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Abstract

The inherent complexity of coupled biocatalytic reactions presents a major challenge

for process development with one‐pot multienzyme cascade transformations.

Kinetic models are powerful engineering tools to guide the optimization of cascade

reactions towards a performance suitable for scale up to an actual production. Here,

we report kinetic model‐based window of operation analysis for cellobiose

production (≥100 g/L) from sucrose and glucose by indirect transglycosylation via

glucose 1‐phosphate as intermediate. The two‐step cascade transformation is

catalyzed by sucrose and cellobiose phosphorylase in the presence of substoichio-

metric amounts of phosphate (≤27mol% of substrate). Kinetic modeling was

instrumental to uncover the hidden effect of bulk microviscosity due to high sugar

concentrations on decreasing the rate of cellobiose phosphorylase specifically. The

mechanistic‐empirical hybrid model thus developed gives a comprehensive descrip-

tion of the cascade reaction at industrially relevant substrate conditions. Model

simulations serve to unravel opposed relationships between efficient utilization of

the enzymes and maximized concentration (or yield) of the product within a given

process time, in dependence of the initial concentrations of substrate and phosphate

used. Optimum balance of these competing key metrics of process performance is

suggested from the model‐calculated window of operation and is verified

experimentally. The evidence shown highlights the important use of kinetic modeling

for the characterization and optimization of cascade reactions in ways that appear to

be inaccessible to purely data‐driven approaches.
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1 | INTRODUCTION

Cascade transformations by coupled disaccharide phosphorylases

(Figure 1) have promising uses in the production of carbohydrate‐

based ingredients (e.g., di‐ and oligosaccharides, glycosides;

Kadokawa, 2016; Luley‐Goedl & Nidetzky, 2010; Pergolizzi

et al., 2017). The enzymes are, in general, highly active and robust

catalysts. The products of their reactions often achieve significant

valorization of expedient bulk sugar substrates (Kitaoka, 2015;

Nishimoto, 2020; Ubiparip et al., 2021). Cellobiose has attracted

considerable interest for use as additive in different food and feed

applications (Brucher & Häßler, 2019; Kitaoka et al., 1992; Schwaiger

et al., 2020; Suzuki et al., 2009; Wang et al., 2022). Its bottom‐up

synthesis from sucrose and glucose involves a one‐pot cascade

reaction of sucrose phosphorylase (ScP) and cellobiose phosphoryl-

ase (CbP), as shown in Figure 1. An industrial process for cellobiose

production by coupled ScP and CbP has been implemented at

SAVANNA Ingredients (Germany) and is currently developed to full

manufacturing scale (Brucher & Häßler, 2019). Process intensification

thus becomes an essential task during the scale up to ensure cost

effectiveness of the commercial production.

The cellobiose process exemplifies characteristically the funda-

mental challenges that arise during the optimization of multienzyme

cascade transformations (Kara &Rudroff, 2021; Siedentop et al., 2021;

Teshima et al., 2023; You & Percival Zhang, 2017). Basic require-

ments of reaction efficiency, such as product concentration, product

yield (Y), space‐time yield (STY) and productivity of enzyme catalysts

must be met for industrial suitability of the biocatalytic process

(Domínguez de María, 2021; Lange, 2021; Sheldon &Woodley, 2018;

Siedentop & Rosenthal, 2022; Woodley, 2022). Optimization of

reaction variables (e.g., concentrations, concentration ratios, time) is

rendered difficult technically because each parameter of efficiency of

the overall transformation is composite of the interconnected

outputs of the individual reactions telescoped in one pot (Kara &

Rudroff, 2021; Siedentop et al., 2021). Optimization is even more

complicated as it usually involves significant trade‐offs between

multiple competing objectives (Dvorak et al., 2014; Johannsen

et al., 2021; Paschalidis et al., 2022), such as maximum product yield

and minimum enzyme usage, for example. Lastly, there can be

substantial variation in the expectation of optimization capability,

depending on the progress of process development and scale up

(Teshima et al., 2023; Wang et al., 2020). While chemical intuition

provides useful guidance in each step, comprehensive optimization

requires rigorous methodologies based on systematic workflows and

robust strategies (Abt et al., 2018; Duong‐Trung et al., 2023;

Helleckes et al., 2023; Kuschmierz et al., 2022; Pandi et al., 2022;

Petroll et al., 2019; Siedentop et al., 2021). Here, we demonstrate the

proficiency of an unbiased (nonalgorithmic) approach that applies

flexible window of operation analysis (Woodley, 2022) constructed

on the results of a mechanistic model‐based assessment of the full

parameter space of the phosphorylase cascade reaction for cellobiose

production.

