
Key Recovery Attacks on Recent Authenticated Ciphers

Andrey Bogdanov1, Christoph Dobraunig2, Maria Eichlseder2, Martin M. Lauridsen1,
Florian Mendel2, Martin Schläffer2, and Elmar Tischhauser1

1 DTU Compute, Technical University of Denmark, Denmark
2 IAIK, Graz University of Technology, Austria

Abstract. In this paper, we cryptanalyze three authenticated ciphers: AVALANCHE, Cal-
ico, and RBS. While the former two are contestants in the ongoing international CAESAR
competition for authenticated encryption schemes, the latter has recently been proposed for
lighweight applications such as RFID systems and wireless networks.
All these schemes use well-established and secure components such as the AES, Grain-like
NFSRs, ChaCha and SipHash as their building blocks. However, we discover key recovery
attacks for all three designs, featuring square-root complexities. Using a key collision tech-
nique, we can recover the secret key of AVALANCHE in 2n/2, where n ∈ {128, 192, 256} is the
key length. This technique also applies to the authentication part of Calico whose 128-bit
key can be recovered in 264 time. For RBS, we can recover its full 132-bit key in 265 time
with a guess-and-determine attack. All attacks also allow the adversary to mount universal
forgeries.

Keywords: authenticated encryption, CAESAR, key collision, guess-and-determine, univer-
sal forgery, AVALANCHE, Calico, RBS

1 Introduction

An authenticated cipher is a symmetric-key cryptographic algorithm that aims to provide
both the confidentiality and authenticity of data – the two most fundamental crypto-
graphic functionalities. Authenticated encryption has been used extensively since decades
by combining encryption algorithms with message authentication algorithms. However, it
was not until the 2000s that the separate security goal of authenticated encryption (AE)
has been formulated [6, 13].

Authenticated encryption schemes can basically be constructed either as a generic com-
position of an encryption algorithm (a block or stream cipher) and a message authentica-
tion code (MAC), or as a dedicated AE design. Doing both encryption and authentication
in one cryptographic primitive also has the advantage of attaining a potentially higher
peformance. Indeed, such combined schemes as OCB [14, 19, 20] and OTR [17] require
only one block cipher call per block of data processed to produce both the ciphertext and
the authentication tag.

Owing to its relatively recent origins, only very few AE designs have been included
in international standards, the most prominent examples being CCM [9] and GCM [10,
15] which have been included in ANSI/ISO, IEEE and IETF standards. Recently, the
CAESAR competition [1] has been initiated in order to establish a portfolio of recom-
mended AE algorithms during the next years, making authenticated encryption a major
focus of the cryptographic community. A large number of diverse designs has been sub-
mitted to this competition, ranging from block cipher modes of operation to dedicated
designs.

A substantial fraction of the CAESAR submissions build upon proven components,
such as the AES, the SHA-2 family or the Keccak [8] permutation. An important reason
for such a design decision is the assumption that the AE scheme will inherit the good
security properties of the building blocks. For some designs, this is backed up by a formal

security reduction. However this is not the case for all candidates, and even when security
proofs for confidentiality and integrity are provided, they are often limited by the birthday
bound, while at the same time any key recovery attack with complexity below 2n would
be highly undesirable.

We analyze three recent proposals for authenticated encryption: AVALANCHE [4] and
Calico [21] are general-purpose AE schemes that have been submitted to CAESAR, and
RBS [12] has recently been proposed for lightweight applications. All three algorithms are
based on secure building blocks: AVALANCHE uses the AES, Calico builds upon ChaCha [7]
and SipHash [5], and RBS a Grain-like [3] register-accumulator architecture [2].

Despite being based on these secure components, our analysis establishes that all
three algorithms admit key recovery attacks with complexities significantly below ex-
haustive search. AVALANCHE and Calico lend themselves to attacks based on key col-
lisions, leading to a key recovery with complexity 2n/2 for all versions of AVALANCHE
(n ∈ {128, 192, 256}), and with complexity 264 for the 128-bit authentication key of Cal-
ico. For RBS, recovering its full 132-bit key requires 265 time with a guess-and-determine
strategy. For all algorithms, the recovered key material enables the adversary to obtain
universal forgeries. In the case of AVALANCHE and RBS, the adversary also obtains all
necessary key material for decryption of arbitrary messages.

