( f,α)⩾ ψ(logN)} has positive upper density.
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Let c,c ′,d,α1,β1,γ1, δ1 be as in lemma 3.8. By lemma 3.12, there are infinitely many K such
that{
K ∈ N

∣∣∣∣∣K≡ α1 (mod β1) ,qK−1 ≡ γ1 (mod δ1) ,ψ (K)< aK < K2,
K−1∑
i=1

ai ⩽ 2K logK

}
.

Denote by (kj)j∈N the increasing sequence of integers such that the above holds. Now let
N ∈ N with c ′akjqkj ⩽ N⩽ cakjqkj be arbitrary. Thus, we can write N= bkj−1qkj−1 +N ′ where
N ′ < qkj−1 and cakj ⩽ bkj−1 ⩽ akj . Arguing as in (20), we obtain by lemma 3.8

SN ( f,α)⩾ bkj−1d+O

kj−1∑
i=1

ai

 . (21)

LetMj := ⌊cakjqkj−1⌋ and Aj :=
{
1⩽ N⩽ Nj : c ′ ⩽

bkj−1(N)

akj
⩽ c
}
. We note that there exists

r0 > 0 such that |Aj|
Mj

⩾ r0 > 0 for all sufficiently large j ∈ N. Similar to the first part of this
proof, we get

|
{
1⩽ N⩽Mj : SN (f,α)⩾ ψ (logN)

}
|

Mj
⩾

∣∣∣{1⩽ N⩽Mj : bkj−1d+O
(∑kj−1

i=1 ai
)
⩾ ψ (logN)

}∣∣∣
Mj

⩾

∣∣∣{N ∈ Aj : bkj−1d+O
(∑kj−1

i=1 ai
)
⩾ ψ (logN)

}∣∣∣
Mj

=
|Aj|
Mj

⩾ r0.

By taking the liminf as j →∞, we obtain

liminf
j→∞

|1⩽ N⩽Mj : SN (f,α)⩾ ψ (logN)|
Mj

⩾ r0 > 0.

This shows the claimed positive upper density in theorem 7 for the set {N ∈ N SN(f,α)⩾
ψ(logN)} in case of

∑ν
i=1Ai =

∑ν
i=1 ci (xi− xi−1) = 0.

To prove the second statement of theorem 8, we see that, for N ∈ Aj, by (21), we have

SN( f,α)⩾ dc ′akj +O
(∑kj−1

i=1 ai
)
. Since akj dominates

∑kj−1
i=1 ai by construction and |Aj|

Mj
⩾

r0 > 0, the statement follows immediately.

4. Functions with logarithmic singularities

4.1. Heuristic of the proofs

We will briefly line out the main ideas of the proof of theorems 3 and 6. Again, we are using
that, for almost every α ∈ [0,1),

∑K−1
i=1 ai = o(aK) for infinitely many K ∈ N. Here, K will

always satisfy this property. For qK−1 < N< qK and N= bK−1qk+N ′, N ′ < qK−1, we get
rid of SN ′(. . .) by an application of the Denjoy–Koksma inequality with singularity (5). We
make sure to stay away from the singularity x1 = r

s by the fact that if ∥Nα− r
s∥ is small, then

so is ∥sNα∥ (proposition 4.2). Thus, we can morally work with the homogeneous case of
Diophantine approximation and the corresponding metric theory gives sufficient estimates.
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Again, we analyze S(b+1)qK−1
( f,α)− SbqK−1( f,α) for every b⩽ bK−1 − 1 and observe that

{{nα+ bqK−1α}}qK−1

n=1 ≈

{
j + bK−1

aK

qK−1

}qK−1

j=1

.

In the asymmetric case, we see that f(x) = log{x} is monotonically increasing on [0,1).

Comparing f

(
j+

bK−1
aK

qK−1

)
with
´ ( j+1)/qK
j/qK−1

f(x)dx, the value of bK−1

aK
is decisive and, for some c,d>

0 and b
aK

∈ [0,c], this leads to an estimate (see lemma 4.4) of the form

(−1)K
(
S(b+1)qK−1

( f,α)− SbqK−1 ( f,α)
)
⪆ d logqK ≫ logN.

Then the proof can be concluded similarly to the proof of theorem 7.
In the symmetric case f(x) = log∥x∥, we see that, for j ⩽ qK−1/2, we have

f

(
1−

j−1+
bK−1
aK

qK−1

)
= f

(
j+(1− bK−1

aK
)

qK−1

)
. So, the terms f

(
j+

bK−1
aK

qK−1

)
−
´ ( j+1)/qK
j/qK−1

f(x)dx and

f

(
1−( j+

bK−1
aK

)

qK−1

)
−
´ 1−j/qK−1

1−( j−1)/qK−1
f(x)dx are of opposite sign and lead to some cancellation

(lemma 4.5). This cancellation is responsible for the different behaviour of symmetric and
asymmetric singularities.

4.2. Asymmetric logarithmic singularities

Proposition 4.1. Let xj =
j+εj
qℓ
,0⩽ j ⩽ qℓ− 1, for 0< εj < 1, where ℓ ∈ N. Then, we have

qℓ−1∑
j=0

log(xj)− qℓ

ˆ 1

0
log(x) dx=

qℓ−1∑
j=1

εj− 1/2
j

+ log(ε0)+O(1)

with the implied constant being absolute, independent of εj .