There has lately been considerable interest across the (bio)

chemical sciences in the application of algorithm‐based method-

ologies for the optimization of multistep reactions for synthetic

transformations (Taylor, Felton, et al., 2023; Taylor, Pomberger,

et al., 2023; Zhou et al., 2017). Powered by machine learning, the

process was shown to be automatable in variable degree so as to

F IGURE 1 Reaction scheme for cellobiose synthesis. CbP, cellobiose phosphorylase; ScP, sucrose phosphorylase.
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enable even self‐optimization (Clayton et al., 2020; Duong‐Trung

et al., 2023; Fitzpatrick et al., 2016; Taylor, Pomberger,

et al., 2023). It is widely appreciated that an approach based on

experienced human intuition, typically involving iterative variation

of a single factor at a time, is generally rather inefficient for

reaction optimization. A more robust approach uses design of

experiments which can be performed in a purely data‐driven

fashion based on statistical models or under support from kinetic

models of the synthetic reactions (Siedentop et al., 2021; Taylor,

Pomberger, et al., 2023). Mechanism‐based kinetic models

achieve the most comprehensive and in‐depth description of the

reactions analyzed (Almquist et al., 2014; Gernaey et al., 2010;

Harris et al., 2022; Sigg et al., 2021, 2023). These models are

powerful engineering tools of optimization in their own right.

They enable computer simulation to explore the relevant reaction

parameter space in a comprehensive manner and in ways that are

unbiased by the search for predefined optimum operational points

(Lagerman et al., 2022; Lencastre Fernandes et al., 2013). Multi-

objective optimization often requires prioritization of single

objectives based on prior judgment of the relative importance of

a particular trade‐off between certain competing objectives

(Paschalidis et al., 2022; Rosa et al., 2022; Siedentop et al., 2023).

Alternatively, the full set of trade‐offs can be considered in a so‐

called Pareto optimization which identifies a set of best compro-

mises. The Pareto front is thus defined as a set of points in which

improvement in one objective results in the deterioration of

another. However, even in Pareto optimization it becomes

necessary to preselect constraints on objectives based on a priori

judgments. These judgments may not always be objective and

clear and additionally, they can result in important parts of the

parameter space to remain unexplored (Taylor, Pomberger,

et al., 2023).

Here, we show an unconstrained approach of kinetic modeling

for the optimization of the coupled phosphorylase reaction for

cellobiose synthesis. Optimization is here understood as the

flexible identification of a suitable window of operation to fulfill

different processing objectives. Kinetic simulation combined with

experimental validation was furthermore instrumental to uncover

a crucial, but hidden mechanistic detail of the cascade reaction:

the rate of CbP is decreased by the effect of bulk microviscosity

due to high sugar concentrations. The viscosity effect becomes a

dominant factor of overall reaction efficiency at the substrate

conditions of the industrial process. Based on modeling work by

Sigg et al. (2023) in the accompanying paper, a new hybrid

(mechanistic‐empirical) model was developed here to obtain

comprehensive description of the output of the cascade reaction

under all conditions used. Based on window of operation analysis

enabled by simulations with this new model, different scenarios

are identified for optimum production and are verified experi-

mentally. The evidence here shown emphasizes the important use

of kinetic modeling for the characterization and optimization of

cascade reactions in ways that appear to be inaccessible to mainly

data‐driven approaches.

2 | MATERIALS AND METHODS

2.1 | Experimental procedures

Unless mentioned otherwise, experiments were performed using

materials and procedures exactly as described in the accompanying

paper (Sigg et al., 2023). α,α‐Trehalose was from Carl Roth.

2.2 | Kinetic modeling

The kinetic model M4 of Sigg et al. (2023) was used as point of

departure. For further expansion of model M4, the King–Altmann

method was used to derive rate equations of the kinetic mechanism

considered. Grouping of microscopic rate constants into kinetic

parameters was done according to literature (Segel, 1993). Model

fitting was done with COPASI 4.34 (Build 251) as described in Sigg

et al. (2023) and applying the specific constraints detailed under

Results and Discussion. Parameter sensitivity and goodness of fit R2

were used to assess model quality and accuracy. Window of

operation analysis was performed based on simulations of reaction

time courses created with the parameter scan tool embedded in

COPASI. Numerical reaction variables (enzyme and substrate

concentrations) were varied systematically for simulation and

relevant parameters of reaction efficiency were calculated from the

resulting time courses described later. Results were visualized

graphically and selected conditions of optimum performance of the

reaction were verified experimentally in conversion experiments.