All these attacks are entirely structural and do not make use of any weaknesses of the
building blocks themselves. We give an overview of the attacks and their complexities in
Table 1.

Table 1: Overview of the attacks presented in this paper. For the attacks marked with (⋆),
memoryless variants are possible [18], reducing the memory requirements to O(1), elimi-
nating the offline computations, and increasing the time complexity by a factor of about 2.

Algorithm Recovered key bits Time Memory Data

Offline Online

AVALANCHE-128 384 264 264 264(⋆) 264

AVALANCHE-192 448 296 296 296(⋆) 296

AVALANCHE-256 512 2128 2128 2128(⋆) 2128

Calico 128 264 264 264(⋆) 264

RBS 132 – 265 O(1) 1

The remainder of the paper is organized as follows. We introduce some common nota-
tion in Sect. 2. Sect. 3 describes the key recovery attack on AVALANCHE. Our attack on
Calico is presented in Sect. 4. In Sect. 5, we describe our guess-and-determine attack on
RBS. We conclude our findings in Sect. 6.

2 Notation

In the following, we use N,A,M and C to denote nonce, associated data (data which is
authenticated but not encrypted), a message (to be encrypted and authenticated) and a
ciphertext, respectively. For binary strings x and y, we let |x| denote the bit-length of
x and x∥y is the concatenation of x and y. We use ϵ for the empty string, i.e. |ϵ| = 0.
Subscript usually denotes the bit index of a string, so xi is the ith bit of x, with the
convention that x0 is the least significant, rightmost bit. We use ⊕ to denote the XOR
operation and use hw(x) to denote the Hamming weight of x. In the case where X is a

binary string of blocks, and where the block size is understood to be b, we let X[i] denote
the ith block of X, i.e. X[i] = xbi−1∥ · · · ∥xb(i−1) for i ≥ 1.

3 AVALANCHE

The AVALANCHE scheme [4] is a submission to the ongoing CAESAR competition for au-
thenticated encryption ciphers. We note that the specification of AVALANCHE leaves some
room for interpretation. In the aspects relevant to our attacks, we assume the following:

– The nonce has sizes |N | ∈ {80, 160, 128} for key lengths n ∈ {128, 256, 192}, respec-
tively.

– The nonce N is randomly generated.
– The counter c is initialized to c = 0.
– The tag length is |T | = 128 as well as the security parameters k and p are 128-bit.
– The (n+ 256)-bit key K consists of three independent parts, K = (KP , k, p).

AVALANCHE uses the AES to process a message M of m blocks and associated data
A of arbitrary length to produce a ciphertext C of m+1 blocks and an authentication tag
T . It does not support a public message number, instead a nonce N is generated by the
encryption algorithm itself.

The input to AVALANCHE with a specified secret key K = (KP , k, p), is a 3-tuple
(M,A,K) of message and associated data. The output is a 4-tuple (N,A,C, T) of nonce,
associated data, ciphertext, and tag. The scheme uses two main algorithms described in
the following; PCMAC for message processing and RMAC for processing associated data.
The interfaces and outputs of the two algorithms are

(N,C, τP) = PCMAC(M) and τA = RMAC(A).

The final tag T is then computed as T = τP ⊕ τA.

3.1 PCMAC

The encryption with PCMAC is illustrated in Figure 1. The padded message is denoted
M [1] · · ·M [m] and the ciphertext C[0] · · ·C[m]. The number r is generated at random.