Proof. For j ⩾ 1, we have

qℓ

ˆ ( j+1)/qℓ

j/qℓ

log(x) dx

= ( j+ 1) log

(
j+ 1
qℓ

)
− ( j+ 1)− j log

(
j
qℓ

)
+ j

= log

(
j+ 1
qℓ

)
+ j log

(
1+

1
j

)
− 1.

So, we obtain

log(xj)− qℓ

ˆ ( j+1)/qℓ

j/qℓ

log(x) dx= log

(
j + εj
j + 1

)
− j log

(
1+

1
j

)
+ 1.

By the Taylor expansion log(1+ x) = x− x2/2+O(x3), we get

log

(
j + εj
j + 1

)
− j log

(
1+

1
j

)
+ 1=

εj− 1/2
j

+O

(
1
j2

)
.
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For j= 0, we get qℓ
´ 1/qℓ
0 log(x)dx=− log(qℓ)− 1 and thus,

log(x0)− qℓ

ˆ 1/qℓ

0
log(x) dx= log(ε0)+ 1.

Combining the obtained estimates yields

qℓ−1∑
j=0

log(xj)− qℓ

ˆ 1

0
log(x) dx=

qℓ−1∑
j=1

εj− 1/2
j

+ log(ε0)+O(1) .

Proposition 4.2. Let rs ∈ [0,1)∩Q and let 1< N< qK
s . Then,∥∥∥Nα− r

s

∥∥∥> ∥qK+1α∥
s

.

Proof. Assume to the contrary that
∥∥Nα− r

s

∥∥⩽ ∥qK+1α∥
s . Then, we have

∥sNα∥=
∥∥∥sNα− s

r
s

∥∥∥= ∥∥∥s(Nα− r
s

)∥∥∥⩽ s
∥∥∥Nα− r

s

∥∥∥⩽ ∥qK+1α∥.

Since sN< qK+1, this is a contradiction to the best approximation property of qK+1: There
would exist an integer N ′ < qK+1 such that qK−1∥N ′α∥⩽ ∥qK+1α∥.

Proposition 4.3 (Error term estimate for a rational shift). Let f(x) = log({x− q}), where
q= r

s ∈ [0,1) is a rational number. Let N ∈ N with N< qK
s and let N= bK−1qK−1 +N ′, where

0⩽ N ′ < qK−1. Then, we have

|SN ′ (f,α,bK−1qK−1α)| ≪ log(qK+1)
K−1∑
ℓ=1

aℓ.

Proof. Define AN ′ :=
(
q− ∥qKα∥

s ,q+ ∥qKα∥
s

)
. Using proposition 4.2 we see nα+

bK−1qK−1α /∈ AN ′ for all n⩽ N ′. Thus, the Denjoy–Koksma inequality with singularity (pro-
position 1.5) yields

|SN ′(f,α,bK−1qK−1α)| ≪ sup
x∈[0,1)\AN ′

|f(x)|
K−1∑
i=1

ai+ qK−1

∣∣∣∣∣
ˆ
AN ′

f(x)dx

∣∣∣∣∣ .
We have supx∈[0,1)\AN ′ |f(x)|= log ∥qKα∥

s ≪ logqK+1. Further, we use the estimate

qK−1

∣∣∣´AN ′
f(x)dx

∣∣∣≪ log(qK+1) to obtain the desired result.

Lemma 4.4 (main term estimate for a rational shift). Let δ > 0, q= r
s ∈ [0,1)∩Q and define

f(x) := log({x− q}) for x ∈ [0,1). Further, let K ∈ Nwith qK−1 ≡ 0 (mod s) and choose N ∈ N
with qK−1 < N< qK and δaK < bK−1(N)<

aK
4 . Then, if aK is sufficiently large, we get

(−1)K SbK−1qK−1 ( f,α)≫ δaK log(qK−1) .
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Proof. By definition, we have

SbK−1qK−1 ( f,α) =
bK−1qK−1∑

n=1

log({nα− q})+ bK−1qK−1

=

bK−1−1∑
b=0

(qK−1∑
n=1

log({nα+ bqK−1α− q})+ qK−1

)

=

bK−1−1∑
b=0

(qK−1∑
n=1

log
({

nα+(−1)K−1 bδK−1α− q
})

+ qK−1

)
,

where we recall that δK−1 = |αqK−1 − pK−1|= (−1)K−1(αqK−1 − pK−1). For 1⩽ n⩽ qK−1

and 0⩽ b⩽ bK−1 − 1, we get

{
nα− q+(−1)K−1

(bδK−1)
}
=

{
n
pK−1

qK−1
− q+

(−1)K−1

qK−1
δK−1 (bqK−1 + n)

}

=

npK−1 − qqK−1

qK−1
+

(−1)K−1

qK−1

δK−1 (bqK−1 + n)︸ ︷︷ ︸
=:εb,n




=

{
npK−1 − n ′

qK−1
+

(−1)K−1

qK−1
εb,n

}
.

We introduced n ′ := qqK−1 which is an integer since s|qK−1 with 0⩽ n ′ ⩽ qK−1 − 1. Now
observe that δK−1 > 0 by definition and since bqK−1 <

aK
4 , we have bqK−1 + n⩽ bqK−1qK−1 ⩽

(1/2− δ)aKqK−1. Thus, for any 0⩽ n⩽ qK−1 − 1, we get

0< εb,n <
ak
4
qK−1δK−1 ⩽ 1/4,

where we used that qK−1δK−1 ⩽ 1/aK. First, we assume that K is odd implying (−1)K−1 = 1.