3 | RESULTS AND DISCUSSION

3.1 | A hidden factor of cascade reaction efficiency

Kinetic model M4 developed in Sigg et al. (2023) was used for

reaction optimization. The objectives were set as follows: product

concentration ≥ 500mM; product yield ≥ 0.9; and reaction time

≤ 48 h. The minimum total amount of volumetric activity, or protein,

of both enzymes (ScP + CbP; U/mL or mg/mL) necessary to meet the

objectives was identified through window of operation analysis

(Supporting Information: Figure S1). To release Cb in the concentra-

tion targeted, a minimum activity of 10 U/mL was required

(Supporting Information: Figure S1A). The CbP/ScP activity ratio

consistent with the processing objectives varied in the range 3:2–4:1

(Supporting Information: Figure S1B). In the enzyme preparations

used, the specific activity of ScP (47 U/mg) exceeded that of CbP by

4.3‐fold. The total amount of protein used in the reaction was

therefore minimal (∼1.2 mg/mL) when the CbP activity (8.0 U/mL)

surpassed the ScP activity (2.0 U/mL) by approximately fourfold. The

requirement for excess CbP activity can be understood from the

strong substrate inhibition of the enzyme by glucose, as implemented

in model M4 (Sigg et al., 2023). Conditions marked in Supporting

Information: Figure S1 (panel C: 650mM Suc and Glc; panel D:
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80mM Pi) and shown in Table 1 (entry F) were selected for

experimental verification and results are shown in Figure 2a.

Predictions of model M4 differed widely from the experiment,

especially in the early phase of the reaction (≤3 h) where the actual

conversion rate was 3.5‐fold lower than expected from the

simulation. Considering possible factors of rate retardation not

captured by model M4, we excluded inhibition by Glc as it is already

incorporated in the mechanistic description. We also excluded

product inhibition for the reasons that the model deviates from

experiment under conditions when the product release is still low

(Figure 2a) and earlier validations of model M4 have been done in

experiments involving similar amounts of Cb and Fru formed. We

therefore concluded that model deviation must arise from inhibitory

effect introduced by substrate (Suc, Pi) other than Glc or by the

intermediary G1P. To achieve clarification, we performed initial‐rate

kinetic studies in which the substrate conditions were varied

systematically and the individual enzymatic rates were measured.

As shown in Figure 2, predictions of model M4 were in excellent

agreement with the experimental rates of ScP whereas they failed in

large extents to reproduce the rates of CbP. Significantly, a doubling

of [Suc] from 300 to 600mM resulted in a CbP rate reduction by

40%–65%, independent of the [G1P] present in the reaction

(Figure 2c). Relationship between [Suc] and degree of apparent

inhibition of CbP was thus suggested.

In search of reasons for a major effect of [Suc] on the CbP rate

missed in the earlier study of Sigg et al. (2023), we analyzed from time

course simulations how the individual enzymatic rates, and the degree of

utilization of the maximum activity of CbP and ScP, changed in

dependence of the substrate conversion. Reaction conditions A–F in

Table 1 were simulated and plots of volumetric CbP/ScP rate ratio are

shown in Figure 3a. The general trend is that the cascade reactions start

from a CbP/ScP rate ratio substantially smaller than unity, implying

limitation of the overall transformation rate by the CbP rate initially. The

ratio quickly increases to a value of approximately 1 that remains

constant during the further conversion. The exception of reaction E is

explained by high enzyme concentrations used in combination with low

[Pi], so that balancing of the CbP and ScP rates happened within the time

interval used for calculation of the rate ratio. We also determined the

specific enzymatic rates at each point of the reaction and related them to

the maximum rate of the individual enzyme. The resulting ratio expresses

the degree in which the respective enzyme is utilized in the reaction.

Results in Figure 3b show that the optimized reaction F differs from all

other reactions (A–E) in that the CbP activity was less completely utilized

than the ScP activity. The situation is reversed (i.e., ScP activity less

completely utilized) in the other reactions. The optimized reaction thus

involves unmasking of CbP inhibition in a degree considerably larger than

in reactions used to establish model M4.

3.2 | Inhibition by specific binding of sucrose
excluded

Supporting Information: Figure S2 shows a kinetic mechanism of CbP in

which all conceivable binding modes of Suc to the enzyme were

considered. Given the fact that the CbP binding pocket contains two

subsites for sugar binding (Kitaoka et al., 1992; Nidetzky et al., 2000; Van

Hoorebeke et al., 2010), Suc binding was likely to occur to the free

enzyme, but alternative binding modes could not be excluded at this

stage. A full steady‐state kinetic model of the Suc‐inhibited CbP is

presented in Supporting Information: Table S1. The complete model of

the cascade reaction which includes the kinetic description of the ScP

reaction (Supporting Information: Table S2, identic with M4 from Sigg

et al., 2023) is referred to as M5 to follow the kinetic model numbering

of Sigg et al. (2023). Model M5 was fitted to time courses A–E of Table 1

using the results of initial rate studies in Figure 2 as additional

constraints. Supporting Information: Table S3 shows the parameter

estimates along with the complete set of boundaries and constraints

used for fitting. Supporting Information: Table S4 shows the reaction

variables as optimized by fitting. Model M5 gave an excellent

representation of the experimental time courses, as shown in Supporting

Information: Figure S3. The initial rate data could also be described well

(Supporting Information: Figure S4). However, the time course F used for

validation could not be reproduced in suitable quality (Supporting

Information: Figure S3F). Of the different binding modes of Suc

TABLE 1 Reaction conditions of conversion experiments.

