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Abstract— This paper presents a factor graph formulation
and particle-based sum-product algorithm (SPA) for robust
sequential localization in multipath-prone environments. The
proposed algorithm jointly performs data association, sequential
estimation of a mobile agent position, and adapts all relevant
model parameters. We derive a novel non-uniform false alarm
(FA) model that captures the delay and amplitude statistics of
the multipath radio channel. This model enables the algorithm
to indirectly exploit position-related information contained in
the multipath components (MPCs) for the estimation of the
agent position without using any prior information such as
floorplan information or training data. Using simulated and real
measurements in different channel conditions, we demonstrate
that the algorithm can provide high-accuracy position estimates
even in fully obstructed line-of-sight (OLOS) situations and show
that the performance of our algorithm constantly attains the
posterior Cramér-Rao lower bound (P-CRLB), facilitating the
additional information contained in the presented FA model.
The algorithm is shown to provide robust estimates in both, dense
multipath channels as well as channels showing specular, resolved
MPCs, significantly outperforming state-of-the-art radio-based
localization methods.

Index Terms— Obstructed line-of-sight, multipath,
sum-product algorithm, probabilistic data association, message
passing, belief propagation.

I. INTRODUCTION

LOCALIZATION of mobile agents using radio signals in
environments such as indoor or urban territories is still

a challenging task [1], [2], [3], [4]. These environments are
characterized by strong multipath propagation and frequent
obstructed line-of-sight (OLOS) situations, which can prevent
the correct extraction of the line-of-sight (LOS) component
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Fig. 1. A mobile agent is moving alongside the anchors on an example
trajectory. Due to an obstacle, the LOS to all anchors is not always available.
There occur partial and full OLOS situations. Multipath propagation may
occur, but there is no prior information about the surrounding environment.

(see Fig. 1). Radio channels resulting from multipath prop-
agation are commonly represented as a superposition of a
finite number of specular MPCs [5], [6], [7], [8]. However,
cluttered environments with closely-spaced reflecting objects
or with diffuse scatters (such as walls covered by shelves or
irregular object shapes), along with the finite bandwidth of the
measurement equipment, cause dense multipath propagation,
which cannot be resolved into specular MPCs anymore [5],
[9], [10], [11].

There exist many safety- and security-critical applications,
such as autonomous driving [12], medical services [13],
or keyless entry systems [14], where robustness of the position
estimate1 is of critical importance.

A. State-of-the-Art Methods

New localization and tracking approaches within the context
of 5G localization [15] that take advantage of large mea-
surement apertures as ultra-wideband (UWB) systems [6],
[16] or mmWave systems [17] seek to mitigate the effect of
multipath propagation [18] (commonly referred to as “NLOS
propagation”) and OLOS situations [8], [19], or even take

1We define robustness as the percentage of cases in which a system can
achieve its given potential accuracy. I.e., a robust sequential localization
algorithm can keep the agent’s track in a very high percentage of cases, even
in challenging environments.
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advantage of MPCs by exploiting inherent position infor-
mation, turning multipath from impairment to an asset [2],
[20], [21], [22], [23]. Prominent examples of such approaches
are multipath-based methods that estimate MPCs associate
them to virtual anchors representing the locations of the
mirror images of an anchor on reflecting surfaces [24]. The
locations of virtual anchors are assumed to be known a pri-
ori [25] or estimated jointly with the position of agents using
multipath-based SLAM (MP-SLAM) [21], [22], [26]. Jointly
estimating the positions of virtual anchors and agents allows
MP-SLAM to provide high-accuracy position estimates, even
in OLOS situations, or to localize the agent with only a single
anchor [27]. However, it requires specular, resolved MPCs,
which are consistent with the virtual anchor model [28]. Other
methods exploit cooperation among individual agents [4], [27],
[29], [30], or perform robust signal processing against multi-
path propagation and clutter measurements in general. The
latter comprise heuristics [6], [31], machine learning-based
approaches [19], [32], [33], [34] as well as Bayesian methods
[35], [36], [37], and hybrids thereof [38], [39], [40]. Heuristic
methods, such as searching for the first amplitude to exceed a
threshold value, are fast and easily implementable but suffer
from low accuracy as well as a high probability of outage in
low signal-to-noise-ratio (SNR) regions [6]. In recent years,
machine learning methods have grown increasingly popular.
Early approaches [19], [33] extract specific features from the
radio channel applying model-agnostic supervised regression
methods on these features. While these approaches potentially
provide high accuracy estimates at low computational demand
(after training), they suffer from their dependence on a large
representative measurement database and can fail in scenarios
that are not sufficiently represented by the training data. This
is why recent algorithms facilitate deep learning and auto-
encoding based methods to directly operate on the received
radio signal and reduce the dependence on training data [34],
[41], [42].

Multipath-based localization [21], [22], [26], [36], [37],
[43], [44], multiobject-tracking [45], [46], [47], and parametric
channel tracking [48] are applications that pose common
challenges, such as uncertainties beyond Gaussian noise,
like missed detections and clutter, an uncertain origin of
measurements, and unknown and time-varying number of
objects to be localized and tracked. These challenges can
be well addressed by Bayesian inference leveraging graphi-
cal models to perform joint detection and estimation. Since
the measurement models of these applications are nonlin-
ear, most methods typically rely on sampling techniques
such as recursive Monte Carlo sampling or particle filter-
ing, or use linearized Gaussian models [49], [50]. Simi-
larly, the probabilistic data association (PDA) algorithm [45],
[51] represents a low-complexity Bayesian method for robust
localization and tracking with extension to multiple-sensors
PDA [52] and amplitude-information probabilistic data asso-
ciation (AIPDA) [44], [53]. All these methods can be cate-
gorized as “two-step approaches”, in the sense that they do
not operate on the received sampled radio signal, but use
extracted measurements provided by a preprocessing step,

providing a high level of flexibility and a significant reduction
of computational complexity. In contrast, “direct positioning
approaches” such as [20], [54], and [55] directly exploit the
received sampled signal, which can lead to a better detectabil-
ity of low-SNR features, yet, they are computationally very
demanding.

B. Contributions

In this paper, we propose a particle-based SPA that sequen-
tially estimates the position of a mobile agent by utiliz-
ing the position-related information contained in the LOS
component as well as in MPCs.2 The proposed algorithm
jointly performs probabilistic data association and estimation
of the mobile agent state [22], [46] together with all relevant
model parameters, employing the SPA on a factor graph [56].
Similar to other two-step approaches, it uses signal component
delays and amplitudes estimated by a snapshot-based para-
metric channel estimation and detection algorithm (CEDA) as
measurements. The proposed algorithm adapts in an online
manner the time-varying component SNR [44] as well as
the detection probability of the LOS [43], [57]. To this end,
we propose a novel detection probability model that allows for
both an exhaustive representation of the detection space and a
smooth estimate of the SNR. The algorithm exploits a novel
non-uniform “FA model”.3 Additionally, the model couples
MPC measurements to the LOS measurement by a jointly
inferred bias state. This enables the algorithm to utilize the
position-related information contained in the MPCs without
inferring specific map information, which can increase the
accuracy and robustness of the agent’s position estimate in
challenging environments, characterized by strong multipath
propagation and temporary OLOS situations. The proposed
algorithm is able to operate without any prior information
(no floorplan information or training data are needed). It is
demonstrated to provide robust estimates for specular, resolved
multipath as well as dense, non-resolvable multipath, while
offering sub-second runtime4 even in environments character-
ized by strong multipath propagation and, thus, a high number
of measurements. The contributions of this paper are as
follows.

2Throughout this paper, MPCs denote all components of the received signal
that are caused by the transmit signal, except the LOS component, i.e. “non-
line-of-sight (NLOS) components”.

3Typically the FA or clutter model for delay measurements is chosen
to be a uniform distribution inside the observation region of the sensor
[46, Sec. I-C] [51, Sec. 2.5.2]. Since we do not distinguish between FAs
and MPCs, the resulting distributions of delay and amplitude measurements
are non-uniform with respect to delay. that explicitly models measurements
originating from MPCs. More specifically, the introduced model represents
the non-uniform distribution of delay measurements and corresponding delay-
dependent distribution of amplitude measurements caused by MPCs and FAs
in a joint manner. We refer to this part of the model using the terms “NLOS
model” or “NLOS measurement model” throughout the paper. The presented
NLOS model is derived from a stochastic radio signal model, which represents
MPCs by their delay power spectrum (DPS), also referred to as power delay
profile in the literature [5], [9], [58], [59].

4The runtimes were determined on PC, see Sec. VII-D for details.



1070 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2024

• We derive a novel non-uniform NLOS model that is
adapted to the distribution of the MPC delays and
amplitudes corresponding to a stochastic radio signal
model [9], [58], [59] and verify its potential in a numer-
ical study.

• We present a new factor graph and corresponding SPA
in order to efficiently infer the marginal posterior dis-
tributions of all state variables of the introduced joint
probabilistic model.

• We show that the proposed algorithm is capable of
overcoming even fully-OLOS situations and providing
Cramér-Rao lower bound (CRLB)-level position accuracy
using both synthetic and real radio signal measurements.