We apply proposition 4.1 with xn =
{

n
qK−1

+ εn
qK−1

}
, where εn = εb,((np−1

K−1+n
′) (mod qK−1))

for

1⩽ n⩽ qK−1 − 1 and ε0 = εb,(1−q)qK−1
. This leads to

qK−1∑
n=1

log
({

nα+(−1)K−1 bδK−1α− q
})

+ qK−1

=

qK−1∑
n=1

log
({

nα+(−1)K−1 bδK−1α− q
})

− qK−1

ˆ 1

0
log(x)dx

=

qK−1−1∑
n=1

εn− 1/2
n

+ log(ε0)+O(1)

⩽−1
4
log(qK−1)+ log(ε0)+O(1)⩽−1

8
log(qK−1) .

7090



Nonlinearity 36 (2023) 7065 L Frühwirth and M Hauke

We used that ε0 ⩽ 1
4 < 1 and hence log(ε0)⩽ 0. Moreover, we applied the rough estimate

O(1)⩽ 1
8 log(qK−1). By summing over all b= 0, . . . ,bK−1 − 1, we obtain

SbK−1qK−1 ( f,α)⩽−1
8
bK−1 log(qK−1)⩽−δ

8
aK log(qK−1)≪−δaK log(qK−1) ,

where we also used the assumption bK−1 ⩾ δaK. By rewriting, we finally get

−SbK−1qK−1 ( f,α)≫ δaK log(qK−1) ,

as claimed.
Now let K be even. We apply proposition 4.1 with xn =

{
n

qK−1
+ εn

qK−1

}
, where εn = 1−

εb,(np−1
K−1+n

′+1) (mod qK−1)
for 1⩽ n⩽ qK−1 − 1 and ε0 = 1− εb,qqK−1 . Similar to before, we

obtain

SbK−1qK−1 ( f,α) = SbK−1qK−1 ( f,α)

⩾ 1
8
bK−1 log(qK−1)

≫ δaK log(qK−1) .

This finishes the proof.

4.3. Symmetric logarithmic singularities

Lemma 4.5. Let f(x) = log
∥∥x− r

s

∥∥, where r
s ∈ [0,1)∩Q. Then, for almost every α ∈ [0,1),

we have

|SN ( f,α)| ≪ (logN)2 log logN.

Proof. Writing N=
∑K−1
ℓ=0 bℓqℓ in its Ostrowski expansion with bK−1 ̸= 0, we obtain the

decomposition

SN ( f,α) = SN ′ (f ,α)+ SbK0−1qK0−1 ( f,α,N
′α)+ SN ′ ′ ( f,α,(N ′ + bK0−1qK0−1)α) ,

where K0 = argmaxℓ=1,...,Kaℓ, N ′ =
∑K−1
ℓ=K0

bℓqℓ and N ′ ′ =
∑K0−2
ℓ=0 bℓqℓ. By the Denjoy–

Koksma inequality with singularity (see (5) in proposition 1.5), we can bound SN ′(f,α) by

|SN ′(f,α)| ≪ sup
x∈[0,1)\AN ′

|f(x)|
K−1∑
i=K0

bi +N ′

∣∣∣∣∣
ˆ
AN ′

f(x)dx

∣∣∣∣∣ ,
where we choose AN ′ = (q−minn<qK ∥nα− q∥,q+minn<qK ∥nα− q∥). This ensures {nα−
q} /∈ AN ′ and we have
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sup
x∈[0,1)\AN ′

|log(∥x− q∥)|⩽
∣∣∣∣log(min

n<qK
∥nα− q∥

)∣∣∣∣
⩽
∣∣∣∣log( min

n<qK+1/s
∥nα− q∥

)∣∣∣∣
⩽
∣∣∣∣log(∥qK+s+1α∥

s

)∣∣∣∣
≪ log(qK+s+2)

≪ K, (22)

where we have used that log(qK)≪ K by (8) and we used proposition 4.2. A simple calculation
reveals ∣∣∣∣∣

ˆ
AN ′

f(x)dx

∣∣∣∣∣= 2

∣∣∣∣min
n<qK

∥nα− q∥
(
log

(
min
n<qK

∥nα− q∥
))∣∣∣∣

≪ K
qK
,

where we used that minn<qK ∥nα− q∥⩽ 1
qK

and |log(minn⩽qK ∥nα− q∥)| ≪ K, as shown
before. In total, we get

|SN ′ (f,α)| ≪ K
K−1∑
i=K0

bi +N ′ K
qK

≪ K
K∑

i=K0+1

ai

≪ K2 logK,

where the estimate in the last line uses (7). Analogously, one obtains the same bound for
SN ′ ′( f,α,(N ′ + bK0−1qK0−1)α), i.e. we get

|SN ′ ′ ( f,α,(N ′ + bK0−1qK0−1)α)| ≪ K2 logK.

We are now left with SbK0−1qK0−1( f,α,N
′α), where we will show that∣∣∣SbK0−1qK0−1 ( f,α,N

′α)
∣∣∣≪ K2 logK.