Fitting
A B C D E F

ScP [U·ml−1] 1.50 7.77 11.6 11.6 25.2 2.00

CbP [U·ml−1] 0.75 0.75 1.52 1.52 8.93 8.00

[Suc]0 [mM] 100 300 300 500 600 650

[Glc]0 [mM] 100 300 300 200 600 650

[Pi]0 [mM] 9.13 39.0 80.0 39.0 10.0 80.0

Validation
A B C D

ScP [U·ml−1] 1.18 9.72 11.6 11.6

CbP [U·ml−1] 0.76 1.52 1.52 1.52

[Suc]0 [mM] 100 300 300 200

[Glc]0 [mM] 100 300 300 500

[Pi]0 [mM] 9.13 39.0 71.0 39.0

Multiobjective analysis
MA 1 MA 2 MA 3

ScP [U·ml−1] 8.30 10.0 38.0

CbP [U·ml−1] 2.40 2.80 4.80

[Suc]0 [mM] 360 340 340

[Glc]0 [mM] 360 340 340

[Pi]0 [mM] 35.0 27.5 12.5

YCb [−] 0.80 0.85 0.90

Cb/CbP [µmol/U] 122 107 64

Abbreviations: CbP, cellobiose phosphorylase; ScP, sucrose
phosphorylase.
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F IGURE 2 Assessment of model M4 in time‐course and initial‐rate studies. (a) Experimental verification of the operational optimum
predicted by the model (see Table 1, entry F; Figure S1 (Supporting Information), panels c and d). Symbols show the experimental data
(Suc, triangles; Glc circles; Fru, squares; Cb, diamonds), lines show the simulation. (b) and (c) Initial rates relative to Vf of ScP (b) and CbP (c) at
different compositions of the reaction mixture. Data are from two independent experiments, shown as shaded bars with error bars indicating the
standard deviation. The corresponding model simulations are shown as grey bars with goodness of fit (R2) indicated. CbP, cellobiose
phosphorylase; ScP, sucrose phosphorylase.

F IGURE 3 Simulations of model M6 to identify rate limitation and efficiency of enzyme utilization in different conditions of the cascade
reaction. (a) The ratio of volumetric rates (v) of CbP and ScP are shown in dependence of [Suc] present in the reaction. (b) The relative efficiency
of enzyme utilization is the ratio of the volumetric rates of CbP and ScP, each normalized on the maximum rate (Vf) of the respective enzyme.
Lines show simulation data of model M6 with reaction conditions according to Table 1 (black, A; red, B; blue, C; green, D; purple, E; orange, F).
CbP, cellobiose phosphorylase; ScP, sucrose phosphorylase.
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considered in Supporting Information: Figure S2, only the binding to free

enzyme (KiSuc1) was potentially significant in terms of binding strength

(Supporting Information: Table S3). However, parameter estimate for

KiSuc1 was linearly correlated with estimates for inhibition constants of

glucose, in particular that of KiGlc3. It was not possible, therefore, to

distinguish between inhibition of CbP due to binding of Glc or Suc, solely

based on model M5 fits to the time course data. However, evidence

from initial rate studies (Supporting Information: Figure 2c), that CbP

inhibition by Suc was similar irrespective of the degree of enzyme

saturation with G1P (8.0mM, 2.6 KG1P; 50mM, 16 KG1P), cast doubt on

the idea of Suc binding to the free CbP and suggested that alternative

(bulk) effects of high [Suc] on the enzyme activity be considered.

3.3 | Bulk microviscosity uncovered as a critical
factor of enzymatic rate limitation

A prominent way for high sugar concentrations to influence enzyme

activity is through their effect on bulk microviscosity. Physical steps

of enzyme catalysis, in particular those involving dynamical rearran-

gements of the protein structure, can be sensitive to changes in the

microviscosity (Sampedro et al., 2020). We here performed initial rate

experiments using α,α‐trehalose as a small‐molecule microviscogen

that is unreactive with both CbP and ScP. Of note, dependence of

fluid microviscosity on the mass‐based concentration is identical for

α,α‐trehalose and the sugar compounds of the cascade reaction (Glc,

Suc, Fru, Cb; Galmarini et al., 2011; Telis et al., 2007). Viscosity of

G1P was assumed to be similar to the one of Glc. Results in Figure 4a

reveal CbP activity lowered in a roughly linear fashion dependent on

the total reactant concentration in the mixture. Measurements

performed at saturating (50mM) and nonsaturating concentrations

(8.0 mM) of G1P in the presence of 80mM Glc do not give the same

slope, as expected because the distribution of enzyme forms at

steady state is not identical for the two conditions, but the linear

dependence of decline in rate on reactant concentration remains.

