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Abstract
A number of problems encountered in the field of computational geotechnics
requires the modelling of numerous pile-type structures embedded in a three-
dimensional soil continuum. Traditional modelling approaches to this problem
result in computational costs that must be regarded as unbearable for most
practical purposes. As an attractive alternative, we propose an enhanced embed-
ded FE model with implicit interaction surface (EB-I) where coupling between
the contacting domains is realized by an implicit surface-to-volume (2D-to-3D)
coupling scheme. As a novelty, the latter implements a non-linear interface
constitutive model that allows for explicit consideration of endpoint interac-
tion, but does not represent a constraint for the solid mesh generation. As the
slender structure is discretized employing the Timoshenko beam theory, shear
deformability is explicitly considered, as opposed to earlier EB-I-type models
reassessed in this paper. The credibility of the proposed EB-I is numerically vali-
dated on the basis of comparative studies. It is found that the 2D-to-3D coupling
scheme generally improves the well-posedness of the resultant global stiffness
matrix, making the proposed EB-I computationally competitive to geometrically
simplified line-to-volume coupling schemes. Future lines of research are care-
fully addressed throughout this work and include the normal stress recovery
technique as well as applications to large-scale simulations.
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1 INTRODUCTION

Embedding slender structures into a matrix material represents a versatile strategy tailored for the development of sus-
tainable and cost-efficient solutions to numerous technical problems.1 In the context of computational modelling, as
considered in the following, the former will be referred to as sub-scale elements (SSE), the matrix material as macro-
scale element (MSE) and the composite material as embedded reinforcement model (ERM). In the literature, a variety of
cross-disciplinary applications exists, for instance in the form of steel reinforcements within concrete structures in struc-
tural engineering2–5 or fibre-reinforced composites in material science.6–10 Likewise, this concept can be found in other
fields than solid mechanics11,12; for example, countless biological systems comprise biopolymer networks of highly slen-
der filaments, whereas the latter govern crucial processes, including cell migration and cell division.13 In a very recent
publication,14 focus is placed on the electro-chemical analysis of fibrous electrodes where discrete fibres are embedded in
an electrolyte matrix, a multi-functional material that can be used for energy storage and harvesting.
At a different length scale, geotechnical engineers employ piles to control or optimize the load transfer from super-

structures to the underlying soil.15–17 In this view, pile–soil systemsmay be regarded as ERM. At variance to analytical and
empirical methods traditionally utilized to design ERM involving pile-type structures, such as the p-y-method originally
proposed by Reese et al.18 or the strain wedgemethod first applied in the work of Norris19 that are based uponmore or less
significant model assumptions, the finite element method (FEM) allows for the general and simultaneous consideration
of complex geometries, material non-linearities, soil–structure interaction (SSI) phenomena, non-trivial loading situa-
tions and inhomogeneous geological environments. Therefore, the FEM possesses a relatively higher potential to provide
a time- and cost-efficient design of related problems.20 Moreover, it can be deployed to gain fundamental understanding
of the structural behaviour at length scales that are commonly not accessible via experiments; for example, see Refs.21–23
Considering the examples presented in the previous paragraphs, it appears almost logical that the evolution of suitable

finite element modelling techniques has attracted widespread interest from the scientific community. The vast majority
of associated developments has been introduced on a case-by-case basis resulting in cross-disciplinary lines of research,
some of which overlap. In a more general sense, Goudarzi and Simone24 follow a simplistic classification scheme into two
broad modelling categories, namely explicit and implicit approaches. In the former case, frequently referred to as mean-
field25 or homogenization approach,26,27 the collective effect of randomly distributed SSE on the global ERM response is
taken into account in an indirectmanner bymeans of anisotropicmaterialmodels (Figure 1A). This entails the assumption
that the analysis domain is macroscopically homogeneous and uniform in properties, albeit being composed of disjointed
sub-regions.28 From a computational perspective, implicit modelling strategies, such as deployed in Kattis et al.,29 are
particularly appealing, since they are applicable to a variety of simulation programs offering the opportunity to apply
anisotropic material laws. Essentially, this allows to restrain the computational effort to stay beyond practical limits, as