• We analyze the influence of the individual features of our
algorithm and compare it to a particle-based variant of the
multi-sensor AIPDA algorithm, to the MP-SLAM algo-
rithm presented in [22] and [44], and to the P-CRLB [60].

This work advances over the preliminary account of our
conference publication [37] (and that of the related work [36])
by (i) applying an accurate, adaptive model for the joint
distribution of delay and amplitude measurements instead of
using heuristical models, (ii) sequentially inferring all param-
eters of the NLOS model together with the agent instead of
using predetermined constants, (iii) improving the convergence
behavior using a modified, “decoupled” SPA (see Sec. VI-A),
(iv) demonstrating the performance of the proposed algorithm
using simulated radio signals as well as real radio measure-
ments obtained by (v) applying a CEDA, (vi) comparing to
the MP-SLAM algorithm [22], [44] and (vii) providing the
P-CRLB as a performance benchmark.

II. NOTATIONS AND DEFINITIONS

Column vectors and matrices are denoted by boldface
lowercase and uppercase letters. Random variables (RVs) are
displayed in san serif, upright font, e.g., x and x and their
realizations in serif, italic font, e.g., x and x; x̃ denotes the
true value of x. The same notation applies for stochastic
processes x(t) and their realizations x(t). f(x) and p(x)
denote, respectively, the probability density function (PDF) or
probability mass function (PMF) of a continuous or discrete
RV x. (·)T, (·)∗, and (·)H denote matrix transpose, complex
conjugation and Hermitian transpose, respectively. ∥·∥ is the
Euclidean norm. |·| represents the cardinality of a set. diag{x}
denotes a diagonal matrix with entries in x. I[·] is an identity
matrix of dimension given in the subscript. [X]n,n denotes
the nth diagonal entry of X . Furthermore, 1A(x) denotes the
indicator function that is 1A(x) = 1 if x ∈ A and 0 otherwise,
for A being an arbitrary set and R+ is the set of positive real
numbers. We predefine the following PDFs with respect to x:
The truncated Gaussian PDF is

fTN(x;µ, σ, λ) =
1

Q(λ−µ
σ )

√
2πσ

e
−(x−µ)2

2 σ2 1R+(x−λ) (1)

with mean µ, standard deviation σ, truncation threshold λ and
Q(·) denoting the Q-function [61]. Accordingly, the Gaussian
PDF is fN(x;µ, σ) = fTN(x;µ, σ, -∞). The truncated Rician

PDF is [62, Ch. 1.6.7]

fTRice(x;s,u, λ) =
1

Q1(u
s ,

λ
s )

x

s2
e
−(x2+u2)

2 s2 I0(
xu

s2
)1R+(x−λ)

(2)

with non-centrality parameter u, scale parameter s and trun-
cation threshold λ. I0(·) is the 0th-order modified first-
kind Bessel function and Q1(·, ·) denotes the Marcum
Q-function [61]. The truncated Rayleigh PDF is [62, Ch. 1.6.7]

fTRayl(x; s, λ) =
x

s2
e
−(x2−λ2)

2 s2 1R+(x− λ) (3)

with scale parameter s and truncation threshold λ. This
formula corresponds to the so-called Swirling I model [62].
Finally, we define the uniform PDF fU(x; a, b) = 1/(b −
a)1[a,b](x) and the uniform PMF fUD(x;X ) = 1/|X |1X (x).

III. RADIO SIGNAL MODEL

At each discrete time n, the mobile agent at position p̃n

transmits a signal s(t) and each anchor j ∈ {1, . . . , J}
at anchor position p

(j)
A = [p(j)

Ax p
(j)
Ay ]T acts as a receiver.

The complex baseband signal received at the jth anchor is
modeled as

r(j)n (t)= α̃(j)
n,0s

(
t− τ̃ (j)

n,0

)
+

K̃(j)
n∑

k=1

α̃
(j)
n,ks

(
t− τ̃ (j)

n,k

)
+ w(j)

n (t) . (4)

The first and second term describe the LOS component and the
sum of K̃(j)

n specular MPCs with their corresponding complex

amplitudes α̃(j)
n,k ∈ C and delays τ̃ (j)

n,k ∈ R+, respectively. The
delays are related to respective distances via τ̃ (j)

n,k = d̃
(j)
n,k/c

with c being the speed of light. The third term represents an
additive white Gaussian noise (AWGN) process w

(j)
n (t) with

double-sided power spectral density Ñ
(j)
0 /2. The LOS dis-

tance is geometrically related to the agent position via d̃(j)
n,0 ≜

d
(j)
LOS(p̃n) with d

(j)
LOS(p̃n) = ∥p̃n − p

(j)
A ∥. We assume time

synchronization between all anchors and the mobile agent5.
However, our algorithm can be extended to an unsynchronized
system along the lines of [2], [21], and [64].

The signal r
(j)
n (t) in (4) is uniformly sampled with sampling

frequency fs at corresponding sampling interval Ts = 1/fs
and Ns samples are collected, yielding a duration T = Ns Ts.
By stacking the samples, we obtain the discrete time signal
vector

r(j)n = α̃
(j)
n,0s(τ̃ (j)

n,0) +
K̃(j)

n∑
k=1

α̃
(j)
n,ks(τ̃ (j)

n,k) + w(j)
n (5)

where s(τ) ≜ [s(−Ns/2·Ts−τ) · · · s((Ns−1)/2·Ts−τ)]T ∈
CNs×1 is the stacked signal vector containing the samples of
the transmit signal s(t). The measurement noise vector w

(j)
n ∈

CNs×1 is a zero-mean, circularly-symmetric complex Gaussian
random vector with covariance matrix σ̃(j)2INs and noise

5Note that state-of-the art UWB ranging devices (e.g., NXP SR040/SR150
or Qorvo DW1000/DW3000) can provide synchronized channel impulse
responses (CIRs) using a two-way ranging protocol [63].



VENUS et al.: GRAPH-BASED ALGORITHM FOR ROBUST SEQUENTIAL LOCALIZATION EXPLOITING MULTIPATH 1071

TABLE I
SUMMARY AND DESCRIPTION OF ALL UNOBSERVED RVS OF THE SYSTEM MODEL

variance σ̃(j)2 = Ñ
(j)
0 /Ts. The MPCs arise from reflection

or scattering by unknown objects, since we assume that no
map information is available.

For a very large number of MPCs K̃(j)
n and limited band-

width of s(t), the MPCs cannot be resolved anymore. Hence,
the MPCs are described by a zero-mean, circularly-symmetric
complex Gaussian stochastic process ν(j)Dn(τ) [65], [66], [67].
The corresponding discrete time signal vector reads

r(j)n = α̃
(j)
n,0s(τ̃ (j)

n,0) +
∫

s(τ)ν(j)Dn(τ) dτ + w(j)
n (6)

with the second term denoting the dense multipath com-
ponent [5], [9], [58], [59]. Assuming uncorrelated scattering
for ν(j)Dn(τ) [9], [65], the noise covariance matrix of r

(j)
n is

given by

C
(j)
Nn =

∫
S

(j)
Dn(τ) s(τ) s(τ)H dτ + σ̃(j)2 INs (7)

where S(j)
Dn(τ) is the DPS. Using (7), the SNR of the LOS com-

ponent is defined as6 SNR(j)
n = |α̃(j)

n,0|2s(τ̃n,0)HC
(j)−1
Nn s(τ̃n,0)

and the according normalized amplitude is ũ(j)
n ≜ SNR(j) 1

2
n .

A. Delay Power Spectrum (DPS) Model

We choose to model the DPS S
(j)
Dn(τ) as [9]

S̃
(j)
Dn(τ) ≜ SD(τ ; p̃n, Ω̃(j)

n , ζ̃
(j)
Sn )

= Ω̃(j)
n

γ̃
(j)
fn +γ̃rn

γ̃
(j)2
fn

(
1−e−

∆b(τ;·)
γ̃rn

)
e
−∆b(τ;·)

γ̃
(j)
fn 1R+(∆b(τ ; ·))

(8)

which is a double exponential function with Ω̃(j)
n being the

DPS power. The rise time γ̃rn and fall time γ̃
(j)
fn are shape

parameters. The distance difference ∆b(τ ; ·) is given by

∆b(τ ; p̃n, b̃
(j)
n ) = c τ − d

(j)
LOS(p̃n)− b̃(j)n

where b̃
(j)
n is the NLOS bias, which denotes the difference

between the LOS distance d(j)
LOS(p̃n) and the “onset distance”.

ζ̃
(j)
Sn = [b̃(j)n γ̃

(j)
fn γ̃rn]T collects the NLOS shape parameters for

each time n and anchor j. Experimental evidence motivates
this model: The DPS typically exhibits an exponentially

6Note that the presented SNR model takes into account the interference
between the LOS component and the dense multipath component [59]. In the
absence of the dense multipath component this reduces to the familiar SNR
|α̃(j)

n,0|2∥s(τ̃
(j)
n,0)∥2/σ̃(j)2.

decaying tail [5], [9] and a smooth onset [9], [68]. In particular,
when the LOS power is excluded, as is done in (6). Note that
γ̃rn is mainly determined by the signal bandwidth and onset-
density of MPCs. For homogeneous deployment environments
the on-set density is well modeled as being invariant. There-
fore, γ̃rn is assumed to be the same for all anchors.

