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This work focuses on implementing a particle-based method able to characterize viscoelastic materials
whose rheological properties, such as storage modulus G' and loss modulus G'', are known. It is based on
the bonded particle model, with the elastic constitutive relation here substituted with a viscoelastic one
to capture time-scale effects. The Burgers model, vastly used in literature to model viscoelastic systems,
is discretized and implemented. The test case used for calibration comprises of a cubic lattice, sheared
with a periodic motion, to mimic the effect of a shear rheometer. After appropriate filtering of the stress
response, the rheological properties are obtained, highlighting the effect of the lattice geometry, as well
as the particle size, on the accuracy of the model. Moreover, the Burgers parameters are calibrated by
analytically fitting the experimental dataset, showing the limitation of the Burgers model. The micro-
contact parameters are obtained from the macro parameters through appropriate scaling. After
completing a frequency sweep, the simulated G' and G'' show a relatively large error, around 25% for G’
for example. For this reason, a more robust model, namely the generalized Maxwell model, has been
implemented. The calibration procedure is performed in the same fashion as for the Burgers model.
Moreover, the tangential micro-contact parameters are scaled w.r.t. the normal ones. This scaling
parameter, called a, is calibrated by minimizing the root mean square error between simulation and
experimental data, giving errors below 10% in both G0 and G00 for a large dataset. Additionally, a full ring
plate-plate rheometer setup is simulated, and the simulation is compared with the given experimental
dataset, again finding a good agreement.

© 2023 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of
Sciences. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

One of the first attempts at describing viscoelasticity was done
by Giesekus (Giesekus, 1982). In his mostly analytical work, he
modified the stress tensor definition in the momentum equation of
a fluid by considering additional linear and non-linear stress-strain
constitutive relations, with tensors and parameters describing the
network of a given material. Given the complexity of his formula-
tion, an analytical solution was obtained for simple flows. With the
advent of numerical methods, it has been possible to push the
frontier of solving complex flows involving viscoelastic materials.
Still, it simultaneously introduces all the challenges these methods
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may add. One degree of complexity is modeling the interface be-
tween the material and a solid surface (Favero et al., 2010), where a
fine mesh size is needed to capture near-wall flows. Additionally,
multi-mode analysis is needed in complex geometries to achieve a
reasonable agreement with experimental data (Tsai&Miller, 2014).
The finite element method has also been used to predict the
properties of viscoelastic materials (Bottoni et al., 2007; Katouzian
et al., 2021), with the limitation of being unable to deal with
flowing scenarios. Hence, it is hard for this method to describe the
material’s behavior in an industrial application involving strong
viscous effects, usually encountered with dynamically moving
boundary conditions and extreme situations. At the same time,
since Cundall and Strack developed the first discrete element
method code (Cundall & Strack, 1979), a whole new approach was
now possible, where the absence of a volumetric mesh would
greatly simplify the simulations.
hinese Academy of Sciences. Published by Elsevier B.V. This is an open access article
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Fig. 1. Schematic of the bonded particle model with Burgers representation for the
normal direction. An equivalent representation is used for the shear direction (visu-
alization omitted for simplicity).
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On the one hand, mesh-based methods are handy when
describing single-phasematerials. On the other hand, particle-based
methods can describe heterogeneous systems with the presence of
polydisperse phases (Zubov et al., 2019),multi-phase conglomerates,
such as oil sand (Gbadam & Frimpong, 2017), coke-pitch mixtures
(Majidi et al., 2016), and asphalt (Dondi et al., 2013), to cite some.
Most of the work involving numerical modeling and simulations
done in literature is material specific (Cao, 2020; Mohammed et al.,
2013), i.e. it has been designed and tuned for a particular applica-
tion and/or material. The idea of this work is the extension of a
particle-based method to both homogeneous and inhomogeneous
systems. It can predict the rheological properties of a large variety of
materials equally, which can then be used to optimize a certain in-
dustrial process involving said materials. A particle-based method is
described, tested, and validated against experimental data to achieve
this. It is based on the bonded particle model (BPM), first introduced
byPotyondyandCundall (Potyondy&Cundall, 2004)whereparticles
would interactwith each other at contact through an elastic beam, to
describe the amorphous properties of rocks, defined as a heteroge-
neous system of irregularly shaped or spherical particles. The idea is
to extend this model to viscoelastic materials by substituting the
purely elastic relations used in the original BPM definition with a
viscoelastic interaction. In this case, the Burgers model is initially
implemented in the commercial software Aspherix®, showing the
discretization scheme for the constitutive relation. Moreover, a test
calibration is performed using an existing dataset, which shows that
another method is needed to improve accuracy, namely the gener-
alized Maxwell model.

The idea behind the realization of this article is the creation of a
unique particle-based method capable of predicting the flow of
fluids and granular media whose rheological properties are known.
This would then serve as an initial step to calibrating this model
and tuning it so it can be used in various industrial processes
dealing with viscoelastic materials without using complex mesh-
based methods.

2. Methodology

Introducing a bond between particles opens a new door to the
modeling of cohesive powders and suspensions with cohesive
particles, e.g., cement. Unlike cohesive models, the BPM is not
bound to purely granular materials. Still, it can be extended to
various systems, where, even though two or more phases can be
distinguished at a microscopic level, they are macroscopically ho-
mogeneous. Moreover, the particles do not need to be in contact to
exchange forces. To achieve this, the particles radii are multiplied
by a constant parameter, called the radius multiplier l, and the
overlap between the increased radii is computed. Starting, for
simplicity, with two particles with equal radii r, positions x!i x

!
j, as

shown in Fig. 1, a bond is formed when the distance between the
particles d is less or equal than the sum of the increased radii, or d ¼
r x!i � x!jr � 2lr. In general, the length and radius of the bond are
defined at its creation to be, respectively, L ¼ d and R ¼ lmin(ri, rj)
in the case of particles with different sizes. The value of the radius
multiplier is usually chosen according to the distance between
neighboring particles in such a way to ensure the bond formation.
For example, if two particles are distant 2 mm and their radii are
0.4 mm, if onewould like for these particles to be bonded, a value of
l > 1.25 is needed to ensure overlap.

