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Abstract

One‐pot cascade reactions of coupled disaccharide phosphorylases enable an

efficient transglycosylation via intermediary α‐D‐glucose 1‐phosphate (G1P). Such

transformations have promising applications in the production of carbohydrate

commodities, including the disaccharide cellobiose for food and feed use. Several

studies have shown sucrose and cellobiose phosphorylase for cellobiose synthesis

from sucrose, but the boundaries on transformation efficiency that result from

kinetic and thermodynamic characteristics of the individual enzyme reactions are not

known. Here, we assessed in a step‐by‐step systematic fashion the practical

requirements of a kinetic model to describe cellobiose production at industrially

relevant substrate concentrations of up to 600mM sucrose and glucose each.

Mechanistic initial‐rate models of the two‐substrate reactions of sucrose phospho-

rylase (sucrose + phosphate→G1P + fructose) and cellobiose phosphorylase (G1P +

glucose→ cellobiose + phosphate) were needed and additionally required expansion

by terms of glucose inhibition, in particular a distinctive two‐site glucose substrate

inhibition of the cellobiose phosphorylase (from Cellulumonas uda). Combined with

mass action terms accounting for the approach to equilibrium, the kinetic model

gave an excellent fit and a robust prediction of the full reaction time courses for a

wide range of enzyme activities as well as substrate concentrations, including the

variable substoichiometric concentration of phosphate. The model thus provides the

essential engineering tool to disentangle the highly interrelated factors of conversion

efficiency in the coupled enzyme reaction; and it establishes the necessary basis of

window of operation calculations for targeted optimizations toward different

process tasks.
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1 | INTRODUCTION

Cascade bio‐transformations based on multiple enzymatic reactions

telescoped in one pot have drawn considerable attention in applied

bio‐catalysis research (An & Maloney, 2022; Benítez‐Mateos

et al., 2022; Kara & Rudroff, 2021; Pfeiffer & Nidetzky, 2023;

Rosenthal et al., 2022; Ruales‐Salcedo et al., 2019; Wu et al., 2021).

The idea of an organic synthesis, realized by conversion of expedient

substrates in several chemical steps without the isolation of

intermediates, has strong appeal (Kara & Rudroff, 2021; Rosenthal

& Lütz, 2018; Ruales‐Salcedo et al., 2019; Schrittwieser et al., 2018;

Sheldon & Brady, 2019). The view of biochemical engineering on

enzyme cascades is however mixed (Burek et al., 2022; Kuschmierz

et al., 2022; Nazor et al., 2021; Teshima et al., 2023). Advantage of

economy in the processing steps used must be balanced against the

drawback of expanse in process system complexity. The parameter

space of process performance increases proportionally to the number

of enzymatic steps included in the cascade reaction (Burgener

et al., 2020; Siedentop et al., 2021). Numerous studies demonstrate

cascade transformations for practical synthesis in principle (e.g.,

Nazor et al., 2021; Pfeiffer & Nidetzky, 2023), yet the true process

boundaries, and the optimal window of process operation defined by

them, often remain unexplored (Burek et al., 2022; Domínguez de

María, 2021; Siedentop et al., 2021; Siedentop & Rosenthal, 2022;

Wang et al., 2018).

Kinetic modeling is a powerful engineering tool for cascade

reaction development (Kara & Rudroff, 2021; Petroll et al., 2019;

Siedentop et al., 2021). In contrast to purely data driven approaches

(Mandenius & Brundin, 2008; Siedentop et al., 2023; Villegas‐Torres

et al., 2018), it has the unique quality of offering a comprehensive

description of the system behavior. Kinetic models enable systematic,

knowledge‐based approaches at optimization, owing to their ability

to disentangle the complex network of interconnected factors of

cascade process efficiency (Finnigan et al., 2019; Hold et al., 2016;

Milker et al., 2017; for review, see Siedentop et al. 2021). Given this

fundamental relevance of modeling, surprisingly, there seems to be a

certain vagueness on its systematic use for practical effect in reaction

development and optimization (for reviews, see Kara & Rudroff 2021;

Siedentop et al., 2021). Analogous to experiment, kinetic models

differ widely in the degree and detail of system description reached

(Berendsen et al., 2006; Klimacek et al., 2020; Sigg et al., 2021; Sun

et al., 2021). Central questions, like that of minimum model

requirements for reliable application in cascade optimization, appear

to lack authoritative answers. For non‐specialists, therefore, the

cost–benefit efficacy of kinetic modeling may often seem as not

sufficiently concrete and clear. Eventually this can result in a major

potential of an engineering tool not applied for the development.