EKP

N∥c

r

C[0]

EKP

N∥(c+ 1)

M [1]

C[1]

EKP

N∥(c+m)

M [m]

C[m]

· · ·

Fig. 1: Message processing with PCMAC

3.2 RMAC

The output of RMAC is an intermediate tag τA of 128 bits. RMAC uses the secrets k
and p, p being a randomly chosen 128-bit prime and k chosen at random from {⌊p/2⌋ +
1, . . . , p− 1}. The intermediate tag τA is determined as

τA = (1∥A) · k mod p. (1)

3.3 Recovering the PCMAC key

The critical part of PCMAC is that the encryption key for E (see Figure 1) depends on
the nonce and counter. This facilitates key collision attacks, similar to the one on McOE-
X [16]. Our attack works in an offline phase and an online phase (see Algorithms 1 and 2).
Both are called with the same, arbitrary single-message blockM . The offline phase outputs
a list L which is used in the online phase. We also note that this technique allows a free
trade-off between time and memory by choosing the list size accordingly.

Algorithm 1: Offline(M)

Data: Single-block M
1 L← ∅
2 for i = 1, . . . , ℓ do
3 Choose new

K = (KP , k, p) ∈ {0, 1}n+256

4 (N, ϵ, C, T)← AVALANCHE(M, ϵ,K)
5 L← L ∪ {(C[1],KP , N)}
6 end
7 return L

Algorithm 2: Online(M,L)

Data: Single-block M , List L output from
Algorithm 1

1 for i = 1, . . . , 2n/ℓ do
2 Obtain (N, ϵ, C, T) for (M, ϵ) from AE
3 if ∃(x, y, z) ∈ L : x = C[1] then

4 return y ⊕ ((N ⊕ z)∥0n−|N|)
5 end

6 end
7 return Failure

In the offline phase we build a table of size ℓ of AVALANCHE encryptions of the same
message block, using different keys. In the online phase we request the encryption of the
same single-block message M in total 2n/ℓ times. By the birthday paradox, we expect to
see a collision in the oracle output C[1] in the online phase and the list L from the offline
phase. As the nonce N is public, we can then recover the secret key KP by adding it to the
stored nonce z and key y. We can verify candidate keys using an additional encryption.
Obviously, choosing ℓ = 2n/2 gives the best overall complexity, using just 2 · 2n/2 time and
memory in the order of 2n/2 to store L. Memoryless versions of the meet-in-the-middle
technique can be used here as well [18].

3.4 Recovering the RMAC secret parameters

To recover (k, p), we use the attack described above to recover the secret KP . We fur-
thermore ask for encryption and tag of some arbitrary message block; once with empty
associated data, i.e. A = ϵ, and once with A = 0, i.e. a single zero bit. Let the correspond-
ing outputs of AVALANCHE be (N, ϵ, C, T) and (N ′, 0, C ′, T ′), where T = τP ⊕ τA and
T ′ = τ ′P ⊕ τ ′A.

With KP in hand, we can ourselves compute τP and τ ′P using PCMAC. Consequently,
we obtain τA and τ ′A. Using the definition of RMAC of Eq. (1), we observe that for the
case where A = ϵ we directly obtain τA ≡ k mod p, but since k ∈ {⌊p/2⌋+ 1, . . . , p− 1}
we have k = τA. Now, for the case where A = 0, we find

τ ′A ≡ (1∥0) · k mod p

⇔ τ ′A ≡ 2k mod p

⇔ p = 2k − τ ′A.

We therefore obtain the secret parameters (k, p) of RMAC with a complexity of two one-
block encryption queries.

In summary, we have recovered all n + 256 bits of secret key material in about 2n/2

time.

4 Calico

Calico [21] is an authenticated encryption design submitted to the CAESAR competition.
For Calico in reference mode, ChaCha-14 [7] and SipHash-2-4 [5] work together in an
Encrypt-then-MAC scheme [11]. The Calico design is depicted in Figure 2.

EM

N

KC

C MACC∥A

KM ⊕N

T

Fig. 2: The Calico scheme with encryption (left) and tag generation (right)

4.1 Specification

For the purpose of using ChaCha-14 and SipHash-2-4 in Calico, the 384-bit key K is split
into two parts: a 256-bit encryption key KC and a 128-bit authentication key KM , s.t.
K = KC∥KM . The plaintext is encrypted with ChaCha under KC to obtain a ciphertext
with the same length as the plaintext. Then, the tag is computed as the SipHash MAC of
the concatenated ciphertext and associated data. The key used for SipHash is generated
by XORing the nonce to the (lower, least significant part of the) MAC key KM , so

(C, T) = EncCalico(KC∥KM , N,A,M),

where the ciphertext and tag, C and T respectively, are computed with

C = EncChaCha-14(KC , N,M)

T = MACSipHash-2-4(KM ⊕N,C∥A).