2.1. Modified BPM with Burgers relation

Asmentioned, the purely elastic constitutive relation used in the
original BPM formulation (Potyondy & Cundall, 2004) is here
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substituted with a viscoelastic relation. Even though the original
formulation of the BPM could handle viscoelasticity, since it also
has a damping element in its implementation, some drawbacks
must be addressed. To begin with, the original BPM implementa-
tion can be described as a KelvineVoigt solid, the simplest visco-
elastic model, consisting of a spring and a dashpot connected in
parallel. Given the target of the model described in this article to be
able to predict the behavior of a large range of materials, the
KelvineVoigt model does not have enough timescales that would
give generality to the original BPM. Moreover, calibration would be
tricky because, to connect experimentally obtained rheological
macro-properties with the model parameters, the analytical model
response to the oscillatory shear test is needed, as it will be
explained inmore detail later. For this reason, it has been decided to
start with at least two timescales, using amodel already established
as robust for a class of materials, namely the Burgers model, whose
configuration is shown in Fig. 1. It is a combination of a Maxwell
element, composed of a spring and a dashpot in series, connected in
series with a KelvineVoigt element. The constitutive relation of
Burgers materials has the following equation

tktm
d2s
dt2

þ
�
tk þ tm þ mk

km

�
ds
dt

þ s ¼ tkmm
d2 3

dt
þ mm

d 3

dt
; (1)

where, tm ¼ mm/km and tk ¼ mk/kk are the Kelvin and Maxwell time,
respectively, computed from the spring constant k and the dashpot
constant m. Furthermore, s is the stress acting on the element, and 3

is the strain. Eq. (1) can be converted in its respective force-
displacement formulation, as it is easier to handle for the imple-
mentation in the DEM code, resulting in

tktm
d2f
dt2

þ
�
tk þ tm þ ck

ym

�
df
dt

þ f ¼ tkcm
d2u
dt

þ cm
du
dt

; (2)

where, f ¼ s/Ab is the force acting on the element, Ab ¼ pR2 is the
bond cross-section area, u is the displacement of the element, and
cm, ck, ym, yk are themicro-contact parameters, which are computed
from the macro-parameters as (Potyondy & Cundall, 2004):

cm ¼ Ab

L
mm; ck ¼

Ab

L
mk; ym ¼ Ab

L
km; yk ¼

Ab

L
kk; (3)

where, L is the bond length defined at the section’s beginning.
2.1.1. Discretization of the Burgers equation
Given certain initial conditions, the simulation can be carried

out if we can close the simulation loop, making it possible to
solve the system dynamics. To achieve this, we need to compute



Fig. 2. Schematics of the generalized Maxwell model.
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first the forces acting on the particles through the constitutive
relation, then use the newly computed forces to integrate the
equation of motion of each particle. To begin with, the visco-
elastic constitutive relation is discretized numerically, which
computes the forces acting between bonded particles as a func-
tion of the relative motion. The initial distribution of the particles
acts as a boundary condition. In contrast, at the first timestep,
initial conditions dictate the motion of all or some of the particles
in the system. The displacement and displacement rate in the
relative motion between particles are the independent variables
in the discretized constitutive relations, which calculate the new
forces. Ultimately, the new forces are used to numerically inte-
grate the equation of motion to obtain new displacements,
closing the computational loop. For the interested reader, please
refer to the code for the calculation of Hertzian and bond forces
in the Appendix to have more insights on the working principles
of the numerical scheme.

The following discretization is currently used in the commercial
software Aspherix and PFC3D, described in Ref. (Gbadam, 2017).
Starting from the Kelvin element and remembering that for ele-
ments in parallel, stresses are cumulative while displacements are
equal, the following constitutive relation is found

f ¼ ykuk þ ck
duk
dt

; (4)

which can be rewritten as a function of the displacement rate duk
dt

of the Kelvin element and computed at timestep nþ 1
2 , (please note

that the superscripts in the following equations refer to the time-
step at which the variables are computed and they are not expo-
nents) leading to

duk
dt

jnþ1
2
¼ f

�
nþ1

2

�
� yku

�
nþ1

2

�
k

ck
: (5)

Applying a Taylor series expansion to the Kelvin element
displacement, centered in t ¼ Dtðnþ1

2Þ, with step width Dt
2 , the

following approximation for the first derivative is obtained

duk
dt

jnþ1
2
¼ ufnþ1g

k � ufngk
Dt

þOðDt2Þ: (6)

Substituting Eq. (6) into Eq. (5), taking average values for the
other variables and re-arranging the terms to obtain an equation as
a function of the new timestep displacement, leads to the following

ufnþ1g
k ¼ 1

2tk þ Dt

�
Dt
yk

ðf fnþ1g þ f fngÞ þ ufngk ð2tk �DtÞ
�
: (7)

For the Maxwell element, the constitutive relation is obtained
by considering that the stress/force seen by each element in series
is equal while the deformation/displacement is different, giving

dum
dt

¼ 1
ym

df
dt

þ f
cm

: (8)

Similarly, as it has been done for the Kelvin element, the same
discretization scheme can be applied to the displacement rate of
theMaxwell element, with the difference that now the derivative of
the force appears. Once the scheme is applied, it is possible to re-
arrange the terms to obtain

ufnþ1g
m ¼ f fnþ1g � f fng

ym
þ Dt

f fnþ1g þ f fng

2cm
þ ufngm : (9)
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Finally, knowing that u¼ ukþ um, deriving it oncew.r.t. time and
applying a central difference scheme as done in Eq. (6), the new
timestep force value can be computed from the old timestep forces
and displacements as

f fnþ1g ¼
ufnþ1g � ufng þ 2Dt

2tk þDtu
fng
k � Af fng

B
; (10)

where A ¼ Dt
2ck þDt þ 1

ym
þ Dt

2cm
and B ¼ Dt

2ck þDt� 1
ym

þ Dt
2cm

.