Effect of the reactant concentration (Figure 4a) can also be expressed

in terms of change of microviscosity caused, as shown in Supporting

Information: Figure S5. Plausible interpretation of the viscosity effect

is according to Kramer's theory: the transmission coefficient for

virtual barrier crossing in the rate‐limiting step of the overall CbP

catalysis (kcat) depends inversely on the solvent friction (Sampedro

et al., 2020). On this interpretation, an empirical extension of model

F IGURE 4 Results of initial rate analysis for CbP (a–c) and ScP (d) using model M6. (a) Effect of the total concentration of sugar solutes on
the enzymatic rate. Symbols show the data (Glc/G1P: 80mM/50mM, triangles; 80mM/8mM, circles; each with and without varied
concentrations of α,α‐trehalose added) and solid lines show the simulation results (averages of 10 fits). (b) Simulation of the Glc inhibition on
CbP. Symbols show the data (G1P: 50mM, triangles; 8.0 mM, circles) and lines show the fit. Data are from Sigg et al. (2023). (c) and (d) Effect of
Glc and Suc on initial rate of CbP (c) and ScP (d) reaction. Shaded bars show the data and grey bars show the simulation. Error bars are standard
deviations of duplicate experiments. CbP, cellobiose phosphorylase; ScP, sucrose phosphorylase.
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M4 was made to express dependence of the maximum rate of CbP on

the total reactant concentration present in the reaction, relative to

the reference of the enzyme's maximum rate under standard assay

conditions (total reactant concentration: 27.4 g/L).

The resulting model M6 is shown in Table 2 with kinetic

parameters being summarized in Supporting Information: Table S2

(ScP reaction) and Supporting Information: Table S5 (CbP reaction).

The model was fitted to time course data (Table 1, conditions A–F)

using the results of initial‐rate measurements as constraints. The

parameter estimates are summarized along with the relevant

boundaries and constraints used in Supporting Information:

Table S6. Supporting Information: Table S4 shows the reaction

variables adjusted by fitting. The fitting results are displayed in

Figures 4 and 5. Model M6 gave an excellent description of all of the

experimental data, well visible in the figures and also indicated by

goodness of fit R2 ≥ 0.90. Effect of microviscosity was represented

very well, as shown in Figure 4a. Here, capability of model M6 to

reproduce the differential sensitivity of the CbP rate to microvisc-

osity change under conditions of saturating and nonsaturating

concentrations of G1P is certainly worth to be pointed out.

To validate model M6, we used a separate set of 4 independent

time courses (Table 1) and compared simulation results with the

experiment. Figure 6 shows excellent agreement of model M6

predictions with actual data and therefore verifies model M6 for the

purpose of reaction optimization.

3.4 | Unconstrained simulations support
multiobjective optimization

Extensive simulations were performed with model M6 to span a fully

representative range of substrate and enzyme concentrations. In view of

the industrial applicability of the reaction conditions examined (Brucher &

Häßler, 2019), we avoided excess of one substrate over the other and

the mole ratio of Suc and Glc was therefore fixed at unity. Pi was variable

as indicated. Considering a reasonable upper limit of the total protein

loading used for the biotransformation (≤15mg/mL), the enzyme

activities were restricted to 100U/mL for ScP and CbP. A total of 3.6

million individual time courses was simulated to provide an

unconstrained basis for the later selection of optimum. Deepened

mechanistic understanding of the cascade reaction, generated

through disentanglement of the various interrelated factors of

conversion efficiency as discussed below, represents a unique

strength of the initially untargeted modeling approach used here.

For further analysis, we included reactions reaching product yields

(YCb) equal to or exceeding the selected target percentage

(≥80%–90%; see below) of the thermodynamic maximum yield

of Cb (Y _Cb eq) under the conditions used, within 24 h. Note that

YCb,eq is dependent on the concentration ratio of substrate

and Pi and therefore varies in the different reaction conditions.

YCb was defined according to the relationship ⋅Y S X=Cb Cb Suc,

where S = [Cb]/([Cb] + [G1P])Cb is Cb selectivity and X = 1 −Suc

([Suc]/[Suc] )t=0 is Suc conversion. SCb accounts for the portion of

intermediary G1P not converted into Cb and depends on the initial

[Pi] used in the reaction. Simulations fulfilling the YCb requirements

are displayed in Figure 7 and we use them to identify window of

operation for Cb production at 100–200 g/L.

3.4.1 | Reactant concentrations and enzyme loading

Figure 7a illustrates the dependence of YCb ( ≥ 0.9 Y _Cb eq) on the

substrate concentration and does so for different concentrations of

Pi. The results reveal the interplay of opposed effects of [Pi] on the

YCb and on the overall enzymatic activity. YCb decreases in general as

[Pi] is increased and the effect is strongest at low substrate

concentration. For high substrate concentration when [Pi] is low,

there are only few reaction conditions, typically involving use of a

large amount of enzyme (CbP ≥ 50 U/mL; ScP ≥ 14.4 U/mL), that can

satisfy the requirement of YCb ≥ 0.9. To produce Cb at 200 g/L, we

took from Figure 7a (Pareto front at YCb = 0.9) that reaction at

650mM substrate and 25mM Pi would be optimal for realization of

the set conversion task at a minimized substate and enzyme load.