Here, we studied the cascade transformation of two disaccharide

phosphorylases for the production of cellobiose (Cb) from sucrose

(Suc) and glucose (Glc) (Figure 1, Brucher & Häßler, 2019; Kitaoka

et al., 1992a; Zhong et al., 2017). Although proposed by other

authors in earlier works (Kitaoka et al., 1992a; Zhong et al., 2017), we

avoided the use of glucose isomerase to convert the fructose (Fru)

released from Suc into Glc. While attractive from the viewpoint of

reaction economy, the glucose isomerase was not readily incorpo-

rated into the multienzyme system due its special requirements for

immobilization and operating temperature (≥60°C) (di Cosimo

et al., 2013). Moreover, while Glc was an expedient substrate and

Fru considered as a valuable co‐product of the overall reaction in

context of sugar industry, the glucose isomerase would have added

extra costs and complexity due to a third enzymatic reaction (Brucher

& Häßler, 2019). We here show the systematic step‐by‐step

development of a kinetic model of the two‐enzyme one‐pot process,

based on a tightly interconnected approach of experiment and

mathematical modeling. The development starts from a basal model

that describes the minimum features of rate and equilibrium of the

coupled reactions. This model is gradually expanded in a bottom‐up

fashion, as required to give a comprehensive description of dynamic

system behavior under a wide range of conditions, including those

considered for the industrial implementation (Brucher & Häß-

ler, 2019). The cellobiose process analyzed here can serve to

illustrate the importance of modeling for cascade reaction develop-

ment in general. The stepwise approach used can provide important

clarification on cascade reaction modeling deployed for an immediate

practical use (Siedentop et al., 2021).

Cascade transformations by coupled phosphorylase reactions

have promising applications in the production of carbohydrate

commodities. The cellobiose process considered here is manufac-

tured industrially for different uses in the food and feed sector

(Brucher & Häßler, 2019; Kitaoka et al., 1992a). Glycosylation

process technology based on glucose 1‐phosphate intermediate

(G1P; Figure 1) enables flexibility in the product scope of the

biocatalytic production. Products synthesized by cascade approaches

conceptually analogous to that of the cellobiose process (Figure 1)

include glucosyl glycerol (Zhang et al., 2020), laminaribiose (Abi

et al., 2019; Du et al., 2022), trehalose (Schwarz et al., 2007; Sun

et al., 2021), cellodextrins (Ubiparip et al., 2020; Zhong et al., 2020),

β‐glucans (Bulmer et al., 2021; Ubiparip et al., 2021) and linear starch

chains (Qi et al., 2014; Waldmann et al., 1986). The stepwise strategy

of kinetic modeling presented here can thus be extended to the other

phosphorylase systems. Except for works of Abi et al. (2019) and

Zhong et al. (2017) on laminaribiose and cellobiose production,

respectively, kinetic modeling has not been applied to these cascade

reactions.

Cascade transformations comprised of two enzymatic reactions

that are coupled by mutually shared substrate and product have a

long tradition in applied biocatalysis (France et al., 2017;

Schrittwieser et al., 2018; Sperl & Sieber, 2018). They are most

prominently represented by nicotinamide coenzyme‐dependent

reactions of oxidoreductases that involve cycling of oxidized and

reducedNAD(P) forms (Gandomkar et al., 2019; Goldberg et al., 2007).

Given this well‐known precedent, it is worthwhile to point out

particular challenges involved in the development of phosphorylase

cascade reactions. The amount of inorganic phosphate (Pi) supplied

is generally substoichiometric to the other substrates used

(e.g., sucrose and glucose in Figure 1). However, unlike true
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co‐substrates such as NAD(P), the phosphate and G1P concentra-

tions needed for an efficient transformation are not just catalytic (Du

et al., 2022; Zhong et al., 2017, 2019). The initial phosphate added

thus becomes a complex factor of the conversion efficiency through

its distributed effect on the maximum yield and the productivity of

the individual reactions (Zhong & Nidetzky, 2020). The problem has

also been recognized for reactions catalyzed by nucleoside phospho-

rylases (Giessmann et al., 2019; Kaspar et al., 2020). The here

proposed kinetic model of cellobiose synthesis captures comprehen-

sively the dynamic effect of the phosphate concentration under all

conditions used.

2 | MATERIALS AND METHODS

2.1 | Materials, enzymes, assays

All chemicals were of highest reagent quality (Sigma‐Aldrich; Carl

Roth). Bifidobacterium adolescentis sucrose phosphorylase (ScP;

GenBank identifier AF543301.1) and Cellulomonas uda cellobiose

phosphorylase (CbP; GenBank identifier AAQ20920.1) were used

as cell‐free extract preparation from the respective Escherichia

coli overexpression culture (Schwaiger et al., 2020). The specific

activity of ScP was 47 U/mg, that of CbP was 11 U/mg. One unit

(U) refers to 1 µmol/min of product released in the enzyme assay

under the conditions used. Protein was determined with Bradford

assay and bovine serum albumin as reference (Schwaiger

et al., 2022). ScP activity was determined in a continuous coupled

assay (250 mM sucrose, 50 mM phosphate) at 30°C and pH 7.0, as

reported in Schwaiger et al. (2020) with measurement of NADH

release and consecutive conversion into G1P concentrations as

reported therein. CbP activity was determined in a discontinuous

assay using 50 mM MES buffer (pH 7.0) at 30°C, measuring

phosphate release (Sigg et al., 2021). Incubations (50 mM G1P,

80 mM glucose; 1.5 mL working volume) were done on a

ThermoMixer C (Eppendorf) with agitation at 750 rpm. A

temperature‐controlled Beckman DU800 spectrophotometer

was used for all spectroscopic assays.