Furthermore, the displacements in normal and shear directions
are defined from the relative motion between the particles, which
is solved at each timestep by numerically integrating Newton’s
second law. Eq. (10) is scalar, but the old force and kelvin
displacement values for each direction are stored as vectors. To be
able to substitute them in the discretization, a semi-projection is
first carried out (it is shown for the normal direction, but exactly
the same procedure stands for the shear direction)

f fngnorm ¼ f
!fng

norm$bnfnþ1g

ufngk;norm ¼ u!fng
k;norm$bnfnþ1g

; (11a)

where, bnfnþ1g is the unit vector in the relative normal direction
between the particles in contact. Once the new timestep force, as
well as the kelvin displacement, are computed, they are projected
onto the new normal direction

f
!fnþ1g

norm ¼ f fnþ1g
norm $bnfnþ1g

u!fnþ1g
k;norm ¼ ufnþ1g

k;norm$
bnfnþ1g

: (11b)

2.2. The generalized Maxwell model

Together with the Burgers model, in this work, a generalized
Maxwell model has been implemented due to the low accuracy of
the former, which will be discussed later in this article. As the name
suggests, the generalized Maxwell model is defined as a connection
in parallel of a certain number of Maxwell elements, plus a spring
and/or a dashpot, as depicted in Fig. 2. Even though it appears more
complex than a Burgers model, its implementation is rather simple
for two reasons. To begin with, the constitutive relation of Eq. (8)
only contains the first derivatives in time, making it easier to dis-
cretize. Moreover, all elements undergo the same deformation,
simplifying the implementation.

In the current work, a 4 element model is used, plus a spring.
The choice of 4 elements comes from the fact that, when trying to
fit experimental data on a large dataset, it has been observed that 3



Fig. 3. Lattice geometry and boundary conditions. The top layer of particles is dis-
placed with a periodic motion, governed by an amplitude of A ¼ 0.01(D þ 5d) m and a
frequency u ¼ 600 rad/s, while the bottom layer is fixed. The coloring shows the x-
component of the force on each particle expressed in Newton.
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elements still lack accuracy, while 4 elements show a nice fit quality
through the whole dataset, Figs. 15 and 16. A similar implementa-
tion has been used by Ren et al. (Ren & Sun, 2016), without bonds
and in combination with different phases behaving elastically or
viscoelatically depending on the nature of the contact. They ob-
tained a relatively good agreement with experimental data. After
scaling the macro-parameters into their respective micro-contact
values as yj ¼ kjAb/L and cj ¼ mjAb/L, the new timestep force rela-
tive to the single Maxwell element is computed from re-arranging
Eq. (9) to give

f fnþ1g
j ¼

ufnþ1g � ufng þ f fngj

 
1
yj
� Dt

2cj

!
1
yj
þ Dt

2cj

: (11c)

where the subscript j expresses the jth element in the model.
Regarding the spring force fel, a finite deformation approach is used,
given that the relative positions at the bond creation are known.
Hence, it is straightforward to compute the displacement relative to

the bond creation timestep n0, leading to f fnþ1g
el ¼ yeðufnþ1g �

ufn0gÞ, with ye ¼ ke/Ab, where ke is the spring coefficient. The same
applies to the shear direction as done in Sec. 2.2.1. Finally, the total
force is just a sum of the single elements contribution, f fnþ1g ¼P4

j f
fnþ1g
j þ f fnþ1g

el .

2.2.1. Contact plane and displacements definition
In Eq. (10), the new timestep force is a function of the

displacement D u!, which is defined as the difference in relative
distance between the particles at consecutive timesteps,
Du¼ u{nþ1}� u{n}. After solving the particle’s equation of motion, all
the information on its position, velocity, and angular velocity are
known at the timestep n þ 1, while quantities at timestep n are
saved. Let two particles i and j be in contact. Their relative
displacement between two consecutive timesteps is D u! ¼
r!fnþ1g � r!fng

, with r!¼ x!i � x!j the relative position between
the particles. While the definition of the unit normal vector is
rather simple, being just the normalized r!, for the shear direction
many different ways are possible, being there infinite orthogonal
lines w.r.t. bn. The method adopted here is that of defining a contact
plane between the timestep at which the bond is formed, called n0,
and the actual timestep and considering as shear direction the unit
vector orthogonal to bn which lays on said plane (Wang & Alonso-
Marroquin, 2009). As a result, the unit shear vector is defined as

bsfnþ1g ¼ bnfnþ1g � ðbnfnþ1g � bnfn0gÞ��bnfnþ1g � ðbnfnþ1g � bnfn0gÞ��: (12)

Once the principal directions at the new timestep contact are
known, the semi-projected displacements in normal and shear
directions are then computed similarly as done for the force and the
kelvin displacement, giving

Dunorm ¼ D u!$bnfnþ1g

Dushear ¼ D u!$bsfnþ1g
: (13a)

2.3. Simulation test case

The most common experimental setup to compute the rheo-
logical properties of viscoelastic materials is the Oscillatory Shear
Rheometer. To mimic such experiments, in this study, an ordered
lattice of particles is created, both in a simple cubic and in more
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complex geometries, highlighting the differences. A lattice scaling
is defined by a value d ¼ D(1 þ h), where D is the diameter of the
particles and h is a small and positive arbitrary number, which
means all the particles are not overlapping. However, h is chosen
according to the radius multiplier l value so that bonds will form
between neighboring particles. The faces of the cube are normal to
the orthogonal global system of coordinates, and the boundary
conditions are applied to the external layer of particles normal to
the z-direction, as depicted in Fig. 3. The top layer of particles is
maintained in the Small Amplitude Oscillatory Shear (SAOS) regime
to ensure linearity, with a strain equal to 1%.