A common problem for the optimization of enzyme cascade

transformations, and catalytic reactions in general, is to prevent that the

given processing objective (e.g., space‐time yield) is optimized by simply

TABLE 2 Summary of the developed kinetic model M6 for ScP
and CbP.

ScP
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[Glc][Pi][Cb] [Glc] [Pi] [Pi][Cb]

[Glc][Pi] [Glc] [Pi] [Cb] [Glc]

G1P
[Glc] [Cb] [Glc] [G1P][Glc][Pi]

Glc
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iCb Pi iGlc1

Cb
2

iCb Pi iGlc2 iiGlc3 iCb Pi
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iGlc2 iGlc3
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iCb Pi iCb iGlc2

2

iGlc2 iGlc3 iCb iGlc2 iPi

Cb

iCb Pi

Note: Definitions of kinetic parameters are summarized in Supporting
Information: Tables S2 and S5 for ScP and CbP, respectively.

Abbreviations: BE, nonspecific bulk effects; c, concentrations; Cb,
cellobiose; CbP, cellobiose phosphorylase; Fru, fructose; G1P, α‐d‐glucose
1‐phosphate; Glc, glucose; Vf Keq, equilibrium constant; K , Michaelis

constant; Ki, dissociation constant; m, linear dependency of BE on
dissolved reaction components; MW, molecular weight; Pi, phosphate;
ScP, sucrose phosphorylase; Suc, sucrose; Vf, maximum velocity of the
forward direction; cx, mass of reaction compounds in the activity assay
(50mM G1P + 80mM Glc → x = 27.4 g/L).
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adding higher amounts of catalyst (Siedentop et al., 2021; Taylor,

Pomberger, et al., 2023). We therefore considered here the minimum

usage of enzyme consistent with the desired reaction efficiency.

Figure 7b shows the [Cb] released in 24 h from reactions giving

YCb≥ 0.8 YCbeq in dependence of the volumetric activities of CbP and ScP

used. The most striking point of Figure 7b is the extremely nonlinear

relationship between [Cb] released and CbP activity used. Compared to

just 1U/mL needed to produce 200mM, a 50‐fold larger activity of the

CbP is necessary for production of 585mM (200 g/L). The peculiar

behavior of the reaction is explained by substrate and product inhibition

in combination with effect of bulk microviscosity on the CbP activity at

high substrate concentration. The achievable [Cb] approaches plateau

regardless of the amount of enzyme added, indicating important trade‐

off between production efficiency in terms of the product titer and

usage efficiency of the enzyme catalyst. Figure 7b and in detail

Supporting Information: Figure S6 reveal furthermore that under a vast

majority of the reaction conditions simulated, the ScP activity could be

kept at ≤ 10U/mL to still meet the required conversion task. Only if

the production is pushed to the maximum of [Cb] (upper front of the

landscape in Figure 7b and back of Supporting Information: Figure S6)

does the demand for ScP activity increase to 30U/mL or higher. ScP is

by far less vulnerable to inhibition than CbP. The added requirement for

ScP activity is thus explained by the effect of enhanced supply of G1P

on the efficiency of the CbP reaction.

F IGURE 5 Best‐fit results of model M6. Panels are labeled according to Table 1 (“Fitting”) which identifies the reaction conditions applied.
Symbols show the data (Suc, triangles; Glc circles; Fru, squares; Cb, diamonds) and lines show the fit, with goodness of fit (R2) indicated. Data in
panels (a–e) are taken from Sigg et al. (2023).

SIGG ET AL. | 573

 10970290, 2024, 2, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/bit.28601 by T

echnische U
niversitaet G

raz, W
iley O

nline L
ibrary on [28/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3.4.2 | Trade‐off between Cb release and efficient
use of CbP

The ratio of [Cb] released and CbP activity loaded (µmol Cb/U CbP) is

used as parameter describing the efficiency of enzyme use in the

production. Figure 7c shows this efficiency for simulated reactions

with both substrate and Pi concentration varied. Maximum is found at

425 µmol/U achieved at conditions (60mM substrate,10mM Pi) that

largely exclude effects of inhibition and microviscosity. Reaction

identified for Cb production at 200 g/L involves just 3% ( = 13µmol/U)

of that efficiency. Contour lines are drawn in Figure 7c at different [Cb]

in the range 50–200 g/L and show the associated enzyme efficiencies.