For inference, we also define the normalized DPS
S̄D(d, p̃n, ζ̃

(j)
Sn ) = SD(d/c ; p̃n,Ω̃

(j)
n , ζ̃

(j)
Sn )/Ω̃(j)

n and the dense-
multipath-to-noise ratio (DNR) ω̃(j)

n = ∥s(τ)∥ Ω̃(j) 1
2

n /σ̃(j),
where the DNR denotes the square-root power ratio between
the dense multipath component and AWGN.

The proposed algorithm utilizes the position information
contained in S(j)

Dn(τ) to improve the position estimate without
explicitly exploiting map information.

B. Parametric Channel Estimation

By applying a suitable snapshot-based channel estimation
and detection algorithm (CEDA) [5], [69], [70], and [71] to
the observed discrete signal vector r

(j)
n , one obtains, at each

time n and anchor j, a number of M
(j)
n measurements

denoted by z
(j)
n,m with m ∈ M(j)

n = {1, . . . ,M (j)
n }. Each

z
(j)
n,m = [z(j)

dn,m
z
(j)
un,m]T contains a distance measurement

z
(j)
dn,m

∈ [0, dmax], with maximum distance dmax = c T ,

and a normalized amplitude measurement z(j)
un,m. The CEDA

decomposes the discrete signal vector r
(j)
n into individual,

decorrelated components according to (5), reducing the num-
ber of dimensions (as M (j)

n is usually much smaller than Ns).
It thus can be said to compress the information contained in
r

(j)
n into z

(j)
n = [z(j)T

n,1 . . . z
(j)T

n,M
(j)
n

]T. See the supplementary

material [72, Sec. V] for further details. The stacked vector
zn = [z(1) T

n . . . z
(J) T
n ]T is used as noisy measurement by the

proposed algorithm.

IV. SYSTEM MODEL

We consider a mobile agent to be moving along an unknown
trajectory as depicted in Fig. 1. The current state of the agent
is described by the state vector xn = [pT

n vT
n]T, which is

composed of the agent’s position pn = [pxn pyn]T and velocity
vn = [vxn vyn]T. We also introduce the following additional
state variables, which represent all RV inferred along with xn:
First, we define the augmented agent state x̄n = [xT

n γrn]T,
which collects all RVs that are common for all anchors.
Second, we define the anchor state y

(j)
n = [u(j)

n ω
(j)
n b

(j)
n γ

(j)
fn ]T

collecting all continuous RVs, which are modeled separately
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for each anchor. Third, there are two discrete RVs q
(j)
n and

a
(j)
n , which denote the LOS probability and association vari-

able, respectively, and are modeled separately for all anchors.
For the sake of clarity, all RVs constituting the system model
are summarized and described in Table I.

At each time n and for each anchor j the CEDA provides
the currently observed measurement vector z

(j)
n , with fixed

M
(j)
n , according to Sec. III-B. Before the measurements are

observed, they are random and represented by the vector
z
(j)
n,m = [z(j)

dn,m
z
(j)
un,m]T. In line with Sec. III-B we define

the nested random vectors z
(j)
n = [z(j)T

n,1 . . . z
(j)T

n,M
(j)
n

]T and

zn = [z(1) T
n . . . z

(J) T
n ]T. Also the number of measurements

M
(j)
n is a RV. The vector containing all measurement numbers

is defined as Mn = [M(1)
n . . . M

(J)
n ]T.

Each measurement z
(j)
n,m either originates from the LOS or

is due to an MPC. It is also possible that a measurement z
(j)
n,m

did not originate from any physical component, but from FAs
of the CEDA. The presented model only distinguishes between
“LOS measurements” originating from the LOS and “NLOS
measurements”, i.e., measurements due to MPCs or FAs.

A. LOS Measurement Model

The LOS likelihood function (LHF) of an individual dis-
tance measurement z

(j)
dn,m

is given by

fL(z(j)
dn,m

|pn, u
(j)
n ) ≜ fN(z(j)

dn,m
; d(j)

LOS(pn), σd(u(j)
n )) (9)

with mean d
(j)
LOS(pn) and variance σ2

d (u(j)
n ). The variance

is determined based on the Fisher information given by
σ2

d (u(j)
n ) = c2/(8π2 β2

bw u
(j)2
n ), where βbw is the root mean

squared bandwidth [1], [2] and u
(j)
n is the normalized ampli-

tude at anchor j. The LOS LHF of the normalized amplitude
measurement z

(j)
un,m is modeled as7 [44], [48]

fL(z(j)
un,m|u

(j)
n ) ≜ fTRice(z(j)

un,m;σu(u(j)
n ), u(j)

n , γ) (10)

with fTRice(·) being a truncated Rician PDF (2). γ is the
detection threshold of the CEDA, which is a constant to be
chosen. As for the distance LHF, the scale parameter is deter-
mined based on the Fisher information given as σ2

u(u(j)
n ) =

1/2+u
(j)2
n 1/(4Ns). Note that this expression reduces to 1/2 if

the AWGN noise variance σ(j)2 is assumed to be known or
Ns to grow indefinitely (see [48] for a detailed derivation).
Note that for (10) the Marcum-Q function in (2) represents
the detection probability pD(u(j)

n ) (see Sec. IV-D).

B. NLOS Measurement Model

The NLOS LHF of an individual normalized amplitude
measurement z

(j)
un,m is given as

fNL(z(j)
un,m|z

(j)
dn,m

,pn, ζ
(j)
n )

≜ fTRayl(z(j)
un,m; su(z

(j)
dn,m

,pn, ζ
(j)
n ), γ) (11)

7The presented model describes the distribution of the amplitude estimates
of a complex baseband signal in AWGN obtained using maximum likelihood
estimation and generalized likelihood ratio test detection [53], [61], [73].

Fig. 2. Graphical representation of (a) the amplitude NLOS
LHF fNL(z

(j)
un,m|z

(j)
dn,m

,pn, ζ
(j)
n ) and (b) the distance NLOS LHF

fNL(z
(j)
dn,m

|pn, ζ
(j)
n ) for different values of the detection threshold γ at

ω
(j)2
n = 20 dB, d(j)LOS (pn) + b

(j)
n = 7 m, γ(j)

fn = 6 m, γrn = 0.5 m
and dmax = 30 m.

where fTRayl(·) is a truncated Rayleigh PDF (3) and

s2u(z
(j)
dn,m

,pn, ζ
(j)
n ) =

1
2
(ω(j)2

n S̄D(z(j)
dn,m

,pn, ζ
(j)
Sn ) + 1) (12)

is the NLOS scale function. We used ζ(j)Sn = [b(j)
n γ

(j)
fn γrn]T

and ζ(j)n = [ω(j)
n ζ

(j)T
Sn ]T for notational brevity. See the

supplementary material [72, Sec. I] for details about the
derivation of (11). The shape of (11) with respect to z(j)

un,m and
z
(j)
dn,m

is shown in Fig. 2a. The NLOS LHF of the distance

measurement z
(j)
dn,m

is given by

fNL(z(j)
dn,m

|pn, ζ
(j)
n )

= Q0(pn, ζ
(j)
n )−1

∫ ∞

γ

fTRayl(u; su(z
(j)
dn,m

,pn, ζ
(j)
n ), γ) du

= Q0(pn, ζ
(j)
n )−1 exp

(
− γ2

2 s2u(z
(j)
dn,m

,pn, ζ
(j)
n )

)
(13)

where Q0(pn, ζ
(j)
n ) =

∫ dmax

0
exp(− γ2/(2 s2u(d,pn, ζ

(j)
n ))) dd

is the normalization constant ensuring integration to 1. The
exponential term in (13) corresponds to the probability that at
time n for anchor j a NLOS measurement at distance z(j)

dn,m
is

generated. The shape of (13) with respect to z(j)
dn,m

for different
values of γ is shown in Fig. 2b. Note that (13) approaches a
uniform PDF when γ or ω(j)

n approach zero.
The presented NLOS measurement model is valid indepen-

dently of the DPS model chosen in (8). However, (8) is a
reasonable choice as it is physically motivated [9] and is of
moderate computational complexity.

C. Data Association Model

At each time n and for each anchor j, the measurements,
i.e., the components of z

(j)
n are subject to data association
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Fig. 3. Graphical representation of the (a) the overall distance LHF
f(z

(j)
dn,m

|ζ(j)
En) and (b) overall amplitude LHF f(z

(j)
un,m|z

(j)
dn,m

,ζ
(j)
En), all at

fixed ζ
(j)
En in line with Fig. 2. In (b) we also fix z

(j)
dn,m

to zd1 = 0m or
zd2 = 8m.

uncertainty. Thus, it is not known which measurement z
(j)
n,m

originated from the LOS, or which one is due to an “NLOS
measurement”, i.e., measurements originating from MPCs or
FAs. Based on the concept of PDA [51], we define the
association variable a

(j)
n as

a(j)
n =

{
m∈M(j)

n , z(j)
n,m is the LOS measurement in z(j)

n

0, no LOS measurement in z(j)
n .