First, the stress response is computed as the sum of the forces fi
acting on the top layer of particles in the z-direction to measure the
rheological properties, divided by the surface area defined by the
aforementioned particles. Taking as an example the configuration
of Fig. 3, the stress is computed as

t ¼
PN2

i fi
ðDþ ðNside � 1Þ,dÞ2

; (13b)

where, Nside ¼ 6 in this case.
It has been observed that for certain combinations of parame-

ters and frequency applied, the eigenfrequency of the systemwould
interfere with the stress signal, altering the output and eventually
the quality of the results, Fig. 4. To solve this issue, a numerical
fitting of the curve is needed, which is performed through a fast
Fourier transform (FFT) analysis of the stress output, Fig. 5, and
taking as amplitude the maximum of the FFT response and as fre-
quency the one applied as a boundary condition, resulting in a nice
fit for the stress, as observed in Fig. 4. Once the stress fit is complete,
it is possible to compute the material’s rheological properties
through the complex modulus. As the name suggests, it is a com-
plex number, defined as G* ¼ G0 þ jG00, where the real part G0 is
called storage modulus, the imaginary part G00 is the loss modulus,
and j is the imaginary unit. They define the elastic and dissipative
energy in the material, respectively. In a viscoelastic material, it is
expected that given an input deformation of the form g(t) ¼ g0
sin(ut). The stress would have a response function of the form
t(t) ¼ t0 sin(ut þ 4) where 4 is the phase lag between the two
signals, Fig. 6, which in this case is computed by interpolating the
stress response with a dummy function of the form tint ¼ t0
sin(ut þ c) and solving for c in a Python script. Once the interpo-
lation returns a solution, all the information needed to characterize
the material is available and the storage and loss moduli are
computed respectively as G0 ¼ t0

g0
cos 4 and G

00 ¼ t0
g0
sin 4.



Fig. 4. Stress response obtained with oscillatory shear deformation, highlighting the
eigenfrequency component disturbance and the fitted curve. The shear stress is
normalized following bt ¼ t

maxðtr Þ, where tr is the material response stress signal.
Fig. 6. Effect of viscoelasticity in the stress response of the material under oscillatory
shear deformation. The parameters used are mm ¼ mk ¼ 100 Pa s, km ¼ 10 kPa and
kk ¼ 1 MPa. It is possible to observe the retardation time Tret between stress and
deformation, typical of viscoelastic behavior. It is related to the phase-lag 4 through
Tret ¼ 4

u, with u the frequency of the applied oscillatory strain.
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2.3.1. Effect of particles size
It has already been anticipated that the model presented in this

article aims to describe granular systems and homogeneous
dispersion, which are usually granular or multiphase in the
microscopic structure. DEM simulations do not need to refine their
particle size to meet experimental data, as it would be done in a
mesh-based method. Still, in our study, it has been observed that a
decrease in particle size to simulate the same volume (hence with
an increase in the number of particles per volume) would reflect a
smaller error w.r.t. the analytical solution, as shown later in this
article.

2.3.2. Accuracy of the Burgers model to predict elastic behavior
To have a known solution to compare themodel to, the perfectly

elastic behavior of a solid is used as an analytical comparison, with
Young’s modulus of Eel ¼ 1 MPa. The parameters of the Burgers
model needed to obtain an elastic behavior can be found from a
simple order of magnitude analysis of the constitutive relation.
Specifically, if one would divide Eq. (1) by mm , mk and let mm, mk /
∞, the following is obtained

1
kmkk

d2s
dt2

¼ 1
kk

d2 3

dt2
: (14)
Fig. 5. Discrete Fast Fourier Transform of the stress signal output of an oscillatory
shear rheometer simulation. The FFT analysis is performed using a Python script. Note
that the presence of numerous eigenfrequencies, in addition to the frequency of
oscillation, is recognizable via the multiple local maxima.
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It is straightforward to observe that by integrating twice in time
and taking as initial conditions ds/dt ¼ s ¼ 0 and d 3/dt ¼ 3¼ 0, the
elastic relation s ¼ km 3is obtained, hence, km ¼ Eel ¼ 1 MPa. It is
noteworthy that only the Maxwell spring will dictate the magni-
tude of the stress response, making it easier to compare with the
analytical solution.

The simulation setup comprises an ordered lattice, in this case, a
Simple Cubic (SC), to define a cube of constant volume
V ¼ 0.125 cm3. The cube is then deformed in a periodic uniaxial
compression/expansion cycle with 3¼ 0.01 sin(ut). Moreover, 4
particle sizes are simulated. Their size is computed starting from
the number of particles Nside laying on each side of the cube such
that D þ (Nside � 1) , d ¼ V1/3, leading to the values of diameters
shown in Table 1. Moreover, the shear component of the contact
force has been turned off. Otherwise, there would be the need to
scale the shear parameters w.r.t. the normal ones (Cai et al., 2014;
Collop et al., 2007; Liu et al., 2009).

As shown in Fig. 7, the solution slowly approaches a value close
to the analytical solution by decreasing the particle size in a con-
stant volume. In particular, looking at the plot of the relative per-
centage error, computed as,

c ¼ 100
����maxðsanÞ �maxðssimÞ

maxðsanÞ
����; (15)

a linear trend is observed where san and ssim are the analytical
and simulated stress response curves. This would imply that any
further decrease in size would scale the error linearly, which is not
ideal since computational time does not scale linearly with particle
size. A better scenario would be if the error would decrease with a
power of 2 or higher, such that an order of two higher accuracy
justifies the increase in computational time.
Table 1
Particle size for different number of particlesN in the Simple Cubic configuration of a
constant volume V ¼ 0.125 cm3.

Type N d

Coarse 64 1.24 mm
Medium-coarse 216 0.826 mm
Medium-fine 1000 0.496 mm
Fine 1728 0.413 mm



Fig. 7. Stress output convergence of a Simple Cubic geometry under oscillatory
compression at decreasing particle size and its relative error w.r.t. the analytical so-
lution. The insert shows the relative error as a function of the particle diameter.

Fig. 8. Effect of uniaxial compression on the elastic Burgers material. Boundary con-
ditions are applied similarly as for the shear oscillation case, with the only difference
that here the periodic motion is substituted with a linear uniform velocity in the
negative z-direction. It is clear how the particles at the sides are displacing laterally
w.r.t. the direction of the applied deformation.

Fig. 9. Stress output convergence of a Face Centered Cube geometry under oscillatory
compression at decreasing particle sizes and its relative error w.r.t. the analytical so-
lution. Here the shear component of the force has been turned off. Differently as for the
simple cubic case, here, the error does not scale linearly, showing the importance of
the packing geometry/distribution for the quality of the results.

Table 2
Particle size for different number of particles N in the face-centered cube configu-
ration of a constant volume V ¼ 0.125 cm3.