The tag T and nonce N are both 64 bits long.

4.2 MAC key recovery

In Calico, SipHash is modified by XORing a nonce to the lower-significance bits of the
key. This modification of SipHash facilitates an attack similar to the one described by
Mendel et al. [16]. The attack targets the tag generation to recover the MAC key, which
in turn allows to forge tags for arbitrary associated data and ciphertexts.

We can split the attack into an offline phase and an online phase (see Algorithms 3
and 4), where the online phase requires access to an encryption oracle. Algorithm 4 does
264 online queries for an overall complexity of 264. Tradeoffs are possible to reduce the
number of online queries at the cost of the overall complexity.

Algorithm 3: Offline

1 L← ∅
2 for i = 0, . . . , 264 − 1 do
3 Compute tag T for A,M = ϵ under

MAC key KM = i∥0 and nonce
N = 0

4 L← L ∪ {(T,KM)}
5 end

Algorithm 4: Online(L)

Data: List L output from Algorithm 3
1 for j = 0, . . . , 264 − 1 do
2 Request tag T for A,M = ϵ under

nonce N = j from encryption
oracle

3 if ∃(x, y) ∈ L : x = T, y = i∥0 then
4 i∥j is a candidate for KM

5 end

6 end

This produces at least one MAC key candidate; if necessary, remaining candidates can be
filtered with additional offline computations, though their expected number is very small.

Since Calico preserves the plaintext length for the ciphertext, an empty plaintext and
associated data will produce an empty input for the MAC, independent of the cipher key
or nonce. Thus, all offline computations and online queries give tags calculated from the
same MAC input, only with varying keys fed to SipHash. The SipHash keys used in the
offline phase all have the lower 64 bits set to 0 and the upper 64 bits iterating through all
possible values. In the online phase, the SipHash keys have the upper 64 bits set to the
original bits of the secret KM , while the lower bits iterate through all possibilities. Thus,
there is exactly one match between the two key lists, which will also produce a colliding
tag (though other tag pairs may collide as well). The matching key stored in the offline
list gives the upper 64 bits of the correct key, the colliding nonce from the online phase
the lower 64 bits.

For tradeoffs with online complexity 2N < 264, replace 264 by 2N in the online phase
and by 2(128−N) in the offline phase; the success probability remains 1. We note that
memoryless versions of the meet-in-the-middle technique apply also here [18].

5 RBS

RBS is an authenticated encryption scheme by Jeddi et al. [12] proposed for use in RFID
tags. The idea of RBS is to insert the bits of a MAC on the message among the message
bits, in key-dependent positions, to produce the authenticated ciphertext.

5.1 Specification

The RBS scheme is depicted in Figure 3. It takes as input a 64-bit message M and a
132-bit key k to produce a 132-bit authenticated ciphertext C. Effectively, the key is split
in two parts of sizes which we denote n and m respectively: the least n significant bits are
used for clocking the MAC (which we described in detail later) while the most significant
m bits are used for initializing the NFSR in the MAC. RBS uses n = 64 and m = 68,
but we sometimes use n and m for generality in the following. Note that a requirement
on the key k is that it has Hamming weight 68, and hence the size of the key space is(
132
68

)
≈ 2128.06.

The RBS MAC takes either a 64-bit or 68-bit input to be processed, along with the
key k, and produces a 68-bit output. While RBS does not specify this, we assume (without
influence on our attack) that the second MAC output is truncated by taking the least
significant 64 bits to obtain the value S.

MAC MAC

M

C

R

S

A

E

k k

k

NFSR

Accumulator

ki

Xi
Xi

Fig. 3: The RBS scheme as an overview (left) and with the internals of the MAC (right)

Consider A and R of Figure 3 as registers of 64 bits and 68 bits, respectively. For the
function E, the ith ciphertext bit, denoted Ci, is obtained as

Ci =

{
least significant bit of A , ki = 0

least significant bit of R , ki = 1
.