(14)

Assuming the number of NLOS measurements to follow a
uniform distribution (so called “non-parametric model”), the
joint PMF of a

(j)
n and M

(j)
n can be shown to be [51]

p(a(j)
n ,M

(j)
n |u(j)

n , q
(j)
n ) =


pE(u(j)

n , q
(j)
n )

M
(j)
n Mmax

, a(j)
n ∈M(j)

n

1− pE(u(j)
n , q

(j)
n )

Mmax
, a(j)

n = 0

(15)

where pE(u(j)
n , q

(j)
n ) is the probability that there is a LOS

measurement for the current set of measurements defined in
Sec. IV-D and Mmax is an irrelevant constant. Incorporating
a
(j)
n into the model, we define the overall distance LHF as

f(z(j)
dn,m

|ζ(j)
En ) =

{
fL(z(j)

dn,m
|pn,u

(j)
n ), a(j)

n = m

fNL(z(j)
dn,m

|pn,ζ
(j)
n ), a(j)

n ̸= m
(16)

where we used ζ(j)En = [pT
n u

(j)
n a

(j)
n ζ

(j)T
n ]T for brevity. The

shape of (16) is depicted in Fig. 3a. Further, the overall
amplitude LHF is given by

f(z(j)
un,m|z

(j)
dn,m

,ζ
(j)
En)

=

{
fL(z(j)

un,m|u
(j)
n ), a(j)

n = m

fNL(z(j)
un,m|z

(j)
dn,m

,pn, ζ
(j)
n ), a(j)

n ̸= m
(17)

which is shown in Fig. 3b. Using the common assumption
of the measurements to be independent for different values

of m [46], the joint LHF for all measurements per anchor j
and time n is

f(z(j)
n |ζ(j)

En ) =
M(j)

n∏
m=1

f(z(j)
un,m|z

(j)
dn,m

,ζ
(j)
En) f(z(j)

dn,m
|ζ(j)

En ). (18)

D. LOS Existence Probability Model

We model the LOS existence probability given in (15) as
pE(u(j)

n , q
(j)
n ) = pD(u(j)

n ) q
(j)
n . The probability of detection

pD(u(j)
n ) is the probability that at time step n and anchor j

the agent generates a radio signal component whose amplitude
is high enough so that it leads to an LOS measurement. It is
modeled by the counter probability of a Rician cumulative
distribution function (CDF) given as

pD(u(j)
n ) = Q1

(
u
(j)
n

σu(u(j)
n )

,
γ

σu(u(j)
n )

)
(19)

by assuming that the proposed algorithm is applied after a
generalized likelihood ratio test detector. q

(j)
n is the probability

of the event that the LOS is not obstructed, which is referred
to as LOS probability in the following, and acts as a prior
probability to the detection event. According to [43], [57],
and [74], we model q

(j)
n as discrete RV that takes its values

from a finite set Q = {λ1, . . . , λQ}, where λi ∈ (0, 1].
The LOS probabilities for different sensors j are assumed
to be independent. The proposed LOS existence probability
model pE(u(j)

n , q
(j)
n ) correctly incorporates the detection pro-

cess into the system model via pD(u(j)
n ) excluding a detection

of measurements with z
(j)
un,m below γ and it can cope with

amplitude model mismatch by correcting the amplitude-related
probability of detection with q

(j)
n . With respect to implemen-

tation (see Sec. VI-B.1) this means that our model allows
for smooth sequential inference of slow amplitude variations
(e.g., due to path loss) via pD(u(j)

n ), while q
(j)
n ensures a

complete representation of the probability space, covering
rapid amplitude variations (e.g., due to OLOS).

E. State Transition Model

We model the evolution of x̄n and y
(j)
n and q

(j)
n over time n

as independent first-order Markov processes, which are defined
by the joint state transition PDF

f(x̄n,yn, q
(j)
n |x̄n−1,yn−1, q

(j)
n−1)

= f(x̄n|x̄n−1)
J∏

j=1

f(y(j)
n |y(j)

n−1) p(q
(j)
n |q(j)n−1). (20)

with f(x̄n|x̄n−1) and f(y(j)
n |y(j)

n−1) being the respective state
transition PDFs. For the discrete RV q

(j)
n the first-order

Markov process model results in a conventional Markov chain,
with [Q(j)]i,k = p(q(j)n = λi|q(j)n−1 = λk) being the elements
of the transition matrix.

V. PROBLEM FORMULATION AND FACTOR GRAPH

In this section we formulate the sequential estimation prob-
lem of interest and present the joint posterior and the factor
graph underlying the proposed algorithm.
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A. Problem Statement

The problem considered is the sequential estimation of
the agent state xn. This is done in a Bayesian sense by
calculating the minimum mean-squared error (MMSE) [73]
of the augmented agent state

ˆ̄xMMSE
n ≜

∫
x̄n f(x̄n|z) dx̄n. (21)

with ˆ̄xMMSE
n = [x̂MMSE T

n γ̂MMSE
rn ]T and x̂MMSE

n = [p̂MMSE T
n

v̂MMSE T
n ] and z = [zT

1 . . . zT
n]T. Furthermore, we also cal-

culate

ŷ(j)MMSE
n ≜

∫
y(j)

n f(y(j)
n |z) dy(j)

n , (22)

q̂(j)MMSE
n ≜

∑
λi∈Q

λi p(q(j)n = λi|z) (23)

with ŷ
(j)MMSE
n = [û(j)MMSE

n ω̂
(j)MMSE
n b̂

(j)MMSE
n γ̂

(j)MMSE
fn ]T.

In order to obtain (21), (22), and (23), the respective marginal
posterior PDFs need to be calculated. Since direct marginal-
ization of the joint posterior PDF is computationally infeasible
[46], we perform message passing by means of the SPA rules
on the factor graph that represents a factorized version of the
joint posterior of our statistical model discussed in Sec. IV.

B. Joint Posterior and Factor Graph

For each n, let yn = [y(1)T
n . . . y

(J)T
n ]T, an =

[a(1)
n . . . a

(J)
n ]T, and qn = [q(1)

n . . . q
(J)
n ]T. Furthermore, let

z = [zT
1 . . . z

T
n]T, x̄ = [x̄T

0 . . . x̄
T
n]T, a = [aT

1 . . . a
T
n]T, y =

[yT
0 . . . y

T
n]T, q = [qT

0 . . . q
T
n]T, and M = [MT

1 . . . M
T
n]T.

We now assume that the measurements z are observed and
thus fixed. Applying Bayes’ rule as well as some commonly
used independence assumptions [25], [46] the joint posterior
for all states up to time n and all J anchors can be derived
up to a constant factor as

f(x̄,a,y,q,M |z)
∝ f(z|x̄,a,y,q) f(x̄,a,y,q)
= f(z|x̄,a,y,q) f(a|y,q) f(x̄) p(q) f(y)

∝ f(x̄0)
J∏

j=1

p(q(j)0 ) f(y(j)
0 )

n∏
n′=1

Υ(x̄n′ |x̄n′−1) Φ(y(j)
n′ |y

(j)
n′−1)

× Ψ(q(j)n′ |q
(j)
n′−1) ḡ(z

(j)
n′ ; pn′ ,y

(j)
n′ , a

(j)
n′ , q

(j)
n′ ) (24)

where we introduced the state-transition functions
Υ(x̄n|x̄n−1) ≜ f(x̄n|x̄n−1), Φ(y(j)

n |y(j)
n−1) ≜ f(y(j)

n |y(j)
n−1),

and Ψ(q(j)n |q(j)n−1) ≜ p(q(j)n |q(j)n−1). We also introduced
the pseudo likelihood function ḡ(z(j)

n ; pn,y
(j)
n ,a

(j)
n ,q

(j)
n ) ≜

h(a(j)
n ; y(j)

n , q
(j)
n ) g(z(j)

n ; pn,y
(j)
n ,a

(j)
n ). Finally, we define

g(z(j)
n ; ζ̆(j)

n ) ≜ f(z(j)
n |ζ̆(j)

n ) and

h(a(j)
n ; y(j)

n , q
(j)
n ) ∝p(a(j)

n ,M
(j)
n |u(j)

n , q
(j)
n )

=


pE(u(j)

n , q
(j)
n )

M
(j)
n

, a(j)
n ∈M(j)

n

1− pE(u(j)
n , q

(j)
n ), a(j)

n = 0

(25)

neglecting the constant terms in (15). Note that M vanishes in
(24) as it is fixed and thus constant, being implicitly defined by

Fig. 4. Factor graph representing the factorization of the joint posterior
PDF in (24) as well as the respective messages according to the SPA
(see Sec. VI-A). The following short notations are used: ηn ≜ η(x̄n),
ϕ

(j)
n ≜ ϕ(y

(j)
n ), ψ(j)

n ≜ ψ(q
(j)
n ), ξ(j)n ≜ ξ(j)(x̄n), χ(j)

n ≜ χ(j)(x̄n),

ν
(j)
n ≜ ν(y

(j)
n ), β(j)

n ≜ β(q
(j)
n ), χ(j)

n ≜ χ(j)(x̄n), f̆x̄n ≜ f̆x̄(x̄n),

f̆
(j)
yn ≜ f̆y(y

(j)
n ), p̆(j)qn ≜ p̆q(q

(j)
n ).

the measurements z. Furthermore note that unlike [22], [44],
[46], [47], [48], [51], [52], [53] in our model the NLOS LHFs
(11) and (13) are both functions of RVs and, thus, cannot be
neglected.