By definition, we have

SbK0−1qK0−1 ( f,α,N
′α) =

bK0−1qK0−1∑
n=1

log
(∥∥∥nα− r

s
+N ′α

∥∥∥)+ bK0−1qK0−1

=

bK0−1−1∑
b=0

(qK0−1∑
n=1

log
(∥∥∥nα− r

s
+N ′α+ bqK0−1α

∥∥∥)+ qK0−1

)

=

bK0−1−1∑
b=0

(qK0−1∑
n=1

log
(∥∥∥nα− r

s
+N ′α+ b(−1)K0−1

δK0−1

∥∥∥)+ qK0−1

)
,

where we recall that δK0−1 = (−1)K0−1 (qK0−1α− pK0−1).
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We first assume that K0 is odd. We can write N ′α− r
s =

m
qK0−1

+ r ′

qK0−1
where m ∈ Z

and 0⩽ r ′ < 1. We observe that, for any 0⩽ b⩽ bK0−1, we have 0⩽ bqK0−1δK0−1 + r ′ <
2. For the following analysis, we define the quantity db := bqK0−1δK0−1 + r ′ and the sets
B1,B2,B3 as

B1 := {0⩽ b⩽ bK0−1 − 1 : db+1 < 1} ,
B2 := {0⩽ b⩽ bK0−1 − 1 : db > 1} ,
B3 := {0, . . . ,bK0−1 − 1 : db < 1< db+1} .

Since db is irrational for all 0⩽ b⩽ bK0−1 − 1, the sets B1,B2,B3 form a partition of
{0, . . . ,bK0−1 − 1}. We first assume b ∈ B1, i.e. db+1 < 1. We see that, for all n= 1, . . . ,qK0−1,
we have

{
(n+ bqK0−1)α+N ′α− r

s

}
=

{
npK0−1 +m+ db+ nδK0−1

qK0−1

}
.

Since pK0−1 and qK0−1 are coprime, the map j(n) = npK0−1 +m (mod qK0−1) is bijective with
inverse n(j). Thus, we can introduce the quantities

yj :=
j + db+ n( j)δK0−1

qK0−1
, j = 0, . . . ,qK0−1 − 1.

Since db+ n( j)δK0−1 ⩽ db+1 < 1 by assumption, it holds that 0⩽ yj < 1 for all j =
0, . . . ,qK0−1 − 1. Further, we have the following equality of sets

{yj : j = 0, . . . ,qK0−1 − 1}=
{{

npK0−1 +m+ db+ nδK0−1

qK0−1

}
: n= 1, . . . ,qK0−1

}
.

The previous arguments reveal that, for b ∈ B1, we can write

qK0−1∑
n=1

log
(∥∥∥nα− r

s
+N ′α+ b(−1)K0−1

δK0−1

∥∥∥)+ qK0−1 =

qK0−1−1∑
j=0

log∥yj∥+ qK0−1

=

qK0−1−1∑
j=0

(log∥yj∥− Ij) ,

where we set Ij := qK0−1
´ ( j+1)/qK0−1

j/qK0−1
log(x)dx for j = 0, . . . ,qK0−1 − 1. In the following, we

will compare the value of log∥yj∥ to the value of Ij for all j = 0, . . . ,qK0−1 − 1. We start
with the case where 1⩽ j ⩽ ⌊qK0−1/2⌋− 1. Then, we have ∥yj∥= yj and ∥yqK0−1−j−1∥=
1− yqK0−1−j−1. This leads to
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log∥yj∥− Ij = log(yj)− Ij

= log

(
j + db+ n( j)δK0−1

j + 1

)
− j log

(
1+

1
j

)
+ 1.

By the Taylor expansion log(1+ x) = x− x2/2+O(x3), we have

log

(
j + db+ n( j)δK0−1

j + 1

)
− j log

(
1+

1
j

)
+ 1=

db+ n( j)δK0−1 − 1/2
j

+O

(
1
j2

)
.

By the same arguments, we obtain

log∥yqK0−1−j−1∥− qK0−1Ij =
1− db+ n(qK0−1 − j− 1)δK0−1 − 1/2

j
+O

(
1
j2

)
.

So, by combining the two previous estimates, we get∣∣∣log∥yj∥+ log∥yqK0−1−j−1∥− 2Ij
∣∣∣⩽ ∣∣∣∣ (n( j)− n(qK0−1 − j− 1))δK0−1

j

∣∣∣∣+O

(
1
j2

)
⩽ 1
jaK0

+O

(
1
j2

)
.

In the last line, we used the estimate qK0−1δK0−1 ⩽ 1
aK0

. It is easy to see that

qK0−1−⌊qK0−1/2⌋∑
j=⌊qK0−1/2⌋

(log(∥yj∥)− 2Ij) = O(1) ,

since the number of summands on the left-hand side is bounded by a constant and the yj are
bounded away from 0 and 1. Thus, we have shown that∣∣∣∣∣∣

qK0−1−2∑
j=1

log∥yj∥− Ij

∣∣∣∣∣∣≪ 1
aK0

⌊qK0−1/2⌋−1∑
j=1

1
j
+

⌊qK0−1/2⌋−1∑
j=1

1
j2
+O(1)

≪ logqK0−1

aK0

+O(1) .

We are now left with the cases j= 0 and j = qK0−1 − 1, where we get∣∣∣log∥y0∥+ log∥yqK0−1−1∥− 2I0
∣∣∣⩽ |log∥y0∥− I0|+

∣∣∣log∥yqK0−1−1∥− I0
∣∣∣

⩽ |log(db+ n(0)δK0−1)|
+ |log(1− db− n(qK0−1 − 1)δK0−1)|+ 2.

We discuss here the first term |log(db+ n(0)δK0−1)| in detail, the second term can be
treated analogously. Observe that db+ n(0)δK0−1 = qK0−1∥(N ′ + bqK0−1 + n(0))α− r

s )∥ by
construction of y0.