F IGURE 1 Schematic representation of sub-scale element modelling techniques – (A) implicit, (B) explicit-discrete and (C)
explicit-embedded (Note: For clarity, 3D solid FE nodes are not shown).
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GRANITZER et al. 225

no additional degrees of freedom (DOF) are in demand to resolve the SSE.30 However, implicit modelling approaches
require sub-scale information, presumably provided by ERM enclosing numerous resolved SSE geometries, to determine
material properties. Furthermore, they are not capable of providing detailed insight into local effects,31 and inconvenient
for optimization purposes and the assessment of failure mechanisms, a crucial output of finite element analyses (FEA).32
Consequently, implicit modelling approaches should be restricted to global response analyses.
The secondmodelling approach explicitly resolves SSE either employing full three-dimensional (3D) domains compris-

ing solid finite elements (FE) or dimensionally reduced discretizations, also known as discrete FE models (D-SSE)33 and
embedded FE models (EB-SSE),34 respectively (Figure 1B,C). In the former case, geometrical details of individual D-SSE
are typically discretized by means of the standard conformal FEM24 using solid FE, thereby imposing full 3D surface-
to-surface mesh tying problems at MSE-SSE contacts; for example, see Refs.35–37 With regard to the modelling of piles
through D-SSE, solid FE corresponding to the pile domain may be additionally circumscribed by contact formulations,
such as isoparametric contact elements38–42 in order to account for SSI. In the context of computational geotechnics, this
expanded D-SSE modelling approach is often termed standard FE approach (SFEA).43
ConventionalD-SSE are subjected tomesh conformity constraints, that is, nodes coupled at the contact interface assume

the same coordinates. Recently, FEM-based strategies that allow this restriction between contacting SSE-MSE domains
to be lifted have emerged; prominent examples encompass the mortar FEM,44,45 immersed FEM46 and extended FEM,47
some of which have been applied to geotechnical problems.48 A deep theoretical discussion is beyond the scope of the
present paper, but it is important to point out that these approaches invoke numerically expensive cutting procedures to
implicitly model interfaces, and constitute no general remedy against meshing complexities inherent to D-SSE.49
Although D-SSE allow for a detailed description of the complete ERM geometry, and may be equipped with advanced

constitutive models to describe inherent sources of non-linearity, they necessitate high levels of mesh refinement close
to SSE-MSE contacts in order to capture the sought field variables with sufficient accuracy. This inevitably induces a
substantial increase of computational burden.50 Considering practical computational limits in terms of memory capacity
and total runtime duration, D-SSE are, therefore, not generally favoured and rarely applied to study the behaviour of large-
scale ERM involving a high number of SSE.51 In the realm of computational geotechnics, this holds particularly true for
dynamic SSI problems.52
Adopting simplifying geometrical and physical assumptions,17,49 EB-SSE have evolved as attractive alternatives to over-

come aforementioned obstacles as they substantially alleviate computational costs compared to D-SSE.53 In the range of
our modelling assumptions, numerous numerical examples54–57 demonstrate that related formulations yield very accu-
rate results, are well-posed and exhibit optimal spatial convergence; therefore, EB-SSE are increasingly used to examine
SSI phenomena in a general manner for different kinds of geotechnical problems.58 On the one hand, relative merits
compared to D-SSE are attributed to the elimination of the conformal mesh generation constraint,24 on the other hand,
EB-SSE reduce the number of unknowns to be solved substantially.59
From a numerical perspective, the development of EB-SSE is non-trivial to handle as the description of SSE-to-MSE

interaction boils down to a mixed-dimensional coupling scheme linking dimensionally reduced 1D structural FE to 3D
solid FE. Since the different types of involved FE are endowed with different discretizations, mixed-dimensional coupling
schemes of EB-SSE need to keep track of a set of variables which reside on the boundary between domains of different
dimensions; to this end, they require the simultaneous consideration of equations in different dimensions which adds
complexity to their development.60 Although EB-SSE have gained increasing popularity within the field of computa-
tional geotechnics, commercially available implementations continue to suffer from numerical pitfalls, some of which are
addressed in a very recent contribution.61
Inspired by recent developments in the field of computational geotechnics,62,63 the present paper introduces the generic