The joint posterior PDF in (24) is represented by the factor
graph shown in Fig. 4.

VI. SUM-PRODUCT ALGORITHM

A. Marginal Posterior and Sum-Product Algorithm (SPA)

The marginal posterior can be calculated efficiently by
passing messages on the factor graph according to the SPA
[56]. For the proposed algorithm, we specify not to send
messages backward in time. This makes the factor graph in
Fig. 4 an acyclic graph. For acyclic graphs the SPA yields
exact results for the marginal posteriors [56]. At time n, the
following calculations are performed for all J anchors. The
prediction messages are given as

η(x̄n) =
∫

Υ(x̄n|x̄n−1) f̆x(x̄n−1) dx̄n−1 (26)

ϕ(y(j)
n ) =

∫
Φ(y(j)

n |y(j)
n−1) f̆y(y

(j)
n−1) dy

(j)
n−1 (27)

ψ(q(j)n ) =
Nq∑

q
(j)
n−1=1

Ψ(q(j)n |q(j)n−1) p̆q(q
(j)
n−1) (28)

where f̆x̄(x̄n−1), f̆y(y
(j)
n−1) and p̆q(q

(j)
n−1) are messages of the

previous time n− 1. The measurement update messages are
given by

ξ(j)(x̄n) =
∫
ϕ(y(j)

n )
Nq∑

q
(j)
n =1

ψ(q(j)n )

×
M(j)

n∑
a
(j)
n =0

ḡ(z(j)
n ; pn,y

(j)
n ,a

(j)
n ,q

(j)
n ) dy(j)

n (29)
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χ(j)(x̄n) = η(x̄n)
J∏

j′=1

ξ(j
′)(x̄n)/ξ(j)(x̄n) (30)

ν(y(j)
n ) =

Nq∑
q
(j)
n =1

ψ(q(j)n )
∫
χ(j)(x̄n)

×
M(j)

n∑
a
(j)
n =0

ḡ(z(j)
n ; pn,y

(j)
n ,a

(j)
n ,q

(j)
n ) dx̄n (31)

β(q(j)n ) =
∫∫

ϕ(y(j)
n )χ(j)(x̄n)

×
M(j)

n∑
a
(j)
n =0

ḡ(z(j)
n ; pn,y

(j)
n ,a

(j)
n ,q

(j)
n ) dx̄n dy(j)

n .

(32)

Finally, we calculate the marginal posteriors as f(x̄n|z) ∝
f̆x̄(x̄n) = η(x̄n)

∏J
j=1 ξ

(j)(x̄n), f(y(j)
n |z) ∝ f̆y(y

(j)
n ) =

ϕ(y(j)
n ) ν(y(j)

n ) and p(q(j)n |z) ∝ p̆q(q
(j)
n ) = ψ(q(j)n )β(q(j)n ).

We additionally compare the performance of the above
optimum SPA to that of a suboptimal message passing
algorithm, which we refer to as “decoupled SPA”. Inspired
by [43], we replace (30) by χ(j)(x̄n) = η(x̄n) neglecting
the mutual dependency of the uncertainties of individual
anchor states y

(j)
n . We demonstrate this modified algorithm

to lead to improved numerical stability for a low number of
particles. Hence, the particle-based implementation discussed
in section VI-B.1 addresses the decoupled variant of the
presented SPA.

B. Implementation Aspects

1) Particle-Based Implementation: Since the integrals
involved in the calculations of the messages and beliefs
(26)-(32) cannot be obtained analytically, we use a compu-
tationally efficient sequential particle-based message passing
implementation that provides approximate computation. Our
implementation uses a “stacked state” [75], comprising the
augmented agent state as well as the anchor states of all
anchors J = {1, . . . , J}.

i) Prediction: The beliefs f̆x̄(x̄n−1) and f̆y(y
(j)
n−1) for

all j ∈ J calculated at the previous time step
n − 1, respectively, are represented by I particles
and corresponding weights, i.e., {x̄[i]

n−1, wx̄
[i]
n−1}I

i=1 and
{y(j)[i]

n−1 , wy
(j)[i]
n−1 }I

i=1 for all j ∈ J . Weighted particles
{x̄′[i]n , w ′x̄

[i]
n }I

i=1 and {y′(j)[i]n , w ′y
(j)[i]
n }I

i=1 for all j ∈J ,
representing the messages η(x̄n) and ϕ(y(j)

n ) in (26)
and (27) are determined as follows: For each particle
x̄
[i]
n−1 and y

(j)[i]
n−1 with i ∈ {1, . . . , I}, one particle x̄

′[i]
n

and y
′(j)[i]
n with corresponding weights w ′x̄

[i]
n = wx̄

[i]
n−1

and w ′y
(j)[i]
n = wy

(j)[i]
n−1 is drawn from f(x̄n|x̄[i]

n−1) and
f(y(j)

n |y(j)[i]
n−1 ) for all j ∈J .

ii) Measurement Update: The non-normalized weights rep-
resenting the messages ξ(j)(x̄n) and ν(y(j)

n ) in (29) and

(31) are calculated by

w ′′x̄
(j)[i]
n = w ′y

(j)[i]
n

Nq∑
q
(j)
n =1

ψ(q(j)n )

×
M(j)

n∑
a
(j)
n =0

ḡ(z(j)
n ; p′[i]n ,y′(j)[i]n ,a(j)

n ,q
(j)
n ) (33)

w ′′y
(j)[i]
n = w ′x̄

(j)[i]
n

Nq∑
q
(j)
n =1

ψ(q(j)n )

×
M(j)

n∑
a
(j)
n =0

ḡ(z(j)
n ; p′[i]n ,y′(j)[i]n ,a(j)

n ,q
(j)
n ). (34)

An approximation of the message β(q(j)n ) in (32) is
given as

β(q(j)n ) ≈
I∑

i=1

w ′x̄
[i]
n w

′
y

(j)[i]
n

×
M(j)

n∑
a
(j)
n =0

ḡ(z(j)
n ; p′[i]n ,y′(j)[i]n ,a(j)

n ,q
(j)
n ). (35)

iii) Belief Calculation and State Estimation: The above
approximate messages are further used for calculat-
ing the non-normalized weights corresponding to the
beliefs f̆x̄(x̄n) and f̆y(y

(j)
n ) for all j ∈ J as ŵx̄

[i]
n =

w ′x̄
[i]
n
∏J

j=1 w
′′
x̄

(j)[i]
n and ŵy

(j)[i]
n = w ′y

(j)[i]
n w ′′y

(j)[i]
n

respectively.
After normalization, i.e., w̄x̄

[i]
n = ŵx̄

[i]
n /
∑I

i=1 ŵx̄
[i]
n and

w̄y
(j)[i]
n = ŵy

(j)[i]
n /

∑I
i=1 ŵy

(j)[i]
n , an approximation of

the MMSE state estimates ˆ̄xMMSE
n and ŷ

(j)MMSE
n in (21),

(22) and (23) is given as ˆ̄xMMSE
n ≈

∑I
i=1 x̄

′[i]
n w̄x̄

[i] and
ŷ

(j)MMSE
n ≈

∑I
i=1 y

′(j)[i]
n w̄y

(j)[i].
To avoid particle degeneracy [49], a resampling step8 is
performed as a preparation for the next time step n+ 1
leading to equally weighted particles {x̄[i]

n−1, wx̄
[i]
n−1 =

1/I}I
i=1 and {y(j)[i]

n−1 , wy
(j)[i]
n−1 = 1/I}I

i=1 for all j ∈ J
representing the beliefs f̆x̄(x̄n) and f̆y(y

(j)
n ).

The resulting problem complexity scales only linearly in
the number of particles I and in the number of measure-
ments M (j)

n . For computational efficiency of the particle-based
implementation the LOS LHF of the normalized amplitude
measurement (10) is approximated by a truncated Gaussian
PDF, i.e.,

fL(z(j)
un,m|u

(j)
n ) = fTN(z(j)

un,m;σu(u(j)
n ), u(j)

n , γ).

2) Initial State Distributions: We assume the initial state
distributions to factorize as f̆x̄(x̄0) = f̆p(p0)f̆v(v0)f̆γr(γr0)
and f̆y(y

(j)
0 ) = f̆u(u

(j)
0 )f̆ω(ω(j)

0 )f̆b(b
(j)
0 )f̆γf(γ

(j)
f0 ). We pro-

pose to initialize the NLOS shape parameters as f̆γr(γr0) =
fU(γr0, 0, dmax), f̆b(b

(j)
0 ) = fU(b(j)0 , 0, dmax) and f̆γf(γ

(j)
f0 ) =

fU(γ(j)
f0, 0, dmax). The LOS PMFs are initialized as a discrete

8We suggest to use “systematic” resampling for efficiency [49].