Each time a bit is taken from A or R, to produce a ciphertext bit, the corresponding register
is right-rotated one position. As 132 bits are produced for the ciphertext, E effectively
obtains C by inserting the bits of R (the MAC of the message), in order, into A at key-
dependent positions.

The RBS MAC. The MAC used in RBS which we denote MAC(X, k), (depicted in
the right side of Figure 3 where the input is denoted X) is a Grain-like design based on
the MAC of Ågren et al. [2]. It is composed of a 68-bit NFSR and a 68-bit accumulator.
In this work, we consider the NFSR with an arbitrary update function (and indeed the
specification does not provide one). When a MAC is computed, the NFSR is loaded with
the most significant 68 bits of the key, i.e. k131, . . . , k64 and the accumulator is set to
zero. To produce MAC(X, k), the NFSR is clocked |X| times, i.e. it is shifted left and
the least significant bit is set to the feedback XORed with the input bit Xi ⊕ ki where
i = 0, . . . , |X|−1. If and only if Xi = 1, the accumulator is updated by XORing the current
NFSR state to it (we assume this is done prior to clocking the NFSR). When |X| > 64,
which is the case for the second MAC call, we assume that one re-uses k63, . . . , k0 for
clocking, until all of X is processed, although this makes no difference to our attack.

5.2 Cryptanalysis of RBS

The attack on the RBS scheme we present in the following uses a single chosen plaintext
and has expected worst case time complexity 265 and negligible memory complexity. The
attack is based on the following observations:

Observation 1. When computing R = MAC(M,k), if M = 1, then it immediately fol-
lows from the definition of the MAC that R = k131∥ · · · ∥k64, i.e. the 68 most significant
bits of the key.

Observation 2. Assuming one knows ka−1∥ · · · ∥k0 for some a with 1 ≤ a ≤ 132, then one
can determine the first ℓ := hw(ka−1∥ · · · ∥k0) bits of R, as the bits of R are directly mapped
to C by the ki where ki = 1. These in turn correspond to the first ℓ bits of k131∥ · · · ∥k64.
These can in turn be used to determine more of R, and so on.

Combined, these observations imply that for M = 1, we know that R = k131∥ · · · ∥k64.
When guessing any number of the least significant key bits, a number of bits of R and
thus of k131∥ · · · ∥k64, equal to the Hamming weight of the guess, can be directly obtained
from C.

Definition 1 (Free bit iteration). The ith free bit iteration, with i ≥ 0, refers to the
number of bits obtained “for free” in one such iteration.

Thus, the 0th free bit iteration refers to the analysis of how many free bits are obtained
from the initially guessed key bits; the 1st free bit iteration refers to how many free bits
are obtained from the ones obtained from the 0th free bit iteration, and so on.

For i ≥ 0, in the ith free bit iteration, we let ℓi denote the expected number of free bits
obtained and let δi denote the expected density of 1-bits in the remaining unknown bits,
after obtaining the ℓi free bits.

Lemma 1. Let ka−1∥ · · · ∥k0 be the initially guessed key bits and let ℓ0 = hw(ka−1∥ · · · ∥k0).
Then

δi =
m−

∑i
j=0 ℓj

n+m− a−
∑i−1

j=0 ℓj
, i ≥ 0 and

ℓi = ℓi−1δi−1, i ≥ 1. (2)

Proof. In the ith free bit iteration, a +
∑i−1

j=0 ℓj bits have already been guessed, so the
denominator of δi is what remains unknown. The key bits guessed thus far have Hamming
weight

∑i
j=0 ℓj , so the 1-bits density among the last bits is δi.

The number of bits expected to obtained for free in iteration i + 1 is determined by
the expected Hamming weight of the free bit portion just obtained in iteration i, which
in turn is ℓiδi. ⊓⊔

We now derive a closed formula for the quantity ℓi by observing that the ratios ℓi+1/ℓi
between consecutive elements of the sequence are actually constant, i.e. independent of i.
We formally prove this in the following lemma.