Type N d

Coarse 172 0.946 mm
Medium 666 0.614 mm
Fine 1688 0.454 mm
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2.3.3. Effect of packing geometry
Remembering the simple cubic geometry of Fig. 3, where all the

particles are perfectly aligned, it must be said that it is not repre-
sentative of real-world applications. If one would want to observe
the behavior of elastic material under uniaxial compression, for
example, one is expected to see a deformation in the direction
normal to the compression. However, in the case of a simple cubic,
even though there is an active shear component of the contact
force, no lateral deformation is obtained. Hence, the Poisson’s ratio
is equal to zero.

This is not true for other lattice geometries, for example in Fig. 8,
where a Face Centered Cube (FCC) lattice has been used. Here,
particles are displaced in the direction of compression (z-axis) and
laterally (x-axis). Furthermore, using an FCC improves the accuracy
of the model, as can be observed in Fig. 9. The same cyclic
compression test is performed for the results of Fig. 7, with particle
sizes that are slightly different due to the different lattice scaling, as
shown in Table 2. In this case, the error is already much smaller in
magnitude even at higher diameters, showing a non-linear
regression, thus reaching more accurate solutions faster than an
SC. In this case, the stress response is computed differently than for
the SC (given the different configuration) and is compared again
with the analytical solution to highlight the higher accuracy. The
equation for the stress in an FCC is

t ¼
PN2

i fi
ðDþ

ffiffiffi
2

p
ðNside � 1Þ,dÞ2

: (16)

If one performed the same test with an active shear Burgers
element, there would be the need to scale shear contact parame-
ters, as shown later in the manuscript, using (Potyondy & Cundall,
2004),

csm ¼ cnm
a
; (17)

with a being the scaling coefficient. The same applies for csk; y
s
m;

ysk. Moreover, the effect of different normal-to-shear ratios has
been analyzed, showing the error between the analytical solution
and numerical simulation in Table 3. It is clear that a higher ratio,
hence smaller shear parameters, would reduce the intensity of the
total stress response. In this case, since an elastic bulk has been
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simulated, hence the analytical solution is known, it would be
straightforward to find the optimum ratio through a minimization
algorithm, but in the case of materials in the viscoelastic regime,
that change their properties depending on the time-scale of the
applied stress/strain, a more detailed calibration is needed tomatch
experimental and simulated properties as best as possible.



Table 3
Relative error between the analytical solution of an elastic body and a
simulation of an elastic Burgers material when varying the normal-to-shear
scaling factor a. Here, the alpha value increase has shown a corresponding
relative error reduction.

a c

3 32.22 %
5 12.5 %
7 3.35 %
10 4.02 %
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2.3.4. Accuracy of Burgers model when predicting creep behavior
To further describe the model accuracy, a creep test is used as a

benchmark since the analytic solution of a Burgers material under
creep is well known and it reads as follows

3ðtÞ ¼ s0

�
1
km

þ 1
kk

�
1� e�

t
tk

	
þ t
mm

�
; (18)

where s0 is a constant stress applied on the sample. The setup is the
same as Sec. 2, i.e. an FCC lattice cube with the tangential compo-
nent of the contact force turned off, with the difference that now
we are applying constant stress on the top layer of particles in the
vertical direction, not in shear, and we are measuring the relative
deformation. It is like we are hanging a weight on it and looking at
how much it extends w.r.t. its original length. Once again, we
observed a reduction of the error at decreasing particle size, even
though it is higher in magnitude when compared with the elastic
behavior, as seen in Fig. 10.
3. Calibration strategy

Every time a numerical model is implemented to solve a specific
mechanical system, be it a solid structure, an airflowaround awing,
and so on, an error is introduced. These errors are intrinsic to the
model implementation and discretization. Whenever a simulation
is produced, it needs to be compared with its real-world counter-
part to be sure that the variables computed in the simulation are
within a relatively small margin of difference from the experi-
mental data. Given the fact that most numerical schemes use a
large set of parameters to define the model and to find the optimal
parameters for a specific problem, a so-called calibration is sought
Fig. 10. Error reduction for a constant volume simulation of a creep test with
decreasing particle size. The vanishing derivative at the r.h.s. of the plot is due to a low-
pass filter that is applied to filter the high-frequency oscillation in the material
response.
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out. The calibration process is usually time-consuming, as it needs
to go back and forth from simulation to error evaluation until a
minimum is reached. The approach here aims to reduce the num-
ber of parameters to calibrate whilst maintaining a high-quality
simulation output. Most of the work in literature dealing with the
Burgers model follows a similar way of approaching this problem
by finding the micro-contact parameter through the minimization
of a cost function and directly inserting said parameters in the
model with the proper scaling (Dondi et al., 2013; Liu et al., 2009;
Majidi et al., 2016). Some work shows also the effect of fitting the
normal and shear micro-parameters separately, but with the need
for Oscillatory Rheometer data in both shear and compression
setups (Feng et al., 2015a).

In the current study, the methodology described above will be
used, which, for the Burgers model, follows these steps:

1. Rheological data from an experiment, usually in the form of the
storage and loss modulus G0

exp; G
00
exp is used as input in a Python

script.
2. Using the following equations (Barnes, 2000), analytical values

for the rheological properties as G0
an and G00

an are computed
within the Python script:

J0 ¼ 1
km

þ kk
k2k þ ðumkÞ2

J00 ¼ 1
umm

þ umk

k2k þ ðumkÞ2

G0
an ¼ J0

J02 þ J002

G00
an ¼ J00

J02 þ J002

(19a)

with J0 and J00 being the storage and loss compliances, respec-
tively, u is the oscillation frequency in rad/s.

3. A cost function is defined, which evaluates the difference be-
tween the experimental and analytical data

fcost ¼
Xm
i

24 G0
an

G0
exp

� 1

!2

þ
 
G00
an

G00
exp

� 1

!2
35: (19b)
4. The cost function is then inserted in an optimization algorithm,
namely the built-in Python optimization scheme ”Nelder-
Mead”. This algorithm minimizes the cost function by varying
the model parameters mm, mk, km and kk. Once the desired re-
siduals are obtained, the optimal parameters are given and can
be used as input for the DEM simulations.