1076 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2024

uniform PMF f̃
(j)
q0 (q(j)0 ) = fUD(q(j)0 ,Q) taking all values of

Q with equal probability. We assume the velocity vector v0

to be zero mean, Gaussian, with covariance matrix σ2
v I2 and

σv = 6 m/s, as we do not know in which direction we are
moving.

The remainder of the states are initialized heuristically,
by assuming an initial measurement vector z0 containing
M

(j)
0 measurements to be available. The normalized amplitude

PDFs are initialized as f̃
(j)
u0 (u(j)

0 ) = fTRayl(u
(j)
0 ; z(j)

u0,max,

0.05 z(j)
u0,max, γ) where z

(j)
u0,max is the maximum normalized

amplitude measurement in z
(j)
0 . The position state is initial-

ized as f(p0) ∼
∏J

j=1

∏M
(j)
0

m=1 fL(z(j)
d0,m

|pinit, z
(j)
u0,max) f(pinit),

where the proposal distribution f(pinit) is drawn uniformly
on two-dimensional discs around each anchor j, which are
bounded by the maximum possible distance dmax and a
sample is drawn from each of the J discs with equal
probability. The DNR PDFs are initialized as f̆ω(ω(j)

0 ) =

fTRayl(ω
(j)
0 ; ω(j)

init, 0.05ω(j)
init, γ), where ω(j)

init is determined as
described in the supplementary material [72, Sec. II].

3) Normalization of the NLOS Distance Likelihood: As
discussed in Sec. IV-B, the NLOS LHF in (13) must be
normalized by Q0(pn, ζ

(j)
n ). However, Q0(pn, ζ

(j)
n ) can-

not be determined analytically and, being a function of
pn and ζ

(j)
n , it needs to be calculated for each individ-

ual particle (see Sec. VI-B.1). Thus, we need an efficient
numerical approximation. For details see the supplementary
material [72, Sec. III].

VII. RESULTS

We validate the proposed model and analyze the perfor-
mance gain caused by the features of the proposed algorithm
using both synthetic data obtained using numerical simulation
and real radio measurements. The performance is compared
with the P-CRLB and that of the AIPDA. For synthetic mea-
surements with geometry related multipath,9 we also compare
to the MP-SLAM algorithm presented in [22] and [44].

A. Common Analysis Setup

The following setup and parameters are commonly used for
all analyses presented.

The PDF of the joint agent state x̄n is factorized as
f(x̄n|x̄n−1) = f(xn|xn−1) f(γrn|γrn−1), where the agent
motion, i.e. the state transition PDF f(xn|xn−1) of the
agent state xn, is described by a linear, constant velocity
and stochastic acceleration model [62, p. 273], given as
xn = A xn−1 + B wn, with the acceleration process wn

being i.i.d. across n, zero mean, and Gaussian with covariance
matrix σ2

a I2, σa is the acceleration standard deviation, and
A ∈ R4× 4 and B ∈ R4× 2 are defined according to
[62, p. 273], with sampling period ∆T . The state transi-
tion of the rise distance γrn, i.e., the state transition PDF
f(γrn|γrn−1), is γrn = γrn−1 + εγrn , where the noise εγrn

is i.i.d. across n, zero mean, Gaussian, with variance σ2
γr

.

9Note that for measurements involving stochastic multipath as in
Sec. VII-B.1, the system model of the MP-SLAM algorithm is not suited,
leading to divergence of the track.

TABLE II
ALGORITHM VARIANTS INVESTIGATED FOR DIFFERENT SCENARIOS

Similarly, the state transition model of the joint anchor state
y
(j)
n , i.e. the state transition PDF f(yn|yn−1), is chosen as

y
(j)
n = y

(j)
n−1 + ε(j)yn , where the noise vector ε(j)yn is i.i.d.

across n and j, zero mean, jointly Gaussian, with covariance
matrix diag{[σ2

u σ
2
ω σ

2
b σ

2
γf

]} and the individual state-transition
variances (STV) σ2

u , σ2
ω , σ2

b and σ2
γf

. Unless noted differently
the STV are set as σa = 2 m/s2, σu = 0.05 û(j)MMSE

n−1 , σω =
0.05 ω̂(j)MMSE

n−1 , σb = 0.05 b̂(j)MMSE
n−1 , σγf = 0.05 γ̂(j)MMSE

fn−1 ,
σγr = 0.5 γ̂MMSE

rn−1 . While σa is set according to the maximum
agent acceleration [62], for the STV of all other parameters
we use values relative to the root mean squared error (RMSE)
estimate of the previous time step n− 1 as a heuristic. Note
that this choice allows no tuning of the STV to be required for
all experiments presented, even though the propagation envi-
ronments are considerably different. We used 5 · 104 particles
before the first resampling operation and 5000 particles for
inference during the track. We set the detection threshold as
low as γ = 1.77 (5 dB) for all simulations, which allows the
algorithm to facilitate low-energy MPCs (this choice is further
discussed in Sec. VII-B). The set of possible LOS probabilities
is chosen as Q = {0.01, 0.33, 0.66, 1}. The state transition
matrix Q(j) ≜ Q is set as follows: [Q]1,1 = 0.9, [Q]4,4 =
0.95, [Q]2,1 = 0.1 and [Q]3,4 = 0.05. For 2 ⩽ k ⩽ 3,
[Q]k,k = 0.85, [Q]k−1,k = 0.05 and [Q]k+1,k = 0.1. For
all other tuples {i, k}, [Q]i,k = 0 in order to encourage high
LOS probabilities [57]. For the numerical approximation of
Q0(pn, ζ

(j)
n ) as discussed in Sec. VI-B.3, we used KT = 30.

The results are shown in terms of the RMSE of the estimated
agent position eRMSE

n =
√

E{∥p̂MMSE
n − pn∥2}, evaluated

using a numerical simulation with 500 realizations. For each
of the scenarios investigated, we consistently analyze the
influence of the individual features of our algorithm according
to Table. II. It shows the algorithm variants implemented and
the corresponding features that are enabled for an algorithm
(x) or not ( ). When “q(j)n tracking” is deactivated, we set
q
(j)
n = 0.999 for all n, j. When we use “decoupled SPA”, the

suboptimal message passing scheme presented in Sec. VI-A
is used. Not applying the “non-uniform fNL” means (12)
is replaced by s2u ≜ 1/2, and for AL4′ and AL5′ we
use 5 · 104 particles instead of 5000. Note that AL1 repre-
sents a multi-sensor variant of the conventional AIPDA. The
MP-SLAM algorithm is implemented according to [22] and
[44] using the measurements z

(j)
m,n, i.e., distance and amplitude

measurements, as an input. For consistency, the state transition
PDFs and initial state distributions of the agent state and
normalized amplitude state are set as described in Sec. VII-A
and VI-B.2. For convergence, we had to use 5 · 104 particles
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Fig. 5. Simulated trajectory and anchor positions for all synthetic experiments
(Sec. VII-B) and environment setup (walls and resulting obstructions) for
Geometry-related synthetic experiments (Sec. VII-B.2).

and an anchor driving noise of σAn = 0.02 m, other parameters
are Ps = 0.999, µn,1 = 0.05. The mean number of false alarms
was approximated as µFA = Ns e

−γ2
(see [44] for definitions).

For stability we increased the delay measurement variances of
all virtual anchors (not the physical anchors) by a factor of
2 with respect to the Fisher information-based value.

As a performance benchmark, we provide the CRLB
on the position error variance considering all visible LOS
measurements of a single time step n, which we refer to
as the snapshot-based positioning CRLB (SP-CRLB) [7],
[59], [76], [77]. Furthermore, we provide the correspond-
ing posterior Cramér-Rao lower bound (P-CRLB) [60] that
additionally considers the dynamic model of the agent state
and the “P-CRLB-LOS”, which is the P-CRLB assuming the
LOS component to all anchors is always available and, thus,
provides a lower bound for the proposed estimator. See the
supplementary material [72, Sec. VI] for further details.

B. Analysis on Synthetic Measurements

For the synthetic setup, we investigate the scenario shown
in Fig. 5. The agent moves along a trajectory, with two distinct
direction changes, where the agent velocity is set to vary
around a magnitude of 0.8 m/s. It is observed at N = 190 dis-
crete time steps n ∈ {1, . . . , N} at a constant observation
rate of ∆T = 100 ms, resulting in a continuous observation
time of 19 s. We simulate three anchors, A1-A3, which are
placed in close vicinity to each other. The limited directional
diversity of the anchors (corresponding to a poor geometric
dilution of precision (GDOP) [78]), poses a challenging setup
for delay measurement-based position estimation. Note that the
environment setup shown in Fig. 5, i.e., walls and resulting
obstructions, are only used in Sec. VII-B.2. For all syn-
thetic radio measurements involving the proposed CEDA (see
[72, Sec. V]), we choose the transmitted complex baseband
signal s(t) to be of root-raised-cosine shape with a roll-off
factor of 0.6 and a duration of 2 ns (bandwidth of 500 MHz).
The signal is critically sampled, i.e., Ts = 1.25 ns, with a

total number of Ns = 161 samples, amounting to a maximum
distance of dmax = 60m.