F IGURE 1 Kinetic mechanisms of ScP and CbP in the synthesis of cellobiose. ScP exhibits a competitive Glc‐inhibition mechanism (k±5) and
CbP a dedicated two‐site substrate inhibition by Glc (k±5, k±6).

582 | SIGG ET AL.
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2.2 | Inhibition studies

2.2.1 | Glc inhibition of CbP

Enzyme (0.17 U/mL) was incubated with 50mM or 8.0 mM G1P in

the presence of Glc varied at 80, 300, and 600mM. Initial rates were

determined from the phosphate release measured in five samples

withdrawn at appropriate times up to 40min (Klimacek et al., 2021).

2.2.2 | Glc inhibition of ScP

Enzyme preparation purified according to Sigg et al. (2021) was

incubated at varied Suc concentration (0.5–100mM) with Pi constant

at 50mM and Glc absent or present at a concentration of 10, 25, or

50mM. The G1P release rate was determined in continuous

measurements as for the enzyme assay (Schwaiger et al., 2020).

Data was fitted directly with Equation (1) for competitive

inhibition, using nonlinear least‐squares optimization in OriginPro

2019. In equation one, kcat [1/s] refers to the turnover number, E

[mM] to the enzyme concentration, vSuc [mM/s] to the sucrose

release rate under the tested steady state conditions, KSuc [mM] to

the Michaelis constant of Suc and KiGlc [mM] to the inhibition

constant of Glc.

⋅ ⋅

( )
v

k E

K
=

[ ] [Suc]

1 + + [Suc]
K

Suc
cat

Suc
[Glc]

iGlc

(1)

2.3 | Reaction time course studies

Reactions were performed in 1.5 mL total volume usingThermoMixer

C for agitation (750 rpm) and temperature control (30°C). A 50mM

MES buffer (pH 7.0) was used. The substrate concentrations varied in

the range 100–600mM (Suc, Glc) or 9–80mM (Pi). The enzyme

activities varied in the range 1.5–25 U/mL (ScP) and 0.75–8.9 U/mL

(CbP). Samples (200 µL) were quenched in the same volume of buffer

(99°C), further heat‐inactivated in a boiling water bath for 10min

(Klimacek et al., 2020) and stored at −20°C until further analysis by

HPLC. A Merck Hitachi L‐7100 HPLC system (Merck) equipped with

a YMC‐Pack Polyamine II/S‐5um/12 nm column and refractive index

detection was used to analyze Fru, Glc, Suc and Cb. The column was

operated at ambient temperature, with elution done at an isocratic

flow (1mL/min) of 75/25 acetonitrile/water (v/v) (Kruschitz &

Nidetzky, 2020).

2.4 | Modeling methods

The King‐Altman method (http://www.biokin.com/tools/king-

altman/index.html) was used to derive rate equations for the kinetic

mechanisms considered. Based on approach used in earlier works

(Klimacek et al., 2020; Sigg et al., 2021), the microscopic rate

constants were grouped into common kinetic parameters accessible

to steady‐state experiments. Kinetic models were fitted to time

course data using COPASI 4.34 (Build 251) (Hoops et al., 2006). An

evolutionary strategy with stochastic ranking (SERS) was used as

optimization method (generations: 6000, population size: 20) for

parameter estimation. Literature data on CbP (Nidetzky et al., 2000;

Nidetzky et al., 2004) and ScP (Cerdobbel et al., 2011; Goedl

et al., 2007; Sigg et al., 2021; Verhaeghe et al., 2013; Wildberger

et al., 2011) were used to define upper and lower boundaries of the

respective parameter estimate. Initial rate data acquired in this study

served to implement additional fitting constraints. Moreover, the

initial substrate and enzyme loadings were allowed to involve a

relative error of ±5% and ±10%, respectively. The fitting involved

randomized start values of parameters and the solver was allowed to

perform at least 1.5 × 106 iterations until the objective value showed

no further improvement. The procedure was repeated in 10

individual runs to evaluate parameter sensitivity (Klimacek et al., 2020;

Sigg et al., 2021). Goodness of fit R2 was calculated.