Downstream processing of the reaction mixture involves crystallization

as the main step of purification and formulation of the Cb (Shimada

et al., 2009). The requirement of [Cb] to be at ≥ 500 g/L for

crystallization illustrates critical trade‐off between the objectives of

production at maximum enzyme efficiency and product release

optimally aligned to the conditions of downstream processing.

For further analysis, we considered Cb produced at approxi-

mately 100 g/L to represent a plausible compromise between the

two objectives, involving increase in product concentration

compared to the point of maximum enzyme efficiency (∼21 g/L)

and concentration of the product solution for crystallization by

the same five‐fold factor. Proceeding along the 100 g/L contour

line in Figure 7c, we show that the enzyme efficiency ranges from

29–134 µmol/U. Three operational points equally distributed

between YCb = 0.8 and 0.9 (Table 1; multiobjective reaction

analysis) were selected for experimental assessment. Besides

verification of the model predictions, the experiments had the

goal of demonstrating the production of Cb at minimum usage of

enzyme. Additionally, the relationship between the initial [Pi] and

the enzyme demand in the reaction could be analyzed. Note that

slight deviation from the 100 g/L contour line in Figure 7c is due

to a rounding effect in the simulation. Among the three reaction

conditions analyzed, reaction MA 1 was found to be most suitable,

as it showed the highest enzyme efficiency of 122 µmol/U

(Table 1) under the given boundary conditions.

3.4.3 | Effect of Pi

Selected conditions in Table 1 involve the peculiarity that ScP

activity is used in 3.5–7.9‐fold excess over CbP activity. Considering

the results in Figure 7b and the interpretation thereof, that a

relatively low ScP activity of ≤ 10 U/mL and smaller than the

corresponding CbP activity was sufficient to meet the processing

F IGURE 6 Validation of model M6. Panels are labeled according to Table 1 (“Validation”) which identifies the reaction conditions used. Lines
show the model simulation, symbols show the experimental data (Suc, triangles; Glc circles; Fru, squares; Cb, diamonds) taken from Sigg et al.
(2023), with goodness of fit (R2) indicated.
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objectives, the particular outcome of the optimization warrants

discussion. Intuition might suggest that the enzyme more strongly

prone to inhibition should be used in excess. Analysis of the

simulation data clarifies that the demand for excess ScP arises from

effect of the G1P recycling on the overall efficiency of the cascade

reaction. The CbP activity benefits from a relatively high steady‐

state level of the intermediary G1P and the distribution of the initial

Pi substrate into G1P and free phosphate depends on the rela-

tive rates of the ScP and CbP reactions. Figure 7d shows the

requirements for loading of ScP and CbP in the multiobje-

ctive analyzed reactions, depending on the concentration of Pi

substrate used: the larger the initial [Pi], the lower can be the excess

of ScP used. Additionally, the demand of CbP loading decreases

2‐fold on increasing the [Pi] from 12 to 35 mM (Figure 7d).

Simulations reveal that the steady‐state concentration of Pi during

the reactions drops to below 1.0 mM which is just about 1/20

the KPi of ScP. At the optimum operational points of the cas-

cade transformation, therefore, the effect of ScP working at low

degree of saturation with Pi is partly compensated by enzyme

loading. The results reveal the competing objectives related to the

[Pi] used in the reactions: recycling of G1P without limitation is

favored at high [Pi], yet this can be achieved only at the expense of

YCb reduced concomitantly, as discussed above. Kaspar et al. (2020)

provide an interesting discussion on the role of [Pi] in transribosyla-

tion reactions catalyzed by nucleoside phosphorylase(s).

3.5 | Reaction conditions from multiobjective
optimization verified experimentally

Figure 8 shows reaction time courses acquired under the conditions

identified in the window of operation analysis based on considerations of

multiobjective optimization (Figure 7c and Table 1). The experimental

data give excellent agreement with the model predictions. Minor

deviation is noted for the concentration of Glc which towards the end

of the reaction is higher than predicted. The difference between [Glc]

and [Suc] becomes larger than theoretically possible by the mass balance

of the coupled enzymatic reactions under the conditions of initial [Pi]

used. Note the requirement that [Glc]− [Suc]≤ [Pi]0. The apparent

violation of mass balance is explainable by enzymatic hydrolysis of Suc,

G1P or both happening in small degree. ScP is known to possess low

hydrolase activity towards Suc conditions in which the [Pi] is strongly

limiting in the reaction (Klimacek et al., 2020; Sigg et al., 2021). However,

as it did not affect the Cb formation, the side reaction leading to excess

Glc in the process was not further investigated here.