1) Synthetic Measurements With Stochastic Multipath:
In this section we present results using synthetic measurements
generated by simulating the MPCs as zero mean stochastic
process. More specifically, we compare results obtained by
simulating the radio signal according to (6) and applying the
CEDA to results obtained using fully synthetic measurements,
which are generated according to Sec. IV without involving the
CEDA. For fully synthetic measurements the average number
of NLOS measurements per time n and anchor j prior to the
simulated detection process was approximated as Ns. Detec-
tion further reduces the prior number of NLOS events by the
mean NLOS detection probability. We simulate two OLOS sit-
uations clearly separated in time, a partial one at n ∈ [75, 104],
where only the LOS to anchor A2 is blocked, and a full one
at n ∈ [115, 144], where the LOS to all anchors is blocked.
The following true system parameters are used, which are set
constant for all time steps n and anchors j: The normalized
amplitude is set to ũn = [

√
19.5 dB

√
20.0 dB

√
20.5 dB]T

and the parameters of the DPS are set to ω̃
(j)2
n =

√
25 dB,

γ̃rn = 0.7 m, γ̃(j)
fn = 6m, b̃(j)n = 0.7 m.

We start by validating the system model presented in
Sec. IV. For this experiment the relatively defined STV are set
with respect to the true values instead of the RMSE values,
given as σu = 0.05 ũ(j)

n , σω = 0.05 ω̃(j)
n , σb = 0.05 b̃(j)n ,

σγf = 0.05 γ̃(j)
fn , σγr = 0.5 γ̃rn. Fig. 6, 7, 8a and 8b show the

results of the performed numerical simulations. Fig. 6 shows
MMSE estimates of all state variables as a function of time
t′ and compares to the respective true values. The MMSE
estimates are determined according to (21)-(23) using both
fully synthetic measurements and CEDA-based measurements.
Fig. 7 compares distance-model-agnostic, bin-based estimates
(BBEs) of scale parameter and relative measurement frequency
with the presented model functions, i.e., with the NLOS
scale function (12) and the NLOS distance LHF (13). Each
of the functions is determined both ways, using the MMSE
estimates of ζ(1)200 of the last time step, given as ζ̂

(1)MMSE
200 and

using the respective true values used for simulation ζ̃(1). The
BBEs are determined using all NLOS measurements (the LOS
measurements are removed) of the last 20 time steps, given as
{z(1)

n,m |m∈M(1)
n \ã1

n,n∈{180, . . . , 200}}. For details about
the BBEs see the supplementary material [72, Sec. IV]. This
analysis is complemented by Figs. 8a and 8b which show the
position RMSE eRMSE

n in two ways. First, as a function of
the discrete observation time n and, second, as the cumulative
frequency of the RMSE evaluated over the whole time span.
Fig. 6 demonstrates that using CEDA-based measurements the
MMSE estimates of the parameters of the NLOS LHF (i.e., the
MMSE estimates corresponding to ζ(1)n ) are slightly biased,
in particular the DNR estimate ω̂

(1)MMSE
n . This effect is a

consequence of the asymptotic bandwidth assumption used in
the derivation of the NLOS likelihood model (see [72, Sec. I]).
However, as in Fig. 6 the model functions parameterized with
the MMSE values accurately fit the BBEs, the MMSE estimate
of the agent position p̂MMSE

n in Fig. 6 remains unbiased and,
thus, the positioning performance in Figs. 8a and 8b using
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Fig. 6. MMSE estimates (determined using fully synthetic measurements and CEDA-based measurements) and true values of all state variables v.s. discrete
time n for the experiment described in Sec. VII-B.1. We show the mean MMSE estimate and the corresponding range from minimum to maximum value.
Anchor state variables are only shown for anchor A1. Different shades of gray represent different numbers of anchors in OLOS according to Fig. 5.

Fig. 7. Bin-based estimates (BBEs) of (a) the Rayleigh scale parameter of
the amplitude measurements and (b) the relative frequency of the distance
measurements compared to (a) the NLOS scale function and (b) the NLOS
distance LHF. All values are shown as a function of the difference of the
distance measurement and the corresponding LOS component distance, given
as z(1)dn,m

− d
(1)
LOS (p̃200) for anchor A1.

“CEDA-based measurements” is identical to the performance
using “fully synthetic measurements” up to random deviations.

In addition, in Figs. 8a and 8b we compare to fully syn-
thetic measurements with (i) known initial state distributions,
slightly lowering the RMSE around n = 0, and (ii) assuming
the parameters of ζ(j)n to be known constants, leading to a
significant increase of performance at the end of the full
OLOS situation as the bias information does not vanish over
discrete time n. With CEDA-based measurements we also
compare to results where (i) we calculate the relatively defined
STV using the RMSE values of the respective last time step

n− 1 according to Sec. VII-A and where (ii) we use a uni-
form delay intensity function fNL(z(j)

dn,m
) = 1/dmax showing

no significant degradation of performance. The latter result
suggests that for low values of γ, the information provided in
(13) is insignificant (c.f. Fig. 2b). Therefore, in what follows,
we keep the uniform delay intensity function leading to a
considerable reduction of runtime since Q0(pn, ζ

(j)
n ) does not

need to be calculated (see also Sec. VI-B.3 and Sec. VII-D).
Next, we investigate the influence of the individual features
of our algorithm as described in Sec. VII-A and Table II.
Figs. 8c and 8d show the RMSE of this experiment as a
function of t′ as well as the cumulative frequency of the
RMSE. The RMSE of the multi-sensor AIPDA (AL1) mostly
attains the P-CRLB during LOS and partial OLOS situations.
A reason for that is that the angle, which the remaining anchors
A1 and A3 span with respect to the agent is sufficiently
large to provide a reasonable position estimate. However, AL1
shows a slightly increased RMSE around n = 80 due to the
agent direction change and significantly deviates from the very
beginning of the full OLOS situation, losing the track in every
single realization. Comparing the curves of AL2-AL5, one
can conclude that every single algorithm feature investigated
lowers the RMSE significantly when activated. The RMSE of
the proposed algorithm AL5 constantly attains the P-CRLB,
which indicates no lost track, even falling below the P-CRLB
in full OLOS situations. This is possible as it leverages the
additional position information contained inside the MPCs
via the non-uniform NLOS LHF, which is not considered
by the P-CRLB model. In contrast, AL2 loses a large per-
centage of tracks after the full OLOS situation, because
NLOS measurements significantly contribute to the LOS based
position hypotheses due to the insufficient representation of
the existence probability by the amplitude state particles (see
Sec. IV-D). While AL3 constantly attains the P-CRLB during
the LOS situation as well the partial OLOS situation, it loses
the track for every realization in full OLOS. After a short
amount of time in which AL3 can maintain the agent position
through the agent state transition model and the decreasing
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Fig. 8. Performance of different algorithm variants in terms of the RMSE of the estimated agent position (a), (c) as a function of the discrete observation
time n, and (b), (d) as the cumulative frequency in inverse logarithmic scale, determined from numerical simulation of stochastic multipath according to
Sec. VII-B.1. Different shades of gray represent different numbers of anchors in OLOS according to Fig. 5.

Fig. 9. A single measurement realization and the respective MMSE estimates using the proposed algorithm (AL5) for geometry-related synthetic measurements
(see Sec. VII-B.2). We show MMSE estimates in (a) distance domain d̂(1)MMSE

n,0 , (c) amplitude domain (û(1)MMSE2
n , ω̂(1)MMSE2

n ), (d) LOS probability domain

q̂
(1)MMSE
n , and (b) amplitude as a function of distance domain for n ∈ {130, . . . , 136}. The measurements in (b) correspond to the upper and in (c) to the

left axis. Note that in (a) and (c) only measurements for every third time n are shown (i,e., n ∈ {1, 4, 7, . . .}).

LOS probability, it identifies MPCs as the LOS component
due to their coherent appearance and large amplitude, which is
not covered by the uniform NLOS model, and loses the track.
AL4 shows a seemingly random performance degradation,
which is due to the insufficient representation of the high
dimensional joint state by the particle filter and some resulting
lost tracks, which AL5 overcomes by decoupling the anchor
states (see Sec. VI). However, the discrepancy between AL4
and AL5 can be dissolved by using a sufficiently high number
of particles (see AL4′ and AL5′), at the cost of significantly
increasing the runtime (see Sec. VII-D).

2) Synthetic Measurements With Geometry-Related Mul-
tipath: In this section, we discuss results using synthetic
measurements based on the simple floorplan shown in Fig. 5.