3 | RESULTS AND DISCUSSION

3.1 | Reaction time course analysis

The typical time course comprised seven sampling points, suitably

distributed to cover the initial reaction phase as well as the approach

to the reaction equilibrium (see Figure 2). As shown in Table 1, five

conditions were selected for model fit and four additional conditions

were used for model validation. The reactants analyzed (Suc, Glc, Fru,

Cb) were sufficient for determination of the mass balance. Pi and G1P

were occasionally measured for additional verification. The results

shown are internally consistent based on close mass balance. High

substrate concentrations (≥100mM) were chosen for industrial

relevance. Brucher and Häßler (2019) reported Cb production from

600mM of each Suc and Glc as an industrial test case. As in a realistic

process scenario, Suc and Glc were generally used at the same

concentration to enable high conversion of both substrates. Depar-

ture from the standard Suc/Glc ratio was used to challenge the model

for fit and validation. The Pi concentrations were selected to cover

different degrees of saturation of the ScP (KPi = 19.3 mM), both

initially and during the reaction. The ScP/CbP activity ratio varied

between 2.0 and 10, with CbP changing in a 10‐fold range (0.75–8.9

U/mL). The ScP was used in excess to ensure efficient supply of G1P

to the CbP reaction. Note: the specific activity of ScP in the cell

extract preparation of enzyme used surpasses that of CbP by 4.7‐fold

(Schwaiger et al., 2022). In the purified enzymes, the difference in

specific activity is as large as 10‐fold (Schwaiger et al., 2022).

Experimental results used in model fitting are summarized in

Figure 2. Distribution of the initial Pi into G1P released during the

reaction was obtained from direct measurements or it was

calculated from the mass balance. The [G1P] (=[Fru]‐[Cb])

approached the maximum of Pi used in the different reactions,
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indicating that recycling of the intermediary G1P was effectively

achieved under all conditions used. Except for the 600mM reaction

(experiment E), equilibrium was approached in all reactions after

24 h of incubation. The reaction containing 600mM Suc was

unusually slow, providing a first indication of inhibition by high

substrate concentration. Figure 2 serves to illustrate a main point of

this study, that optimization of the cascade reaction based on

experiment alone constitutes an extremely challenging task. The

difficulty arises not only from the extensive experimentation

necessary, but also fundamentally from the requirement to

represent a highly interconnected system of process factors and

metrics in a suitable experimental design.

F IGURE 2 Summary of results obtained from experimental time‐course analysis and parameter estimation by modeling. Symbols show the
data (Suc, triangles; Glc circles; Fru, squares; Cb, diamonds), lines the best fit result of the respective kinetic model with goodness of fit (R2)
indicated. Initial reaction conditions are summarized in Table 1 (experimental) and Supporting Information Table S6 (modeling). Labeling of the
panels of this Figure with (a–e) indicates the experimental conditions A–E, respectively, of the Model fit section of Table 1 used. The numbers
1–4 are for fits with model M1–M4, respectively.
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3.2 | Flux models M1 and M2

Engineering approach to kinetic model development involves

parsimony of parameterization as a guiding principle (Almquist

et al., 2014; Gernaey et al., 2010; Lauterbach et al., 2023; Lencastre

Fernandes et al., 2013; Sadino‐Riquelme et al., 2020). Considering a

bottom‐up strategy of stepwise increase in model complexity, the

minimum feature of basal model is that of an enzymatic net rate (flux)

under control of mass action. The relevant models are identified as

M1 and M2 in Table 2 with respective kinetic parameters being

defined in Table S1 in the Supporting Information. Both models do

not consider effects of the back reaction on the forward flux

TABLE 1 Initial conditions used in experimental time course studies.

Model fit Model validation
Parameter Unit A B C D E A B C D

ScP [UmL−1] 1.50 7.77 11.6 11.6 25.2 1.18 9.72 11.6 11.6

CbP [UmL−1] 0.75 0.75 1.52 1.52 8.93 0.76 1.52 1.52 1.52

[Suc] [mM] 100 300 300 500 600 100 300 300 200

[Glc] [mM] 100 300 300 200 600 100 300 300 500

[Pi] [mM] 9.1 39 80 39 10 9.1 39 71 39

TABLE 2 Kinetic models of the coupled reaction of ScP and CbP.a

Model M1

ScP: ( )v V= 1 − , Γ =
Kf
Γ [G1P][Fru]

[Suc][Pi]eq

CbP: ( )v V= 1 − , Γ =
Kf
Γ [Pi][Cb]

[G1P][Glc]eq

Model M2

ScP: ( )v = 1 − , Γ =
V

K K K

[Suc][Pi]

[Pi] + [Suc] + [Suc][Pi]

Γ [G1P][Fru]

[Suc][Pi]
f

Suc Pi eq

CbP: ( )v = 1 − , Γ =
V

K K K K K

[G1P][Glc]

+ [G1P][Glc] + [Glc] + [G1P]

Γ [Pi][Cb]

[G1P][Glc]
f

iG1P Glc G1P Glc eq

Model M3

ScP: ( )v = 1 − , Γ =
V

K K K

[Suc][Pi]

[Pi] + [Suc] + [Suc][Pi]

Γ [G1P][Fru]