We claim that there exists at most one b ′ ∈ B1 such that∥∥∥(N ′ + b ′qK0−1 + n(0))α− r
s

∥∥∥⩽ 1
4qK0

.
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Assume to the contrary that there are two integers b ′,b ′ ′ ∈ B1 with b ′ ̸= b ′ ′ such that both
satisfy this estimate. Then, we get

∥(b ′ − b ′ ′)qK0−1α∥⩽
1

2qK0

by the triangle inequality, which is an immediate contradiction to the best approximation prop-
erty of qK0−1. Thus, for the only possible b ′ ∈ B1, we get

qK0−1

∥∥∥(N ′ + b ′qK0−1 + n(0))α− r
s

∥∥∥⩾ qK0−1 min
n<qK

∥∥∥nα− r
s

∥∥∥
⩾ qK0−1

qK+s+1

⩾ 1
qK+s+1

,

where the estimate in the second last step can be argued analogously to (22). For all b ∈ B1

with b ̸= b ′, we have

qK0−1

∥∥∥(N ′ + bqK0−1 + n(0))α− r
s

∥∥∥⩾ qK0−1

4qK0

⩾ 1
4(aK0 + 1)

.

Thus, by combining the estimates we obtained, we get∣∣∣∣∣∑
b∈B1

qK0−1∑
n=1

f(nα+ bqK0−1α+N ′α)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
b∈B1

qK0−1∑
j=0

(log∥yj∥− Ij)

∣∣∣∣∣∣
⩽

∣∣∣∣∣∣
∑
b∈B1

qK0−2∑
j=1

(log∥yj∥− Ij)

∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
∑
b∈B1

∑
j∈{0,qK0−1}

(log∥yj∥− Ij)

∣∣∣∣∣∣∣
≪ logqK0−1aK0 +

∣∣∣∣∣∣∣
∑

b∈B1,b̸=b ′

∑
j∈{0,qK0−1}

(log∥yj∥− Ij)

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

∑
j∈{0,qK0−1}

(log∥yj (b ′)∥− Ij)

∣∣∣∣∣∣∣
≪ logqK0−1aK0 +

∑
b∈B1,b̸=b ′

logaK0 + logqK+s+1

≪ aK0 (logaK0 + logqK0−1)

≪ K2 log(K) .

Here we used that |B1|⩽ bK0−1 ⩽ aK0 , logqK+s+1 ≪ K by (8) and by (6), aK0 ⩽ K2 if K is
sufficiently large. For the set B2, a similar analysis leads to the same asymptotic bound, i.e. we
get ∣∣∣∣∣∑

b∈B2

qK0−1∑
n=1

f(nα+ bqK0−1α+N ′α)

∣∣∣∣∣≪ K2 logK.
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The set B3 contains at most 1 element b̄ ∈ {0, . . . ,bK0−1 − 1} and thus, we can write∣∣∣∣∣∑
b∈B3

qK0−1∑
n=1

f(nα+ bqK0−1α+N ′α)

∣∣∣∣∣⩽
∣∣∣∣∣
qK0−1∑
n=1

log(∥nα+ x∥)

∣∣∣∣∣ ,
where x := b̄qK0−1α+N ′α. Applying the Denjoy–Koksma inequality with singularity in the
form of (5), we obtain∣∣∣∣∣

qK0−1∑
n=1

log(∥nα+ x∥)

∣∣∣∣∣≪ K2 logK,

as we did for SN ′( f ,α) at the beginning of this proof. Combining the estimates for B1,B2,B3,
we can deduce that∣∣∣SbK0−1qK0−1 ( f,α,N

′α)
∣∣∣≪ K2 logK,

which finishes the proof for odd K0. The case where K0 is even can be handled under minor
modifications. In total, we have shown that, for qK−1 ⩽ N< qK

|SN ( f,α)| ≪ K2 logK

≪ (logN)2 log logN.

4.4. Proof of theorems 3 and 6

We start by proving (ii) of theorem 3, where the Birkhoff sum SN( f,α,q) is generated by a
function f : R→ R with symmetric logarithmic singularity at a rational, i.e. f is of the form
f(x) = c log∥x− x1∥+ t(x), where c ̸= 0, x1 = r

s ∈ [0,1)∩Q and t is of bounded variation.
Without loss of generality, we can assume that q= 0 because otherwise we just set x̃1 := x1 − q.
Let N ∈ N with Ostrowski expansion N=

∑K−1
i=1 bi qi. By the Denjoy–Koksma inequality, we

obtain SN(t,α)⩽ Var(t)
∑K

i=1 ai ≪ K2. Thus by lemma 4.5, we get

|SN (f,α)| ≪ (logN)2 log logN,

implying statement (ii) of theorem 3.
Next, we consider the asymmetric case, i.e. where the Birkhoff sum is generated by a func-

tion f of the form f(x) = c1 log({x− x1})︸ ︷︷ ︸
=:f1(x)

+c2 log∥x− x1∥+ t(x)︸ ︷︷ ︸
=:f2(x)

, where c1,c2 ∈ Rwith c1 ̸= 0

and x1 = r
s ∈ [0,1)∩Q and t is of bounded variation. Again, without loss of generality, it suf-

fices to consider the case where q= 0.
We start with the case where

∑∞
k=1

1
ψ(k) =∞ where we show that the set

{N ∈ N : SN( f,α)⩾ logNψ(log(N))} has upper density 1. Without loss of generality, we
can assume that limK→∞