The measurements are obtained by simulating a radio sig-
nal according to (5), consisting of the LOS component and
specular MPCs, and using the proposed CEDA. The MPC
delays are calculated out of the floorplan (i.e. W1-W5) using
the mirror images (virtual anchors) up to the third order [24].
The SNR of the LOS component as well as the MPCs [48]
are set to 20 dB at a distance of 1 m and are assumed
to follow free-space path loss. The SNR of the individual
MPCs are additionally attenuated by 3 dB after each reflection
(e.g., 6 dB for a second-order reflection). As depicted in Fig. 5,
for this experiment the anchors are obstructed by an obstacle
(W5), which leads to partial and full OLOS situations in the
center of the investigated trajectory. Figs. 9, 10a, and 10b show
results of the performed numerical simulation. Fig. 9 provides
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Fig. 10. Performance of all algorithm variants of Table II in terms of the RMSE of the estimated agent position (a), (c) as a function of the discrete
observation time n, and (b), (d) as the cumulative frequency in inverse logarithmic scale, determined from numerical simulation of specular MPCs according
to Sec. VII-B.2 in (a), (b) and using real radio measurements according to Sec. VII-C in (c), (d). Different shades of gray represent different numbers of
anchors in OLOS according to Fig. 5.

a graphical representation of the measurement space, showing
a single measurement realization z together with the corre-
sponding MMSE estimates of the proposed algorithm (AL5).
The MMSE estimates are determined according to (21)-(23).
In particular, Fig. 9a shows that (i) the MMSE estimate of
the LOS delay d̂(j)MMSE

n,0 = d
(j)
LOS(p̂

MMSE
n ) remains stable over

the whole OLOS situation and that (ii) the maximum of the
NLOS LHF follows the first MPC available. We determine
the shape of the NLOS LHF using the respective MMSE
estimates of all RVs on which (11) depends. Fig. 9c shows
that the DNR estimate ω̂

(j)MMSE
n accurately represents the

dynamic behavior of the multipath energy, deceasing rapidly
when the strongest, first MPC is covered, while the SNR
estimate û

(j)MMSE
n remains stable. For visualization, Fig. 9b

shows the NLOS scale function at time n = 133 parametrized
with the respective MMSE estimates of all NLOS function
parameters. Fig. 9d shows the LOS existence probability q(1)n

well representing the OLOS situation. Figs. 10a and 10b show
the RMSE as a function of the discrete observation time n
as well as the cumulative frequency of the RMSE. Again,
we investigate the influence of the individual features of our
algorithm according to Sec. VII-A and Table II. Comparing
the presented curves, we again observe AL5 to significantly
outperform AL1-AL5, with the qualitative performance dif-
ferences being almost identical to those of Sec. VII-B.1. The
only significant dissimilarity is the seemingly smaller deviation
between AL4 and AL5. This is because AL4 does not lose
any tracks during initialization, as the average energy and
distance to the LOS component of the measurements of the
first time step n = 0 are significantly lower in this scenario,
leading to a better coverage of the state space by the particle
filter. Thus, we only observe a slightly more unstable local
behavior of AL4. The MP-SLAM algorithm (AL6) achieves
a significantly reduced RMSE during the first part of the
OLOS situation, due to geometric information provided by the

specular MPCs, outperforming the proposed method (AL5).
However, the investigated scenario is geometrically ambiguous
as there is little directional change in the agent movement [28].
Also there are many low-SNR components, which disappear
and reappear, due to the obstacle (W5). This is why AL6
follows ambiguous paths for many realizations (i.e., it loses
the track), leading to a significantly reduced performance after
the full OLOS situation. We additionally added AL6∗, which
represents the numerical results after removing 20.6% (103
realizations) of diverged tracks. This result demonstrates the
dramatically increased accuracy that can be obtained using
MP-SLAM.

C. Performance for Real Radio Measurements

For further validation of the proposed algorithm, we use
real radio measurements collected in a laboratory hall of
NXP Semiconductors, Gratkorn, Austria. The hall, shown
in Fig. 11a, features a wide, open space and includes a
demonstration car (Lancia Thema 2011), furniture, and metal-
lic surfaces, thereby representing a typical multipath-prone
industrial environment. An agent is assumed to move along
a pseudo-random trajectory (selected out of a grid of agent
positions), obtained in a static measurement setup. We selected
N = 195 measurements, assuming an observation rate of
∆T = 170 ms. The agent velocity is set to vary around a
magnitude of 0.35 m/s. This leads to a corresponding continu-
ous observation time 33.15 s. At each selected position, a radio
signal was transmitted from the assumed agent position, which
was received by 4 anchors. The agent was represented by a
polystyrene build, while the anchor antennas were mounted on
the demonstration car. The agent as well as the anchors were
equipped with a dipole antenna with an approximately uniform
radiation pattern in the azimuth plane and zeros in the floor
and ceiling directions. The radio signal was recorded by an
M-sequence correlative channel sounder with frequency range
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Fig. 11. Measurement setup for real radio-signal experiments described in
Sec. VII-C. We show pictures of (a) the overall scenario and (b) the OLOS
setup used, as well as (c) the abstracted floorplan and trajectory.

3 − 10 GHz. Within the measured band, the actual signal
band was selected by a filter with root-raised-cosine impulse
response s(t), with a roll-off factor of 0.6, a two-sided 3-dB
bandwidth of B = 499.2 MHz and a center frequency of
7.9872 GHz (corresponding to channel 9 of IEEE 802.15.4a),
and critically sampled with Ts = 1/(1.6B). We used Ns =
161 samples, amounting to a maximum distance of dmax =
60 m for the CEDA. We created two full OLOS situations at
n ∈ [80, 92] and n ∈ [159, 170] using an obstacle consisting
of a metal plate covered with attenuators as shown in Fig. 11b.
A floor plan showing the track, the environment (i.e, the car,
other reflecting objects and walls), the antenna positions, and
OLOS conditions with respect to all antennas is shown in
Fig. 11c. The metal surface of the car strongly reflected the
radio signal, leading to a radiation pattern of 270◦ for A1
and A2 and 180◦ for A3 and A4. Thus, during large parts
of the trajectory the LOS of 2 or 3 out of 4 anchors is not
available. Moreover, the pulse reflected by the car surface
strongly interferes with the LOS pulse, leading to significant
fluctuations of the amplitudes. In addition, this leads to the
channel estimator being prone to produce a high SNR compo-
nent just after the LOS component. As this violates our signal
model, we processed the CEDA measurements attenuating all
components, where z

(j)
dn,m

∈ d̃
(j)
n,0 + [0, 2 c Tp], except for

the highest component. As only two antennas (A1 and A2)

TABLE III
ALGORITHM RUNTIMES AND CHARACTERISTIC VALUES

OF ALL INVESTIGATED SCENARIOS

are visible at the track starting point, the position estimate
obtained by trilateration is ambiguous. In the scenario pre-
sented, the relative antenna position with respect to the car can
be assumed to be known. Thus, for this experiment, we used
the antenna pattern as prior information for initialization of
the position state. For the numerical evaluation presented,
we added AWGN to the real radio signal obtained. We set
∥r̄(j)

raw∥2/σ(j)2 = 20dB, where ∥r̄(j)
raw∥2 is the average energy

of the real measured signal per anchor j. Figs. 10c and 10d
show the RMSE as a function of the discrete observation time
n as well as the cumulative frequency of the RMSE. Again,
we analyze the influence of the individual features of our
algorithm according to Sec. VII-A and Table II and observe
AL5 to significantly outperform the other algorithm variants.
Different to Sec. VII-B.2 all presented algorithms fail to reach
the P-CRLB over parts of the track. The exact consistency in
progression of the RMSE curves suggests unmodeled effects
(e.g. diffraction at the vehicle body) as well as inaccuracies in
the reference as a probable reason.

D. Runtime

Table III shows the average runtime of the proposed algo-
rithm (A5) and compares it to the runtime of the multi-sensor
AIPDA (AL1) and that of the MP-SLAM algorithm (AL6).
All runtimes are estimated using Matlab implementations
executed on an AMD Ryzen Threadripper 1900X 8-Core
Processor with up to 4 GHz for all scenarios investigated.
We also show the average number of measurements (over
all anchors and time steps) Mmean, the number of anchors J
and the number of particles, which determine the algorithm
complexity per time step. The runtime of our algorithm (AL5)
is of the same order of magnitude than that of the multi-
sensor AIPDA (AL1), which is in the range of tens of
milliseconds for all scenarios investigated. In contrast, the
runtime of the MP-SLAM algorithm (AL6) is significantly
higher, since it requires joint data association between all map
features [22] and a higher number of particles for numerical
stability.

VIII. CONCLUSION

We have presented a particle-based sum-product algorithm
(SPA) that sequentially estimates the position of a mobile
agent using range and amplitude measurements provided by
a snapshot-based channel estimation and detection algorithm
(CEDA). We introduced a novel non-line-of-sight (NLOS)
model that is adapted to the delay power spectrum (DPS)
of the multipath radio channel. We analyzed the performance
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of the proposed algorithm using both numerically simulated
and real measurements in different channel conditions and
showed that the additional information provided by the NLOS
model can support the estimation of the agent position. Our
algorithm significantly outperformed the conventional AIPDA
filter and consistently attained the P-CRLB in partial OLOS
situations (i.e., no lost tracks). While multipath-based SLAM
(MP-SLAM) can naturally outperform our algorithm in chan-
nels showing resolved, specular MPCs, we demonstrate the
proposed algorithm to offer a significantly smaller number
of lost tracks at reduced execution time in a geometrically
ambiguous scenario.

A possible direction for future research includes extending
the model to multiple biases with respect to several MPCs
using joint probabilistic data association and dynamic MPC
initialization [46], [48] or to several MPC clusters by using
data association with extended objects [47].
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