[Suc][Pi]
f

Suc Pi eq

CbP: ( )v = 1 − , Γ =
V

D K

[G1P][Glc] Γ [Pi][Cb]

[G1P][Glc]
f

eq

( )D K K= 1 + + + + +
K K K K K

K

K K K

K

K K KiG1P Glc
[Glc][Pi][Cb] [Pi][Cb] [Glc][Pi] [Pi] [Cb]

iCb Pi iGlc1 iCb Pi

Cb

iCb Pi iGlc2

Cb

iCb Pi iCb

( )K+ + [G1P] 1 + + [G1P][Glc]
K

K

K K

[G1P][Glc][Pi]
Glc

[Pi]

iPi

Cb

iCb Pi

Model M4

ScP:








( )v = 1 − , Γ =
V

K K
K

[Suc][Pi]

[Pi] 1 + + [Suc] + [Suc][Pi]

Γ [G1P][Fru]

[Suc][Pi]

K

f

Suc
[Glc]

iGlc
Pi

eq

CbP: ( )v = 1 − , Γ =
V

D K

[G1P][Glc] Γ [Pi][Cb]

[G1P][Glc]
f

eq









( )
( )

D K K

K

K

= 1 + + +

+ + + + +

+ [Glc] 1 + + + +

+ [G1P] 1 + + [G1P][Glc]

K K K

K

K K K K K K

K

K K K K K

K

K K K K

K K K K K

K

K K

iG1P Glc
[Glc][Pi][Cb] [Glc] [Pi] [Pi][Cb]

[Glc][Pi] [Glc] [Pi] [Cb] [Glc]

G1P
[Glc] [Cb] [Glc] [G1P][Glc][Pi]

Glc
[Pi]

iCb Pi iGlc1

Cb
2

iCb Pi iGlc2 iGlc3 iCb Pi

Cb

iCb Pi iGlc2

2

iGlc2 iGlc3

Cb

iCb Pi iCb iGlc2

2

iGlc2 iGlc2 iCb iGlc2 iPi

Cb

iCb Pi

Abbreviations: Cb, cellobiose; Fru, fructose; G1P, α‐D‐glucose 1‐phosphate; Glc, glucose; K, Michaelis constant; Ki, dissociation constant; Keq, equilibrium
constant; Pi, phosphate; Suc, sucrose; Vf, maximum velocity of the forward direction.
aDefinition of kinetic parameters is provided in Table S1 in Supporting Information.
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introduced by reversible binding of released products. Generally,

therefore, they are expected to be particularly suitable for reactions

with equilibrium far on the product side. The conditions are met by

the ScP (Goedl et al., 2007; Wildberger et al., 2011) and CbP

(Nidetzky et al., 2004) reactions in the directions considered for Cb

production (Table 1). Model M1 assumes zero‐order kinetics with

respect to all substrates. Despite this major simplification, model M1

is a useful starting point for the development of a kinetic model, in

particular because its use requires only the two central parameters of

each reaction: a specific rate (activity) of the enzyme and an

equilibrium constant. As shown in Figure 2, model M1 describes

adequately the reaction equilibrium for all reactions except that at

600mM, but the dynamic approach to the equilibrium is not captured

well. The model predicted reaction progress in the initial phase of

conversion to be much faster (≥3‐fold) than in the experiment.

Conclusion at this point is that enzymes are not fully saturated with

both their substrates under conditions of the coupled reaction and a

successful model must adequately account for that fact. The in situ

recycled substrates Pi and G1P are likely limiting for the ScP and CbP

reactions, respectively. Equilibrium constants and initial parameters

predicted for model M1 are shown in Tables S2 and S6 (Supporting

Information), respectively.

Model M2 thus expands model M1 by including a mechanism‐

based description of the substrate concentration dependence of the

enzymatic forward rates. Figure 1 identifies the bisubstrate kinetic

mechanism of ScP as Ping‐Pong Bi‐Bi (Mirza et al., 2006), that of CbP

as Ordered Bi‐Bi (Nidetzky et al., 2000). Note that steps of product

binding or inhibition are also shown in Figure 1 but are not included

in model M2. Change from model M1 to M2 involves substantial

increase in the parameters used. For ScP and CbP, these parameters

were available from literature (ScP: Cerdobbel et al., 2011; Goedl

et al., 2007; Sigg et al., 2021; Verhaeghe et al., 2013; Wildberger

et al., 2011, CbP: Nidetzky et al., 2000; Nidetzky et al., 2004). In

situations of enzyme kinetic parameters not available, simplified

versions of model M2 (see the Supporting Information Table S1)

could be considered in a first step to economize the parameter use in

model development (for use of so‐called “convenience models”, see

Liebermeister and Klipp, 2006).