Once the minimization is complete, it will return the optimal
parameters, which will then be scaled as in Eq. (3) to define the
micro-contact.
3.1. Limitation of Burgers model

The Burgers model has been widely used in literature to simu-
late the viscoelastic behavior of a wide range of materials, from
asphalt(Feng et al., 2015a) to oil sands (Gbadam& Frimpong, 2017),
coke/pitch mixtures (Majidi et al., 2016), to mention some. To begin
with, the experimental data of Fig. 11 is taken as input for the



Fig. 11. Storage and loss modulus obtained from Oscillatory Shear Rheometer experiments of different viscoelastic materials. This is the dataset used as a base for the calibration as
each material shows a noticeably different viscoelastic behavior on a wide range of frequency, hence testing the ability of the model to describe a large class of materials.
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calibration. This dataset is of particular relevance as not only it
shows a variety of materials behavior, but it also covers a wide
range of applications, with an angular frequency spanning from
0.63 rad/s to 632 rad/s. If one would try to use the fitting procedure
described in Sec. 3, let’s say onmaterial 1 of Fig. 11, for example, one
would obtain something similar to the plot of Fig. 12. This is mainly
due to the lack of parameters to properly fit through a large dataset
(Mazurek & Iwaski, 2017). Moreover, the quality of the fitting has
been quantified by computing the root mean square deviation as

RMSD ¼ 100
maxðyÞ �minðyÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i ðyi � yiÞ2

N

s
; (20)

where y
̄
is the predicted value, in this case, the simulation output,

and y is the real value, with N being the number of data points.
One way to overcome this issue is to reduce the range on which

the data is fitted, similarly to what Feng et al. (Feng et al., 2015b, pp.
423e433) proposed, and then perform the normal calibration
procedure on each data chunk separately before rejoining the data
Fig. 12. Attempt of fitting the experimental data of material 1 using the Burgers model.
Given the limited number of relaxation times of the model, it is heavily limited in
accurately fitting through a wide range of frequencies, giving an RMSD of 40% for G’
and 35 % for G”.
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together. In particular, 5 chunks have been chosen in our study,
each composed of 4 frequencies, which lead to the calibrated pa-
rameters found in Table 4. Even though this works quite nicely for
the fitting procedure, as shown in Fig. 13, it leads to some problems,
especially when going into the simulation realm. The biggest
drawback is that a non-constant set of parameters is produced for
each chunk and not only do they differ greatly, as it can be seen in
Table 4, hence making the use of an average not feasible, but it also
limits the use of this model in an industrial process simulation since
there would be the need to adapt parameters to the local shear rate.

Once the parameters are known, it is possible to perform the
frequency sweep simulation of the Oscillatory Shear Rheometer.

As shown in Fig. 14, in addition to a non-constant set of pa-
rameters, the error is not acceptable to consider this model accu-
rate enough, at least not on a large dataset. Moreover, some notes
are needed about this result. First, the amplified frequency method
(Liu & You, 2011) has been used to improve the speed of the low-
frequency simulations, multiplying the damping coefficients and
the frequency by a constant value. Even though Liu et al. (Liu& You,
2011) used this method specifically for asphalt mixtures simula-
tions with the Burgers model, it proved to be applicable for a more
general case as well. Secondly, the ratio between normal and shear
parameters has been chosen to be a ¼ 2.7, which worked well for
material 1 but not for other materials of the same dataset, meaning
a proper calibration of this parameter is needed. Overall, given the
limits of Burgers material to fit through the data with a unique set
of parameters, which would highly compromise the applicability in
Table 4
Calibrated parameters of Burgers model relative to material 1. The dataset has been
divided into subsets with a smaller range of frequencies to obtain a good quality fit of
the experimental output. To notice how certain parameters vary by some order of
magnitude at increasing frequency. Damping coefficients mm and mk are in [Pa,s], and
spring coefficients km and kk are in [Pa].

u range [rad/s] mm mk km kk

0.6e1.9 1.325 , 105 1.55 , 104 1.36 , 104 3.24 , 104

2.7e8.1 3.76 , 104 0.31 , 104 1.8 , 104 2.62 , 104

11.5e34.1 0.85 , 104 658.1 3.22 , 104 2.14 , 104

48.8e146.5 0.16 , 104 220.2 7.33 , 104 2.56 , 104

209.3e632.4 3.75 , 102 77.86 5.03 , 105 3.98 , 104



Fig. 13. Improved fitting of experimental data of material 1 when using the Burgers
model. This result is obtained by dividing the dataset into smaller subsets and per-
forming the analytical fitting on the latter. The fit quality is noticeably increased, giving
an RMSD of 1e2% for the whole dataset. However, it produced non-constant param-
eters through the frequency range.

Fig. 15. Analytical fitting of experimental data of material 1 using the generalized
Maxwell model constitutive relation with 3 elements and a spring. The combination of
a large dataset and 3 timescales is not enough to achieve a good fit.

Fig. 16. Analytical fitting of experimental data of material 1 using the generalized
Maxwell model constitutive relation with 4 elements and a spring. It is immediate to
observe a good quality fitting through all the points, which gives 4% RMSD for G’ and
3% for G” while keeping the parameters constant. This is achieved thanks to the larger
number of relaxation times of the generalized Maxwell model.
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industrial processes, the decision to implement a Generalized
Maxwell model has been taken.

3.2. Fitting quality of a generalized Maxwell model

When performing the analytical fitting of experimental data
with the generalized Maxwell model, the same procedure as the
one described in Sec. 3 for the Burgers constitutive relation is fol-
lowed, with the difference that the equations used to compute the
predicted storage and loss moduli are respectively (Barnes, 2000)

G0 ¼
X4
j

kjðutjÞ2
1þ ðutjÞ2

þ ke; G00 ¼
X4
j

umj

1þ ðutjÞ2
: (21)

Before diving into the 4-element model, it is noteworthy to
mention that a 3-element model has been previously used to fit the
experimental data with poor results, Fig. 15, giving values of
RMSDG0 ¼ 19% and RMSDG00 ¼ 8%, which is an improvement w.r.t.
the Burgers model, but is not enough, hence the choice for a 4-
element approach. The optimization algorithm is done in Python,
Fig. 14. Simulation output with fitted Burgers model parameters of oscillatory shear
deformation for material 1. The parameters used for the simulation are shown in
Table 4, hence with non-constant parameters throughout the dataset. The RMSD for G’
is 25%, while for G” is 21%.