framework of an enhanced EB-SSE with implicit interaction surface. The proposed EB-SSE is general in a sense that it
is able to reproduce key features of the SFEA, such as plastic frictional tangential slip along the pile shaft42 as well as
a mechanically consistent redistribution of coupling forces at the base to realistically capture the response of pile-type
structures.Moreover, its variational framework explicitly accounts for shear deformation occurring inside the SSE,making
it more suitable for idealizing the behaviour of short piles in stiff soils.16,64
The remainder of this contribution is organized as follows: Section 2 reconsiders important landmarks in the develop-

ment of EB-SSE based on a thorough literature review. To the authors’ knowledge, this is the first attempt to categorize
the latter in a rigorous manner with explicit crosslinks to the field of computational geotechnics. In Section 3, we state the
fundamental modelling assumptions and implementation details of an enhanced EB-SSE, which builds on the existing
EB-SSE51 currently implemented in the FE code PLAXIS 3D.65 Section 4 is devoted to numerical experiments where we
carefully study its numerical performance with particular focus on the coupling scheme and computational performance;
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226 GRANITZER et al.

we further shed light on the importance of a stress dependent formulation of the embedded interface constitutive model.
Section 5 closes with the conclusions of this work and highlights further research aspects.

2 EMBEDDED FEMODELS FORMULTI-POINT COUPLING OF 1D STRUCTURES
WITH 3D CONTINUUMDOMAIN: AN OVERVIEW

From a numerical point of view, EB-SSE considered in this section are composed of 1D structural FE constituting the
SSE, such as truss, bar or beam FE, and mixed-dimensional coupling schemes with high-dimensional gap,60 whereas the
dimensionality refers to the number of dimensions used to parametrize the coupled FE types.66 In view of the envisaged
ERM application class, this concerns pile-type structures embedded in a background solid mesh representing the MSE.
Principally, the development of numerical coupling schemes with high-dimensional gap is more challenging compared

to those designed for low-dimensional gap models, as in the latter case, the mutual interaction between contacting bodies
defined across their contact surfaces is better understood in both mathematical and physical terms.42,60 Typically, there
is no explicit geometry object in the 3D solid mesh to match the centerline of dimensionally reduced 1D structural FE,
which renders high-dimensional gap problems naturally more prone to numerical stability issues.67 Furthermore, EB-
SSE entail several modelling errors, including the artificial continuity assumption61 imposed on the solid domain (Ω𝑠)
and the spurious superposition of material points that share the same spatial position.68,69 The latter aspect constitutes a
general limitation inherent to the family of embedded overlay elements70,71 in which SSE have to be understood as being
superimposed on the MSE domain rather than being surrounded by it.
Over a period of more than five decades, numerous researchers have successfully contributed to the gradual evolution

of EB-SSE, with some enhancements having also found application in the realm of computational geotechnics. In spite of
remaining numerical pitfalls reported in the previous paragraph, these have paved the way to the ubiquitous deployment
of EB-SSE in geotechnical FEA. As a consequence, the analysis aim has been increasingly shifted from global response
analysis to the investigation of complex boundary value problems (BVP) that provide local insight into the mechanical
behaviour at critical locations; for example, see Refs.56,57,72 The purpose of this section is to organize relevant advances in
the development of EB-SSE in a comprehensiblemanner, many of which have been integrated in the enhanced variational
EB-SSE framework discussed in Section 3. In addition, the authors firmly believe that the understanding of the theoretical
concepts is crucial to assess the scope of validity for geotechnical FEA involving EB-SSE, and exploit the capabilities of
state-of-the-art EB-SSE in future research works.