Lemma 2. Let a and ℓ0 be such that m − ℓ0 ̸= n +m − a and n +m − a ̸= 0. With the
notations of Lemma 1, we have

ℓi =

(
m− ℓ0

n+m− a

)i

ℓ0 (3)

for i ≥ 1.

Proof. We prove the claim by induction. For i = 1, Eq. (2) yields ℓ1 = m−ℓ0
n+m−aℓ0 =(

m−ℓ0
n+m−a

)1
ℓ0.

Assuming (3) holds for all k ≤ i, we have

ℓi+1 =
m−

∑i
j=0 ℓj

n+m− a−
∑i−1

j=0 ℓj
· ℓi

=
m− ℓ0

∑i
j=0

(
m−ℓ0

n+m−a

)j
n+m− a− ℓ0

∑i−1
j=0

(
m−ℓ0

n+m−a

)j ·
(

m− ℓ0
n+m− a

)i

ℓ0. (4)

For r ̸= 1, the geometric series
∑N

i=0 r
i is equal to rN+1−1

r−1 . Instantiating this with r = a
b

yields
∑N

i=0

(
a
b

)i
=

(a
b)

N
a−b

a−b and
∑N−1

i=0

(
a
b

)i
=

(a
b)

N
b−b

a−b . Since
(

m−ℓ0
n+m−a

)
̸= 1, we can apply

this to the two sums in Eq. (4), yielding

ℓi+1 =

m− ℓ0

((
m−ℓ0

n+m−a

)i
(m−l0)−(n+m−a)

−ℓ0−n+a

)

n+m− a− ℓ0

((
m−ℓ0

n+m−a

)i
(n+m−a)−(n+m−a)

−ℓ0−n+a

) ·
(

m− ℓ0
n+m− a

)i

ℓ0,

which can be reformulated to

=

(
m(−ℓ0−n+a)−ℓ0

(
m−ℓ0

n+m−a

)i
(m−ℓ0)+ℓ0(n+m−a)

−ℓ0−n+a

)
(

(n+m−a)(−ℓ0−n+a)−ℓ0
(

m−ℓ0
n+m−a

)i
(n+m−a)+ℓ0(n+m−a)

−ℓ0−n+a

) ·
(

m− ℓ0
n+m− a

)i

ℓ0,

and collecting common terms gives

=

(m− ℓ0)

((
m−ℓ0

n+m−a

)i
ℓ0 + n− a

)
ℓ0 + n− a

· ℓ0 + n− a

(n+m− a)

((
m−ℓ0

n+m−a

)i
ℓ0 + n− a

)
·
(

m− ℓ0
n+m− a

)i

ℓ0

=

(
m− ℓ0

n+m− a

)
·
(

m− ℓ0
n+m− a

)i

ℓ0

=

(
m− ℓ0

n+m− a

)i+1

ℓ0,

as claimed. ⊓⊔

Note that the preconditions of the previous lemma are not imposing a limitation for the
evaluation of the ℓi for relevant values of a. For instance, with a = n, the closed formula
holds for any 1 ≤ ℓ0 ≤ m, and the remaining case ℓ0 = 0 is trivial since all remaining
unknown bits must be equal to one.

Optimal choice of a. The closed formula of Lemma 3 also yields an estimate for the
optimal number of key bits a that should be guessed initially. Specifically, we should choose

a < n +m such that ℓ0
∑∞

i=0

(
m−ℓ0

n+m−a

)i
reaches n +m − a, the number of still unknown

bits. Since

ℓ0

∞∑
i=0

(
m− ℓ0

n+m− a

)i

=
1

1−
(

m−ℓ0
n+m−a

)ℓ0 = (n+m− a

ℓ0 + n− a

)
ℓ0,

this means that the optimal choice of a should be such that

(
n+m− a

ℓ0 + n− a

)
ℓ0 = n+m− a

⇕
a = n or a = n+m.

Note however that this only holds asymptotically, and it is expected that slightly more
than n bits will need to be guessed to determine the remaining part of the key.