ψ(K)
K logK =∞ since the result then follows also for slower grow-

ing ψ. Note that SN( f,α) = SN( f1,α)+ SN( f2,α). By the first part of this proof, we have
|SN( f2,α)| ≪ (logN)2 log logN and since logNψ (logN) dominates (logN)2 log logN, it suf-
fices to show that {N ∈ N : SN(f1,α)⩾ logNψ (logN)} has upper density 1.
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First, assume that c1 > 0. By lemma 3.12, for almost every α ∈ [0,1), the set{
K ∈ N

∣∣∣∣∣K≡ 0 (mod 2) ,qK−1 ≡ 0 (mod s) , ψ̃ (K)< aK < K2,
K−1∑
i=1

ai ⩽ 2K logK

}

has infinite cardinality, where ψ̃(k) = C1ψ(C2k) with C1,C2 > 0 specified later. Denote by

(kj)j∈N the increasing sequence of integers such that the above holds. DefineMj :=
⌊
akj
4s qkj−1

⌋
and note that, for any 1⩽ N⩽Mj, we can write N= bkj−1(N)qkj−1 +N ′ where N ′ < qkj−1.

Moreover, for δ > 0, let Aδj :=
{
1⩽ N⩽Mj : δ <

bkj−1(N)

akj
⩽ 1
}
. We note that for any N ∈ Aδj ,

the assumptions of lemma 4.4 are satisfied, and hence

Sbkj−1qkj−1 ( f1,α)⩾ c(δ)akj log
(
qkj−1

)
,

where c(δ) is a positive constant only depending on δ. Moreover, by proposition 4.3, we have

|SN ′
(
f1,α,bkj−1qkj−1α

)
|⩽ D log

(
qkj+1

) kj−1∑
ℓ=1

aℓ,

where D is a positive absolute constant. For j sufficiently large, this leads to

SN ( f1,α) = Sbkj−1qkj−1 ( f1,α)+ SN ′
(
f1,α,bkj−1qkj−1α

)
⩾ c(δ)akj log

(
qkj−1

)
−D

kj−1∑
ℓ=1

aℓ

⩾ c(δ)
2

akj log
(
qkj−1

)
,

(23)

where the inequality in the last line holds since akj dominates
∑kj−1

i=1 ai by construction.
Moreover, we have used that c1 in the definition of f 1 is positive by assumption and we
employed logqkj−1 ≫ logqkj+1 which holds by (8). We note that limδ→0 |Aδj |=Mj and thus,

fixing ε> 0, we can choose δ > 0 such that
|Aδ

j |
Mj

⩾ 1− ε for all sufficiently large j. LetC1,C2 >

0 such that, if akj ⩾ ψ̃(kj) = C1ψ(C2kj), it follows that
c(δ)
2 akj log(qkj−1)⩾ logNψ(logN) for

all N ∈ Aδj . We note that C1,C2 only depend on δ > 0, since kj is chosen such that
∑kj−1

i=1 ai ⩽
2kj log(kj) = o(ψ(kj)). This yields

∣∣{1⩽ N⩽Mj : SN (f1,α)⩾ logNψ (logN)
}∣∣

Mj
⩾

∣∣∣{N ∈ Aδj :
c(δ)
2 akj log

(
qkj−1

)
⩾ logNψ (logN)

}∣∣∣
Mj

⩾

∣∣∣{N ∈ Aδj : akj ⩾ ψ̃
(
kj
)}∣∣∣

Mj

=
|Aδj |
Mj

⩾ 1− ε.

(24)
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By taking the liminf as j →∞ and letting ε→ 0, we get

liminf
j→∞

|{1⩽ N⩽Mj : SN (f1,α)⩾ logNψ (logN)}|
Mj

= 1.

The case where c1 from the definition of f 1 is negative can be handled under minor modific-
ations. Analogously, one can show that the set {N ∈ N : SN( f,α)⩽− log(N)ψ(log(N))} has
upper density 1.

The case where
∑∞

k=1
1

ψ(k) <∞ can be treated analogously to the proof of theorem 1 by
using the Denjoy–Koksma inequality with singularity (proposition 1.5).

To prove theorem 6, we start with a few general estimates. Observe that, for x1 = r
s and

qK−1 < N< qK, we have

sup
x∈[0,1)\AN

|f1(x)+ f2(x)| ≪
∣∣∣∣log(min

n<qK
∥nα− x1∥

)∣∣∣∣
⩽
∣∣∣∣log( min

n<qK+1/s
∥nα− x1∥

)∣∣∣∣
⩽
∣∣∣∣log(∥qK+s+1α∥

s

)∣∣∣∣
≪ log(qK+s+2)

≪ logqK,

where we have used (8) and proposition 4.2. This shows that

sup
x∈[0,1)\AN

|f(x)|
K∑
i=1

ai ≪ logqK

K∑
i=1

ai.

Further, we get

N

∣∣∣∣ˆ
AN

f(x)dx

∣∣∣∣≪ N

∣∣∣∣min
n<qK

∥nα− x1∥
(
log

(
min
n<qK

∥nα− x1∥
)
− 1

)∣∣∣∣
≪ NK

qK
≪ logqK = o(aK) ,

where we used that minn<qK ∥nα− x1∥⩽ 1
qK

and |log(minn⩽qK ∥nα− x1∥)| ≪ K by the previ-
ous calculation. Now let 0< r< 1. We will show that there exists a constant C(r)> 0 such
that the set N ∈ N | SN(f ,α,q)⩾ C(r) sup

x∈[0,1)\AN
|f(x)|

K(N)∑
i=1

ai+N

∣∣∣∣ˆ
AN

f(x)dx

∣∣∣∣


has upper density of at least r. To that end, let (kj)j∈N be the sequence of integers from the

first part of this proof. Let Aδ
′

j =
{
1⩽ N⩽Mj : δ

′ <
bkj−1(N)

akj
⩽ 1
}

and Mj =
⌊
akj
4s qkj−1

⌋
be
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as in the first part of this proof, where we choose δ ′ = δ ′(r)> 0 sufficiently small such that
|Aδ ′

j |
Mj

⩾ r. Using (23) we get, for N ∈ Aδ ′

j ,

SN ( f1,α)⩾
c(δ ′)
2

akj logqkj−1.