206
leading to the fit of Fig. 16 for material 1 of the dataset of Fig. 11, the
same fit quality is achieved in the other materials of Fig. 11 as well,
not shown for simplicity. Moreover, the calibrated parameters for
each material are shown in Table 5 and the relative RMSD errors of
each material fit in Table 6.
3.3. Calibrating the normal-to-shear scaling parameter

As already discussed in Sec. 3.1, while the use of Eq. (17) is
largely used in literature to address the scaling between normal
and shear micro-contact parameters(Cai et al., 2014; Potyondy &
Cundall, 2004; Yu & Shen, 2012), in this study it has been
decided to improve accuracy by tuning a for each material in the
experimental dataset. This is done by executing a calibration
algorithm in a more classical way, i.e. by simulating a frequency
sweep with a first guess value, evaluating the error w.r.t. the
experimental data, updating the value, and re-running the fre-
quency sweep until a minimum is reached. The value update is
done separately in a Python script using a scalar minimization
algorithm, namely the Bounded Brent method. Moreover, given
the fact that the low-frequency simulations can not be amplified
in this case, as the method used in (Liu & You, 2011) has been



Table 6
Root mean square deviations of the analytical fit of the experimental data shown in
Fig. 11.

Material RMSDG0 RMSDG00

1 4.16% 3.27%
2 1.21% 1%
3 1.49% 0.57%
4 3.43% 2%

Table 5
Calibratedmacro parameters of the generalizedMaxwell model for the experimental data shown in Fig. 11. Note how the parameters stay constant for eachmaterial, unlike the
Burgers model case. The need for increased relaxation times, hence more parameters, is justified. Damping coefficients m1,2,3,4 are in [Pa,s] and spring coefficients k1,2,3,4,e are in
[Pa].

Material m1 m2 m3 m4 k1 k2 k3 k4 ke

1 3711 108.7 63.1 373.4 3067 1.39 , 104 3.98 , 106 4065 7423
2 24.6 251.2 49.4 50.7 1698 160 337.4 5.88 , 104 232
3 46.1 14.5 7.3 4.8 4.78 , 104 1609 116.1 9.92 , 104 0
4 535.2 0 927.4 681.4 4.52 , 105 0 6.73 , 104 3785 359.4
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proven to work with Burgers but not with other models, it has
been decided to perform the calibration in the range of fre-
quency u > 100 rad/s, and then run only one frequency sweep at
the lower frequencies with the calibrated value of a to check if
the simulation accuracy is maintained. Starting from a first guess
value of a ¼ 1, the root mean square deviation, Eq. (20), is
checked at each iteration, and the threshold to trigger calibration
is maxðRMSDG0 ; RMSDG00 Þ � 10%. To be noted that a smaller value
for the threshold can be used, depending on the specific appli-
cation. Here, given the informatory and descriptive purpose of
the manuscript, a value of 10% is used. Once the calibration
procedure is completed, it gives the optimal values of a of
Table 7.

The contact parameters and the normal-to-shear ratio are now
calibrated for eachmaterial. Hence it is possible to check the quality
of the simulations at lower frequencies by running a single fre-
quency sweep in the range u > 10 rad/s. A Face Centered Cube
packing is used with N ¼ 666 particles with diameter D ¼ 0.4 mm
and a deformation g ¼ 0.01 is applied, the oscillation amplitude is
A¼ 0.01H, with H being the height of the cube. The aforementioned
simulations produced the plots of Fig. 17 comparing the simulation
output against its experimental counterpart. It can be immediately
seen how the error is reduced w.r.t. the Burgers model case, as
highlighted by Table 8, both for G0 and G00, even though the fre-
quency range is smaller. Moreover, it must be remembered that the
parameters are constant throughout the dataset, as opposed to the
Burgers model case. Notably, all materials in the study, except
material 1, produced a scaling factor a z 1. It is not a case that
material 1 is also the only one with G0 > G00, whereas the opposite is
observed for the other cases. This can be explained by the fact that a
more elastic material’s shear interactions are overestimated. At the
same time, they have the same or even higher magnitude in more
viscous materials, as expected. To conclude, not all materials
managed to stay below the 10% limit error.
Table 7
Normal to shear ratio calibrated parameters for the materials of the experimental
dataset. Only material 1 has a ratio significantly larger than one, being also the only
material with G0 > G0 0 in the whole frequency range of interest.

Material 1 Material 2 Material 3 Material 4

a 2.135 1.089 1.026 1.017
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4. Oscillatory plate-plate shear rheometer simulation

The results obtained with the cube simulations are promising
but limited since they represent an ideal case with geometrical
symmetry, which is far from real-world cases. For a more mean-
ingful comparison, it has been decided to simulate the behavior of
materials 1 and 2 in a plate-plate shear rheometer. It comprises a
fixed plate on the bottom and a mechanical drive plate on the top.
In between, the material is placed. Once the setup is complete, the
top plate rotates around its axis with a strain-controlled motion,
i.e. the oscillations follow a function of the type q0sin(ut), where

q0 is the amplitude of oscillation angle, given by q0 ¼ 180gH
pD . The

value of g ¼ s/h is chosen as the shear deformation at a distance
D/2 from the center, where D is the plate diameter, s is the arc
length at D/2, and H is the distance of the plates, Fig. 18. Moreover,
as done for the cube, a frequency sweep is carried out in the same
range.

To reduce the number of particles, instead of simulating the
full disk, a ring is created with the following geometry: internal
diameter Dint ¼ 0.01 m, external diameter Dext ¼ 0.012 m, plate-
plate distance H ¼ 10�3 m, particle diameter D ¼ 10�4 m, and
deformation angle q ¼ 0.0955�. This angle is calculated starting
from a deformation g ¼ 0.01 at the external radius, Fig. 19. The
geometrical parameters are not representative of a real setup.
Still, they are chosen according to particle size to maintain good
accuracy, following the convergence study of the previous
sections.