Compared with model M1, model M2 gives a clear improve-

ment in the fit of data (Figure 2). The time course at 100 mM

substrate is well represented in full. At the higher substrate

concentrations, however, the deviation between model M2 fit

and experiment is still pronounced, especially in the early

reaction phase. The initial production rates are overestimated

by up to 7.3‐fold by the model (Figure 2e2). Parameter estimates

(Table S3) and other constraints (Table S6) are generally found at

the upper or lower boundary, suggesting the overall fit to have

been problematic. Rate‐retarding effects seen at elevated

substrate concentrations are clearly not due to a single factor,

such as the product concentration released. They appear to arise

from a complex interplay of factors related to the substrate

concentration itself, the product concentration released from it,

and the phosphate concentration used. Comparison of

Figure 2b2–e2 illustrates the point. The Cb product concentra-

tion is almost the same in all reactions (~210 mM), yet the

discrepancy between model fit and experiment differs largely

among the reactions, for example, b2 and e2.

The results imply that effects of product binding on the net

forward rate must be included in the kinetic model. Here in

particular for CbP, one expects competition for binding to the free

enzyme by the accumulating Cb with the G1P present at a much

lower steady‐state concentration. The situation is opposite for ScP

because the Suc present in large excess outcompetes completely

the G1P for binding to the free enzyme. The accumulating Fru

might compete with Pi for binding to the glucosylated enzyme

intermediate. However, there is good evidence that the half‐

reaction with Suc (Figure 1) is rate‐limiting (Vyas & Nidetzky, 2023).

At saturating [Suc], therefore, the enzyme complex with Suc is the

predominant form of ScP present at steady state. Based on these

considerations, therefore, we added terms of reaction reversibility

only to the kinetic model of CbP.

3.3 | Reversible model M3

The expanded model M3 is shown in Table 2 with kinetic

parameters being defined in Table S1 (Supporting Information).

The fitting results are shown in Figure 2a3–e3 and the associated

parameters are summarized in Tables S4 and S6 (Supporting

Information). Improved fit by model M3 compared with M2 is

seen by increase in R2 in all reactions, interestingly with the

exception of the 100 mM reaction. Despite that, model M3

involves the bias that Cb release in the initial reaction phase is

underestimated (~35%) at low substrate concentration

(Figure 2a3) while it is overestimated (~70%) at high substrate

concentration (Figure 2e3). The observed trend suggests that the

substrate becomes inhibitory when used at high concentration.

Model M3 does not incorporate substrate inhibition. The Glc

substrate is a known inhibitor of both enzymes in general (ScP:

Mieyal and Abeles, 1972; CbP: Rajashekhara et al., 2002). For the

ScP from B. adolescentis and CbP from C. uda used here, inhibition

by Glc has not been characterized. Close inspection of trend

comprised in the time course data leads to the conclusion that Glc

exercises inhibition significantly whereas an inhibitory effect of

Suc is negligible in comparison, as follows. Reaction d3 involves

increase in [Suc] by 200 mM but decrease in [Glc] by 100 mM

compared with reaction b3. Judged by R2, model M3 fits reaction

d3 better than reaction b3, inconsistent with a dominant role of

inhibition by Suc. By the same criterion of R2 value, model M3 fits

reaction e3 by far less well than it fits reaction d3. Increase by

400 mM in the [Glc] used is the most prominent among the

changes in condition between reaction e3 and d3. In summary,

therefore, these results strongly supported the suggestion to

examine Glc inhibition in more detail.
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3.4 | Glc inhibition and development of model M4

The characterizations done were based on earlier studies of related

enzymes. The Glc inhibition of ScP is competitive against Suc

(Mieyal & Abeles, 1972) and involves Glc binding to the sugar‐binding

subsite−1 of the enzyme (Mirza et al., 2006). As shown in Figure 3a

that presents data in the form of a double reciprocal plot, ScP exhibits

the same type of inhibition. Nonlinear fit gives an inhibition constant

(KiGlc) of 3.43 ± 0.18mM with an associated Michaelis constant for

Suc (KSuc) of 0.82 ± 0.04mM.

The Glc inhibition of CbP arises from Glc binding to both sugar

binding subsites of the enzyme (Figure 1; Kitaoka et al., 1992b). The

two‐site binding mode results in a rather unusual type of substrate

inhibition by Glc, as shown in Figure 3b based on data acquired for

CbP. Full‐fledged inhibition study of CbP was considered beyond the

scope of the current work. The integrated approach used here

involved parameters of the Glc inhibition (K k k= /iGlc2 −5 +5;

K k k= /iGlc3 −6 +6; see Figure 1 for assignment of microscopic rate

constants to respective kinetic steps) included into the kinetic model

M4 and parameter estimates obtained from global fits of the model

to the time course data. The initial rate data of Figure 3b served as

additional constraints.