Table 3 summarizes key performance metrics of the three

reactions performed. The YCb and [Cb] meet the specific objectives of

multiobjective analysis under the respective conditions used. The

[Cb] released in reaction MA 1 is below the objective (100 g/L or

292mM in 24 h), but the immediate measurements of product ([Cb],

[Fru]) at the 24 h point appears to be afflicted with error. The overall

time course (Figure 8a) is well in agreement with [Cb] formed as

F IGURE 7 Results of window of operation analysis. (a) Influence of initial substrate concentration on YCb. (b) Minimum amounts of ScP and
CbP needed for Cb production. (c) Influence of initial substrate concentration on catalyst yield (Cb/CbP), with contour lines indicating the
achievable Cb concentrations. Symbols show the reaction conditions of multiobjective analysis indicated in Table 1 (“Multiobjective analysis”)
with triangle showing MA1, square showing MA 2, and circle showing MA 3. (d) Effect of the initial [Pi] on the activity of ScP (triangles) and CbP
(circles) required in the optimized reactions MA 1–MA 3 (Table 1). Solid lines show linear regressions with goodness of fits (R2) indicated. CbP,
cellobiose phosphorylase; ScP, sucrose phosphorylase.
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predicted by the model. The STY is comparable for all reactions,

consistent with the common task of [Cb] release within 24 h. The

efficiency of utilization of CbP activity is in accordance with the

model predictions and suggests reaction MA 1 (Table 1) to perform

most economically among the three reactions used.

The mol‐based enzyme turn over numbers (TONs) in the range

0.64–1.13 × 105 for CbP and 1.17–4.69 × 105 for ScP are taken to

indicate that the enzymatic transformations in batchwise reaction

without enzyme recycle proceeded efficiently. In biocatalysis applied

to synthesis of simple carbohydrates, enzymeTONs of 105 or greater

are generally considered to be a requirement for the industrial

applicability of the process (Wu et al., 2021). Change of TON (1.7‐

fold for CbP; 4.0‐fold for ScP) in reactions MA 1–3 (Table 1)

underlines the important role of [Pi] in determining the reaction

performance. Here, the [Pi] does not primarily affect the YCb or [Cb]

but it changes the minimum enzyme loading (up to four‐fold for ScP)

necessary to fulfill the objectives of the conversion. The reactions

MA 1–3 exemplify trade‐off between the objectives of maximized YCb

and minimized loading of enzymes, both affected by the [Pi] used

while achieving the same target value of [Cb].

4 | CONCLUSIONS

Mechanistic‐empirical (hybrid) modeling of the ScP‐CbP cascade

reaction is shown for comprehensive window of operation analysis

and multiobjective process optimization of Cb production from Suc

and Glc. The modeling approach resulted in the discovery of

microviscosity due to high sugar concentration as an important

F IGURE 8 Experimental verification of the reaction conditions from multiobjective reaction analysis. Panels are labeled according to Table 1
(“Multiobjective analysis”; a, MA 1; b, MA 2; c, MA3) which identifies the reaction conditions used. Lines show the model simulation, symbols the
experimental data (Suc, triangles; Glc circles; Fru, squares; Cb, diamonds) with goodness of fit (R2) indicated.

TABLE 3 Analysis of the experimental time courses of reactions
from multiobjective reaction analysis after 24 h.

Parameter MA 1 MA 2 MA 3

YCb [‐] 0.79 ± 0.07 0.87 ± 0.11 0.93 ± 0.07

Cb [mM] 257 ± 7 278 ± 13 295 ± 5

Cb/CbP [µmol/U] 132 ± 14 104 ± 12 62.8 ± 6.4

STY [mM/h] 10.7 ± 0.3 11.6 ± 0.6 12.3 ± 0.2

TONCbP·10
5 [mol/mol] 1.13 ± 0.03 1.04 ± 0.05 0.64 ± 0.01

TONScP·10
5 [mol/mol] 4.69 ± 0.13 4.21 ± 0.20 1.17 ± 0.02

Note: Results represent averages of N = 2 experiments with standard
deviation indicated. The reaction conditions of MA1–MA3 are from
Table 1. The TON values are based on the molar concentrations of Cb

product released and enzyme used. The relationship TON = [Cb]/([E]) was
used. [E] was calculated from the volumetric enzyme activities, using
specific activities (Schwaiger et al., 2022) of 11.4 U/mg and 117U/mg and
molecular masses of 92 kDa (Nidetzky et al., 2004) and 129 kDa (van den

Broek et al., 2004) for CbP and ScP, respectively.
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factor of the bulk solution on the activity of CbP. Modeling was

essential to unravel the conflicting relationships between efficient

utilization of the enzymes and maximized concentration (or yield) of

the product within a given process time and in dependence of the

initial concentrations of substrate and phosphate used. Optimum

balance of these competing parameters of process performance is

revealed by the model‐calculated window of operation and is verified

in experiments. Our study emphasizes the important use of kinetic

modeling for the characterization and optimization of cascade

reactions in ways that are likely inaccessible to purely data‐driven

approaches. We believe that the modeling strategy shown here is

broadly applicable to the optimization of enzyme cascade reactions

and has relevance in particular when the recycled substrates (here:

G1P) must be present in not just catalytic amounts.
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