Since |SN(f2,α)| ≪ k2j logkj = o(akj logqkj−1), we obtain

SN( f,α)⩾
c(δ ′)
4

akj logqkj−1
≫ sup

x∈[0,1)\AN
|f(x)|

kj∑
i=1

ai+N

∣∣∣∣ˆ
AN

f(x)dx

∣∣∣∣ .
Thus, there exists a C(δ ′) = C(r) such that

SN( f,α)⩾ C(r) sup
x∈[0,1)\AN

|f(x)|
kj∑
i=1

ai+N

∣∣∣∣ˆ
AN

f(x)dx

∣∣∣∣
holds for all N ∈ Aδ ′

j . Since
|Aδ ′

j |
Mj

⩾ r, the statement of theorem 6 follows by an analogous
argument as in (24). The second case in theorem 6, where we deal with the setN ∈ N | SN(f ,α,q)⩽−C(r) sup

x∈[0,1)\AN
|f(x)|

K(N)∑
i=1

ai−N

∣∣∣∣ˆ
AN

f(x)dx

∣∣∣∣


can be handled similarly.
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Appendix

In the appendix, we provide the proofs of propositions 3.2 and 3.4.

Proof of proposition 3.2. One can easily check that the condition of f being as in (11) is
invariant under rational translation, thus it suffices to prove the statement for q= 0. We show
that the set {N ∈ N : SN( f,α)⩾ ψ(logN)} has upper density 1. We can write

SN ( f,α) = SbK−1qK−1 ( f,α)+ SN ′ ( f,α,bK−1qK−1α) ,
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where N= bK−1qK−1 +N ′ with N ′ < qK−1. By the Denjoy–Koksma inequality in the form
of (4), we have that

SN ′ ( f,α,bK−1qK−1α)≪
K−1∑
i=1

ai.

We analyze the dominating term SbK−1qK−1( f,α) for certain bK−1. By lemma 3.6, we have

SbK−1qK−1 ( f,α)

= bK−1

({
qK−1r1
s1

}
+(−1)K−1

1{s1|qK−1} − 2

{
qK−1r2
s2

}
− 2(−1)K−1

1{s2|qK−1}

+

{
qK−1r3
s3

}
+(−1)K−1

1{s3|qK−1}

)
,

(25)

provided bK−1 ⩽ 1
2s1s2s3

aK and aK is sufficiently large. By lemma 3.12, for almost all α ∈ [0,1)
and for any pair of integers (a, b), the sets

{
K ∈ N | aK > ψ (K) ,2 ∤ (K− 1) ,qK−1 ≡ a (mod b),

K−1∑
i=1

ai ⩽ 2K logK

}
,{

K ∈ N | aK > ψ (K) ,2 | (K− 1) ,qK−1 ≡ a (mod b),
K−1∑
i=1

ai ⩽ 2K logK

}

both contain infinitely many integers K. In the upcoming case distinction we will consider
different choices of a and b.

Case 1: s1 ∤ s2: The congruence relation qK−1 ≡ s2 mod s1s2 ensures that s2 | qK−1 and s1 ∤
qK−1 since s1 ∤ s2 by assumption. Thus, (25) gives us

SbK−1qK−1 ( f,α) = bK−1


{
qK−1r1
s1

}
︸ ︷︷ ︸

⩾0

+2+

{
qK−1r3
s3

}
−1{s3|qK−1}︸ ︷︷ ︸

⩾−1


⩾ bK−1.

Case 2: We assume s3 ∤ s2. Under the congruence conditions qK−1 ≡ s2 mod s2s3 and 2 ∤ (K−
1), we obtain

SbK−1qK−1 ( f,α) = bK−1

({
qK−1r1
s1

}
−1{s1|qK−1} + 2+

{
qK−1r3
s3

})
⩾ bK−1.

Case 3: If s= s1 = s2 = s3, then we use the congruence conditions 2 ∤ (K− 1) and qK−1 ≡
(r2)−1 (mod s) to show
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SbK−1qK−1 ( f,α) = bK−1

({qK−1r1
s

}
− 2
{qK−1r2

s

}
+
{qK−1r3

s

})
= bK−1

({qK−1r1
s

}
− 2
s
+
{qK−1r3

s

})
⩾ 2
s
bK−1.

The latter inequality holds since r1,r3 are distinct from r2, and thus
{ qK−1r1

s

}
+{ qK−1r3

s

}
⩾ 4

s .

Case 4: s1 | s2 and s3 | s2, but s1 ̸= s2 or s3 ̸= s2: Without loss of generality, we assume s1 ̸= s2.
We use the congruence conditions 2 | (K− 1) and qK−1 ≡ as1 (mod s2)with a≡ r−1

2 mod s2
s1

(which is possible since gcd(r2,s2) = 1). We obtain

SbK−1qK−1 ( f,α) = bK−1

(
1− 2

{
qK−1r2
s2

}
+

{
qK−1r3
s3

}
+1{s3|qK−1}

)
= bK−1

(
1− 2

{
s1
s2

}
+

{
qK−1r3
s3

}
+1{s3|qK−1}

)
⩾ bK−1

({
qK−1r3
s3

}
+1{s3|qK−1}

)
⩾ 1
s3
bK−1.