The model M4 is shown in Table 2 with kinetic parameters being

defined in Table S1 (Supporting Information). Fitting was done with

KiGlc3 (the constant for Glc binding to sugar‐binding subsite +1) as

variable parameter for estimation or held constant at 1020 mM to

exclude effect of inhibition at this site. Model M4 with the restriction

of invariant KiGlc3 is incapable of reproducing all the time courses

(Figure S1a–e, Supporting Information), nor does it represent the

initial‐rate inhibition data of the CbP (Figure S1f, Supporting

Information). The full model M4 with KiGlc3 determined from fit,

however, gives an excellent description of the whole data set in time

courses (Figure 2a4–e4) and initial rates (Figure 3b). The fitted

parameters are summarized in Tables S5 and S6 (Supporting

Information). Covariance analysis reveals that estimates of KiGlc2

and KiGlc3 are inversely correlated with a correlation coefficient close

to −1. This shows the impossibility of independent estimation of the

two parameters from model M4 fits to the available data set. The

estimated values in Table S5 are used with caution as they may have

converged to extremes. However, the inhibition data in Figure 3b can

be represented with excellent accuracy with various combinations of

KiGlc2 and KiGlc3.

Model 4 validation is presented in Figure 4 that shows simulation

results compared with a fresh set of time course data (Table 1). The

scope of model M4 applicability is challenged strongly by the

validation data as they represent changes in the enzyme ratio

(Figure 4a,b), the Pi concentration (Figure 4a–c) and the ratio of

substrate concentrations used (Figure 4d) in comparison to the data

used for fitting. Judged by the value of R2, the agreement between

simulation and experiment is excellent (R2 ≥ 0.95; Figure 4b–d). The

100mM reaction (Figure 4a) is an exception (R2 = 0.67). Lowering of

R2 in Figure 4 compared with Figure 2a4–e4 is understood, in

general, to arise from the fact that simulations use fixed loadings of

enzyme and substrate while fittings allow error in these loadings.

Ability of model M4 to reproduce the reaction in Figure 4d where Glc

(500mM) was used in 2.5‐fold excess over Suc supports the earlier

conclusion from fits of model M3 that inhibition by Suc is

insignificant.

3.5 | Bottom‐up construction of kinetic model of
enzyme cascade reaction

Kinetic model M4 is presented for phosphorylase cascade synthesis

of cellobiose under conditions of high substrate concentration

relevant for the industrial production. Accompanying paper shows

flexible use of the kinetic model for optimization of different

processing tasks in cellobiose production (Sigg et al., 2023). The

F IGURE 3 Results of inhibition analysis for ScP (a) and CbP (b). (a) Symbols show the experimental data ([Pi] = 50mM with [Glc] applied at
50mM, circles; 25mM, triangles; 10mM, diamonds; 0 mM, squares), and solid lines show the best fit result. (b) Symbols show experimental data
(triangles, [G1P] = 50mM; circles [G1P] = 8mM). Solid lines show the data overlay of N = 10 fitting experiments using model M4, with goodness
of fit R2 indicated for the best fit result. Experimental data are averages (N = 2) and error bars show the corresponding standard deviation.
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kinetic model enables a broad range of optimization problems to be

addressed in a fully quantitative analysis. Its scope of application in

process development is therefore distinct from that accessible via

solely data‐driven approaches (for general review, see Helleckes

et al., 2023; Mandenius & Brundin, 2008; Schulze & Schenkendorf,

2020; Siedentop et al., 2021)

The systematic step‐by‐step development of model M4 from the

basal flux model M1 informs kinetic model development for enzyme

cascade transformations in general (Kara & Rudroff, 2021). In

particular, the bottom‐up approach of model construction used

yields a reasoned assessment of the complexity required of the

successful kinetic model. Readers may find model M4 exceedingly

involved in the mathematical description used. It can be illuminating,

therefore, to compare the reactions of CbP and ScP. The cellobiose

synthesis from G1P and Glc exhibits complex kinetic behavior indeed.

We provide evidence for the essentiality that this complexity is

implemented in full for the kinetic model to be able to describe the

enzymatic reaction in a realistic range of operating conditions.

However, the relatively simple flux model M2, only expanded to

include competitive inhibition by Glc, is fully sufficient to describe

phosphorolysis of Suc in the presence of Pi. Considering the

differences in kinetics of the two phosphorylase reactions, a few

general guidelines for systematic approach to model development for

coupled enzyme cascade reaction can be formulated (Figure 5).

We begin with the reasonable assumption that equilibrium constants

of the individual reactions are known from experiment or have plausible

estimates from computational analysis (Beber et al., 2022). Approach of

reaction to equilibrium is thus described bymass action term. Additionally,

we assume that an apparent K value (obtained from experiments done at

saturating concentrations of the respective other substrate) is available. In

conditions of [S0]/K greater than 10 and Keq strongly favoring the

formation of the products, flux model M1 might give an adequate

description of the data. Dependence of the rate on the substrate

concentration (flux models of the M2 type) can be implemented stepwise

for each substrate with empirical (hyperbolic) terms (Liebermeister &

Klipp, 2006). The model based on the enzyme kinetic mechanism is most

accurate to describe the rate at low substrate concentrations. In modeling

coupled enzyme reactions, the important decision on whether an

empirical or mechanism‐based kinetic model of M2 type is required

depends primarily on the steady‐state concentrations of the recycled

substrates during the transformation, relative to the corresponding K of

the enzyme. In the phosphorylase cascade reaction under the conditions

F IGURE 4 Validation of model M4. Lines show the prediction of reaction time courses, symbols the experimental data (Suc, triangles; Glc
circles; Fru, squares; Cb, diamonds), with goodness of fit (R2) indicated. The labeling of the panels (a–d) of this figure indicates the experimental
conditions A–D, respectively, of the Model validation section of Table 1 used.
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used here, the enzymes are not fully saturated with Pi and G1P at the