An oscillatory motion is applied on the top layer of particles,
with the same frequency range used on the cube. The stress is
computed as the sum of the forces in the tangential direction on
every single particle, given by

s ¼
PN

i fi;q
Aring

(22)

where fi;q ¼ fi;ycos
�
atan2

�
yi
xi

		
� fi;xsin

�
atan2

�
yi
xi

		
is the ith par-

ticle tangential force, with fi,x, fi,y its x and y force components and
xi, yi its x and y coordinates. Regarding the deformation, in a plate-
plate geometry the value of g changes linearly in the radial di-
rection. To account for this, an average deformation is considered
as bg ¼ gextþgint

2 ¼ 0:00916. Applying the data analysis described in
Sec. 2.3 to the stress output and using the calibrated parameters
for material 1 and material 2, the plot of Figs. 20 and 21 are ob-
tained. The model shows how, even in more complex systems, it
can predict the rheology of a given material once the parameters
have been calibrated for a given range of frequencies. While for
material 1 the errors are both in line with what was obtained in
the cube system, with RMSDG0 ¼ 14.5% and RMSDG00 ¼ 11:43%, a
different outcome is observed for material 2, where the error for
G0 is RMSDG0 ¼ 6.8%. At the same time, it is quite high for G0 0,
giving RMSDG00 ¼ 21:4%, especially due to the high-frequency re-
sults. In general, the model can behave according to the



Fig. 17. Simulation output of the frequency sweep oscillatory shear deformation performed on the materials of Fig. 11, with calibrated macro parameters from Table 5 and normal to
shear ratio fromTable 7. Quantitatively, the rheological properties are predictedwith good accuracy overall. Some inaccuracies are present qualitatively, for example regardingmaterial
4, where the characteristic frequency at which G0 andG0 0 overlap is highly underestimated. On the other hand, a good prediction is obtained formaterial 1 regarding the same quantity.

Table 8
Root mean square deviation, shown as relative percentage error, of the simulation
output vs the experimental data.

Material 1 Material 2 Material 3 Material 4

RMSDG0 9.65 % 7.01 % 10.39 % 4.38 %
RMSDG00 9.82 % 6.36 % 9.43 % 9.94 %
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rheological properties of the calibrated material in simple and
more complex systems but with reduced accuracy. It might be due
to the numerical errors that arise with randomness and the
increased complexity of internal structures. However, this is not
clear, and it needs to be investigated further.
Fig. 18. Simple geometrical representation of plate-plate shear rheometer. In experi-
ments, the material in between is not constrained laterally. Hence it deforms due to
centrifugal inertia. This is a limitation in experiments as higher frequencies/amplitudes
lead to an overflow of the sample from the setup. The simulation is based on this
configuration, but it is not a digital twin of an existing setup.

Fig. 19. Graphical representation of the ring shear rheometer simulation. The applied
motion on the top layer of particles can be noted, given by a radial gradient of the
tangential force. These are the same particles used to compute the stress as the sum of
the forces on every single particle in the tangential direction, divided by the ring area.

Fig. 20. Comparison of the simulation output from the ring shear rheometer tests and
the experimental dataset used to calibratematerial 1. The accuracyw.r.t. the cube case is
only slightly decreased, and the model can predict the material’s rheological properties.
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Fig. 21. Comparison of the simulation output from the ring shear rheometer tests and
the experimental dataset used to calibrate material 2. In this case, the accuracy for the
storage modulus is still maintained relatively low, while a larger divergence is
observed at the higher frequency values.
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5. Conclusions

The way the model is implemented, especially due to the
presence of the bond, makes it prone to disturbances in the stress
response arising from the influence of the system eigenfrequencies,
which are more prominent than in the experiments due to the
higher inertia of the measurement instruments. Moreover, the fact
that an ordered lattice is used to simulate oscillatory rheometer
tests increases the magnitude of such an effect, leading to sec-
ondary oscillations in the stress response amplitude. The use of the
Fast Fourier Transform solves this issue, but not entirely, as the
stress response amplitude highly depends on the particles size and
lattice configuration; in other words, the mass matrix of the system
is a key factor in the quality of the stress response, and an ordered
lattice would increase the values on the diagonal, hence amplifying
the eigenfrequency effect. This effect can be slightly countered with
smaller particles, thus with lower inertia that would reduce the
eigenfrequencies oscillations. Furthermore, a Burgers model has
been chosen to impose the viscoelastic interaction between parti-
cles. The choice for this model resides in the fact that it has already
been extensively implemented in literature, mostly for asphalt and
bituminous materials (Cai et al., 2014; Collop et al., 2007; Dondi
et al., 2013; Feng et al., 2015a; Wang et al., 2020; Yu & Shen,
2012). Moreover, since the focus of our present contribution is to
obtain a model able to characterize any viscoelastic material, an
experimental dataset is used, which does not comprise bitumen
and/or asphalt in such a way as to test the limit of the model. The
calibration is done analytically, fitting the experimental data with
the Burgers model and substituting the optimal macro-parameters
in the constitutive micro-contact relation after appropriate scaling.
During this phase, it has been observed that the Burgers model
cannot properly fit on a large dataset. Hence, the experimental data
is divided into subsets, and fitting is performed on every subset.
After comparing the simulation datawith the experimental dataset,
it has been shown that the Burgers model is not suited for any
material and lacks precision when dealing with a large dataset due
to its low number of parameters.

Keeping in mind the goal of the article, which is to be able to
obtain a model that maintains accuracy regardless of the size of the
dataset or the material needed to be characterized, a new model
with a larger number of parameters, hence more relaxation times,
is implemented, namely the Generalized Maxwell model. This
model immediately shows good precision when fitting the
209
experimental data without dividing the data into subsets to
maintain a good quality, hence obtaining a unique set of parameters
for each material. Moreover, the model’s accuracy in a more com-
plex system has been studied, showing how the accuracy is
maintained for some materials while it partially reduces for other
materials, especially in the higher frequency domain.

Ultimately, this model aims at reducing the complexity of
simulating processes involving viscoelastic materials using mesh-
based methods. The main advantage is the meshless nature of the
presented model, resulting in easier and faster modeling of the
computational domain. This is of interest when dealing with
moving boundaries, which are challenging to use in a mesh-based
model. The use of discrete particles makes it easier to capture wall-
material interactions in a more natural way, together with material
flows. Future extensions of our present work could include bond
breakage and particle-wall contacts and predict the non-linear
behavior of real materials. In this way, it would be possible to
simulate large-scale industrial processes involving viscoelastic
materials and optimize those processes to reduce energy con-
sumption, product quality, or yield.
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