For RBS this suggests that an initial guess of around n = 64 key bits should be
sufficient to determine all remaining 68 key bits. In order to determine how many more
bits than n we should guess, a more careful analysis of the progression of the ℓi’s is needed.
In the following, we develop a conservative estimate:

Lemma 3. Let a and ℓi be as in Lemma 1. Let L(a, ℓ0) = (ℓ0, . . . , ℓt) be the series of ℓi
defined from a and ℓ0 s.t. t is the largest integer s.t. ℓt ≥ 1. When guessing a initial key
bits, the expected number of extra free bits obtained is determined as

∑t−1
j=0 ℓj and the

expected Hamming weight of these bits is determined as
∑t

j=0 ℓj.

Proof. This follows directly from the definition of ℓi and L(a, ℓ0). ⊓⊔

Theorem 1. Let a, ℓi and L(a, ℓ0) be as in Lemma 3. Let w(a) denote the worst case
expected complexity of key recovery when a is the number of key bits initially guessed.
Then

w(a) =

min{68,a}∑
ℓ0=max{0,a−64}

(
a

ℓ0

)(
max{0, ⌊132− a−

∑t−1
j=0 ℓj⌋}

max{0, ⌊68−
∑t

j=0 ℓj⌋}

)
(5)

Proof. When initially guessing ka−1∥ · · · ∥k0, the Hamming weight of this guess, ℓ0, is
bounded below by max{0, a − 64}, because when a > 0, the Hamming weight must be
positive by the pigeon-hole principle. The Hamming weight ℓ0 is bounded above by either
a or 68.

There are
(
a
ℓ0

)
ways to distribute the ℓ0 ones over ka−1∥ · · · ∥k0. For each of these, the

rightmost binomial coefficient of Eq. (5) gives the number of ways to place the remaining
1-bits among the unknown bits for this fixed combination of (a, ℓ0). We take the sums
of the ℓj as ⌊

∑
j ℓj⌋ for a conservative estimate of the complexity. Summing over all the

possible ℓ0 for a fixed a, the result follows. ⊓⊔

The key recovery attack. We summarize the resulting key recovery attack on RBS in
Algorithm 5.

Algorithm 5: RBS-Key-Recovery(a)

Data: Number of initial key bits to guess, a
1 C ← RBS(1)
2 for ℓ0 = max{0, 64− a}, . . . ,min{68, a} do
3 forall guesses of k′

a−1∥ · · · ∥k′
0 with Hamming weight ℓ0 do

4 Let L = (ℓ0, . . . , ℓt), where t is the largest integer s.t. ℓt ≥ 1

5 Ξ ← max{0, 132− a−
∑t−1

j=0 ℓj} ; /* # of bits yet unknown */

6 Φ← max{0, 68−
∑t

j=0 ℓj} ; /* # of 1-bits remaining */

7 forall
(
Ξ
Φ

)
remaining candidates for k′

131∥ · · · ∥k′
131−Ξ+1 do

8 if C = RBS(1) under the key k′
131∥ · · · ∥k′

0 then
9 return k′

131∥ · · · ∥k′
0 as the correct key k

10 end

11 end

12 end

13 end

0 20 40 60 80 100 120 140
60

80

100

120

Initially guessed bits a

lo
g
2
w
(a
)

(a) Plot as a function of a

a log2 w(a)

61 68.24
62 67.32
63 66.22
64 65.27
65 65.00
66 66.75
67 68.39
68 71.18
69 72.83
70 76.03

(b) Data points for
the best values of a

Fig. 4: Expected worst time complexity for key recovery in RBS as a function of the number
of bits initially guessed, denoted a

It remains to determine the number of key bits a that should be guessed initially.
Figure 4 shows the base-2 logarithm of the expected worst case complexity w(a). While
Figure 4a shows a plot of w(a) with a ∈ {1, . . . , 131}, Figure 4b gives a numerical illus-
tration of the best values for a giving the lowest complexity. From the data, we find that
guessing a = 65 bits gives the lowest key recovery complexity of 265.

6 Conclusion

In this paper we presented key recovery attacks on three recent authenticated ciphers:
AVALANCHE, Calico and RBS. The two former are submissions to the ongoing CAESAR
competition for authenticated encryption schemes while the latter is a proposal for use in
lightweight applications.