The second last inequality follows from the congruence relation qK−1 ≡ as1 (mod s2) and

2
{
s1
s2

}
⩽ 1, where the latter holds since s1 | s2 and s1 ̸= s2. In the last line we used that if

1{s3|qK−1} = 0, then
{
qK−1r3
s3

}
⩾ 1

s3
.

Thus, in either case, there exists a constantC> 0 such that, forN ∈ Nwith bK−1 ⩽ 1
2s1s2s3

aK,
we have

SN (f,α)⩾ CbK−1 +O

(
K−1∑
i=1

ai

)
.

The remaining part of the proof can be argued in the same way as it is done in the proof of
theorem 7. The set {N ∈ N : SN( f,α)⩽−ψ(logN)} can be handled analogously.

Proof of proposition 3.4. We will show that for almost every α ∈ [0,1), there exists a δ > 0
with

liminf
M→∞

|{1⩽ N⩽M : |SN ( f,α)| ≪ logN log logN}|
M

⩾ δ.

By choosing ψ(k) := k logk log log(k+ 10), this implies that

limsup
M→∞

|{1⩽ N⩽M : |SN ( f,α)|⩾ ψ (logN)}|
M

⩽ 1− δ.

Fixing M ∈ N, there is exactly one K ∈ N such that qK−1 ⩽M< qK. Let K0 = argmaxk⩽Kak
(if the maximum is not unique, we can choose an arbitrary one among the maximizers). We
define

AδM := {√qK−1 ⩽ N⩽M : bK0−1 (N)⩽ δaK0} ,
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where δ > 0 is a small constant specified later. In the following, we will show that for any
N ∈ AδM, we have |SN( f,α)| ≪ K logK. Writing N=

∑K−1
ℓ=0 bℓqℓ in its Ostrowski expansion,

we obtain the decomposition

SN ( f,α) = SN ′ (f ,α)+ SbK0−1qK0−1 ( f,α,N
′α)+ SN ′ ′ ( f,α,(N ′ + bK0−1qK0−1)α) ,

with N ′ =
∑K−1
ℓ=K0

bℓqℓ and N ′ ′ =
∑K0−2
ℓ=0 bℓqℓ. By the Denjoy–Koksma inequality (4), we can

bound SN ′(f,α) by

|SN ′ (f,α)| ≪
K∑

i=K0+1

ai

≪ K logK,

where we used (7) in the second line. Analogously, one obtains the same bound for
SN ′ ′( f,α,(N ′ + bK0−1qK0−1)α), i.e. we get

|SN ′ ′ ( f,α,(N ′ + bK0−1qK0−1)α)| ≪ K logK.

We now turn our attention to SbK0−1qK0−1( f,α,N
′α), where we will show

SbK0−1qK0−1( f,α,N
′α) = 0. Indeed, an analogous analysis to the proof of lemma 3.6 shows

that there exists a δ > 0 such that, for any bK0−1 ⩽ δak0 , it holds that

SbK0−1qK0−1 ( f,α) =

({qK0−1u
w

}
+

{
qK0−1 (1− u)

w

})
−
({qK0−1v

w

}
+

{
qK0−1 (1− v)

w

})
.

Regardless of the congruence class of qK0−1 modulo w, the expression above equals 0. In
total, we have shown that, for all N ∈ AδM, we get the asymptotic bound

|SN ( f,α)| ≪ K logK≪ logN log logN,

where the last estimate uses that N⩾√
qK−1, which holds by the definition of AδM. This

leads to

liminf
M→∞

|{1⩽ N⩽M : |SN ( f,α)| ≪ logN log logN}|
M

⩾ liminf
M→∞

∣∣{N ∈ AδM : |SN ( f,α)| ≪ logN log logN
}∣∣

M

⩾ liminf
M→∞

|AδM|
M

⩾ δ.

This finishes the proof.
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[17] Erdős P and Rényi A 1959 On Cantor’s series with convergent

∑
1/qn Ann. Univ. Sci. Bp. Rolando

Eötvös Nomin., Sect. math. 2 93–109
[18] Grepstad S, Kaltenböck L and Neumüller M 2019 A positive lower bound for

liminfN→∞
∏N

r=1 2|sinπ rϕ| Proc. Am. Math. Soc. 147 4863–76
[19] Hauke M 2023 Metric density results for the value distribution of Sudler products Proc. Am. Math.

Soc. 151 2339–51
[20] HermanMR 1979 Sur la conjugaison différentiable des difféomorphismes du cercle a des rotations

Inst. Hautes Études Sci. Publ. Math. 49 5–233
[21] Jitomirskaya S 1999 Metal-insulator transition for the almost Mathieu operator Ann. Math.

150 1159–75
[22] Jitomirskaya S and Last Y 1998 Anderson localization for the almost Mathieu equation, III. Semi-

uniform localization, continuity of gaps and measure of the spectrum Commun. Math. Phys.
195 1–14

[23] Kesten H 1960 Uniform distribution mod 1 Ann. Math. 71 445–71
[24] Kesten H 1962 Uniform distribution mod 1 (II) Acta Arith. 7 355–80
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