respective concentrations available in the process. The situation of

recycled substrate or intermediate present in non‐saturating concentra-

tion will probably occur often in enzyme cascade reactions. Considering

economy of experiment, our recommendation is to examine the empirical

description first because it requires a smaller set (~10‐fold) of initial rate

data for parameter estimation than the mechanistic description. In the

current study, parameters of mechanistic kinetic model were available for

both enzymes from literature. Their implementation as additional

constrains (lower and upper boundaries) for model fitting ensure

mechanistic correctness and provides basis for the evaluation of model

accuracy.

Model extension to include reaction reversibility (model type M3)

is possible on both empirical and mechanistic types of the M2 model,

effectively resulting in the inclusion of product inhibition terms. In a

two‐step cascade transformation, it is always the second step (the

one requiring the intermediate as the substrate) that experiences the

stronger effect. The product released accumulates to a high

concentration while the substrate remains at the comparably low

steady‐state concentration. Lastly, particular forms of substrate

inhibition can be included to obtain models of type M4. In

phosphorylase cascade reactions for disaccharide and oligo-

saccharide production (e.g., Du et al., 2022; Qi et al., 2014; Zhong

et al., 2020), the substrates used and the product released exhibit

structural similarity to a considerable degree. The possibility of cross‐

inhibition (e.g., ScP inhibition by glucose) must therefore be

considered. A limited set of initial rate experiments is here however

sufficient to identify the relevant inhibitions. Parameter estimation is

then possible directly from model fit to the experimental time

courses. Earlier efforts at modeling phosphorylase cascade reactions

are noted (Abi et al., 2018; Sun et al., 2021; Zhong et al., 2017).

However, these studies presumed the requirement of a particular

model structure and degree of parametrization. Lacking the stepwise

approach to an increased model complexity as used here, models may

suffer from the exclusion of effects requiring description while other

effects, described by the model, are overparametrized. In particular,

the model of Zhong et al. (2017) describing cellobiose production

lacked detailed information of the mechanism of substrate and

product inhibition and therefore demanded additional adjustment of

kinetic parameters to values exceeding experimental observation.

4 | CONCLUSION

Kinetic model‐based reaction optimization is generally recognized for its

critical importance in biocatalytic process development and scale up.

Central problem of the kinetic modeling approach is to identify minimum

requirements of a practically useful model in terms of model structure and

detail. In particular, the fundamental question arises inhowfar the model

must represent certain features of the enzyme kinetic mechanism to

describe dynamic reaction behavior with sufficient accuracy under the

relevant process conditions. We here show the systematic (step‐by‐step)

bottom‐up development of kinetic model for the coupled ScP‐CbP

reaction applied to Cb production. The overall approach of model

construction is general and so can have relevance for others working with

biocatalytic cascade reactions. We demonstrate the requirement for a

full‐fledged mechanistic model to describe the steady‐state kinetics of

CbP, affected by an unusual two‐site substrate inhibition of Glc and

product inhibition of Cb. Evidence that the ScP reaction was described

F IGURE 5 Bottom‐up development of kinetic model for
describing enzyme cascade reactions.
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sufficiently by a much simpler kinetic model underlines the importance of

a bottom‐up process of kinetic model construction. This process, as

shown for CbP, may involve the transition from empirical to mechanistic

kinetic model as a key step of the development. The kinetic model of the

coupled ScP‐CbP reaction provides a powerful engineering tool for

the analysis and optimization of the overall conversion in dependence of

the various interrelated factors of process performance (e.g., substrate

and enzyme concentrations and ratios thereof) that it would be

impossible to disentangle by human intuition alone. The model thus

identifies boundaries on transformation efficiency that result from kinetic

and thermodynamic characteristics of the individual enzyme reactions.

The optimization of G1P supply is challenging in particular because it

involves a significant trade‐off between kinetics (rate, productivity) and

thermodynamics (yield). The phosphate concentration used is substoi-

chiometric to Suc, but due to Km values for Pi and G1P in the mM range,

it cannot be so strictly catalytic as, for example, the nicotinamide

coenzyme concentrations (typically < 1mM) in dehydrogenase cascade

reactions. Accompanying paper shows application of the kinetic model for

window of operation calculations to enable targeted optimizations of

ScP‐CbP reaction toward different process tasks.
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