Common to all three designs is that they make use of solid primitives such as the AES,
SipHash and ChaCha. We stress that the attacks presented here are purely structural,
i.e. the weaknesses are present due to the way the primitives are combined and not the
primitives themselves.

For AVALANCHE and Calico, the key recovery is possible due to the nonce being used
as (part of) the key material, thus facilitating a key collision attack. For RBS, we used a
guess-and-determine approach. In all cases, the key was recovered with a complexity of
at most square root of the brute-force effort. Our attacks allows an adversary to perform
universal forgeries in all three cases, and for AVALANCHE and RBS this extends to the
ability to decrypt arbitrary ciphertexts.

Acknowledgments

The work has been supported in part by the Austrian government through the research
program FIT-IT Trust in IT Systems (project 835919) and by the Austrian Science Fund
(project P26494-N15).

References

1. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness, March
2014. http://competitions.cr.yp.to/caesar.html.

2. Martin Ågren, Martin Hell, and Thomas Johansson. On hardware-oriented message authentication.
volume 6, pages 329–336, 2012.

3. Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-128a: a new version of Grain-
128 with optional authentication. volume 5, pages 48–59, 2011.

4. Basel Alomair. AVALANCHEv1. Submission to the CAESAR competition:
http://competitions.cr.yp.to/round1/avalanchev1.pdf, 2014.

5. Jean-Philippe Aumasson and Daniel J. Bernstein. Siphash: A fast short-input PRF. In INDOCRYPT
2012, volume 7668 of LNCS, pages 489–508. Springer, 2012.

6. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. In ASIACRYPT 2000, volume 1976 of LNCS, pages
531–545. Springer, 2000.

7. Daniel J. Bernstein. ChaCha, a variant of Salsa20. Workshop Record of SASC 2008: The State of the
Art of Stream Ciphers, 2008.

8. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. The Keccak SHA-3 submission.
Submission to NIST, 2011.

9. Morris J. Dworkin. SP 800-38C. recommendation for block cipher modes of operation: The CCM mode
for authentication and confidentiality. Technical report, Gaithersburg, MD, United States, 2004.

10. Morris J. Dworkin. SP 800-38D. recommendation for block cipher modes of operation: Galois/Counter
Mode (GCM) and GMAC. Technical report, Gaithersburg, MD, United States, 2007.

11. ISO 19772:2009. Information technology – Security techniques – Authenticated encryption, 2009.
12. Zahra Jeddi, Esmaeil Amini, and Magdy Bayoumi. A novel authenticated cipher for RFID systems.

In International Journal on Cryptography and Information Security, volume 4, 2014.
13. Jonathan Katz and Moti Yung. Unforgeable encryption and chosen ciphertext secure modes of oper-

ation. In FSE 2000, volume 1978 of LNCS, pages 284–299. Springer, 2000.
14. Ted Krovetz and Phillip Rogaway. The software performance of authenticated-encryption modes. In

FSE 2011, volume 6733 of LNCS, pages 306–327. Springer, 2011.
15. David A. McGrew and John Viega. The security and performance of the galois/counter mode (GCM)

of operation. In INDOCRYPT 2004, volume 3348 of LNCS, pages 343–355. Springer, 2004.
16. Florian Mendel, Bart Mennink, Vincent Rijmen, and Elmar Tischhauser. A simple key-recovery attack

on McOE-X. In CANS 2012, volume 7712, pages 23–31. Springer, 2012.
17. Kazuhiko Minematsu. Parallelizable rate-1 authenticated encryption from pseudorandom functions.

In EUROCRYPT 2014, volume 8441 of LNCS, pages 275–292. Springer, 2014.
18. Jean-Jacques Quisquater and Jean-Paul Delescaille. How easy is collision search. new results and

applications to DES, 1989.
19. Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements to modes OCB

and PMAC. In ASIACRYPT 2004, volume 3329 of LNCS, pages 16–31. Springer, 2004.
20. Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: a block-cipher mode of operation

for efficient authenticated encryption. In CCS 2001, pages 196–205. ACM, 2001.
21. Christopher Taylor. The Calico family of authenticated ciphers version 8.