2.1 Embedded FEmodels with implicit interaction line

The pre-dominant share of EB-SSE documented in the literature is equipped with multi-point line-to-volume (1D-to-3D)
coupling schemes that enforce constraint equations among the relevant DOF. This means that the mutual interaction is
mathematically described at the centerline position of the 1D structural FE. Early work on so-called embedded FEmodels
with implicit interaction line (EB-L) has been carried out in the context of reinforced concrete, where they have been
found eligible for the modelling of reinforcing agents,73,74 with the restriction that the reinforcements have to align with
the parametric coordinate system of the solid discretization. In particularly relevant publications,2,75,76 this approach has
been extended to allow for an arbitrary orientation of straight 1D structural FE relative to the solid mesh, a key feature
of modern EB-SSE. Further work documented in Elwi and Hrudey77 has pursued the generalization of EB-L to curved
1D geometries.
In view of the suitability for geotechnical FEA, however, it must be noted that the basic idea of those mentioned previ-

ous works is to literally add stiffness contributions stemming from an EB-L to the global stiffness matrix of the ERM, that
is, no DOF are explicitly solved for the EB-SSE. As a consequence, this EB-L class is subject to the same obstacles as it
is the case with implicit modelling approaches. With reference to Kang et al.,78 we will denote this class as semi-discrete
EB-L (Figure 2A). More specifically, semi-discrete EB-L require perfect adherence conditions to be imposed on all coupled
nodal pairs, and imply that the kinematics of 1D structural FE can be appropriately described by the solid displacement
field, commonly expressed bymeans of Boltzmann continua31 incorporating standardC0-continuous element functions79;
given theC1-continuous centerline representation of conventional 1D structural FE,80 however, this assumption is not gen-
erally warranted. As semi-discrete EB-L demand the implementation of a relatively expensive post-processing procedure
to obtain stress resultants,62 they must also be regarded as prohibitive for numerous structural design tasks.
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GRANITZER et al. 227

F IGURE 2 (A–D) Conceptual layout of embedded FE models with implicit interaction line/surface and (E) concept of independent
displacement field of 1D structural FE (Ω1𝐷) and 3D solid FE (Ω3𝐷).

To some extent, fully discrete78 EB-L resolve aforementioned issues by introducing independent translational DOF at
discrete coupling points (Figure 2B), resulting in the addition of unknowns to the discrete system of equations. Adopting
the classification scheme for the treatment of contact constraints after Wriggers,42 variationally consistent methods to
enforce the coupling constraints of fully discrete EB-L include, but are not restricted to, the penalty method,20 Lagrange
multiplier method,81 mortar method,49 Nitsche method82 and the formulation of constitutive equations at the interac-
tion line.51 Similar to semi-discrete EB-L, fully discrete EB-L can be superimposed onΩ𝑠 irrespective of the solid mesh.76
From a geotechnical perspective, the development of fully discrete EB-L, in lieu of semi-discrete EB-L, has beenmotivated
by an increasing demand for modelling techniques that allow for a reliable prediction of local field variables (for exam-
ple, stresses and displacements) in the vicinity of pile-type structures, account for non-linear SSI effects, and offer the
advantage of providing direct insight into stress resultants as crucial ingredients to the structural design.58 In the realm
of computational geotechnics, discrete EB-L can, therefore, be regarded as state-of-the-art, and are generally preferred by
modern geotechnical FE codes58; in turn, semi-discrete EB-L are favoured in FEA concerning the global system response
of composite materials comprising a high number of randomly dispersed glued or moulded SSE at microscopic length
scales, such that all modes of relative motion are suppressed and full adherence conditions prevail.28
Apart from the distinction between semi- or fully discrete EB-L, a reasonable classification scheme designed for EB-

SSE has to distinguish between the various types of 1D structural FE that can be used to discretize the SSE. In the case
of reinforced composite materials,2,3,10 bar elements may be well suited as the internal elastic energy contribution mainly
infers from axial compression or tension83; we refer to members of this EB-SSE class as bar EB-L. While convenient for
the modelling of geotechnical problems dominated by axial deformation, such as micropiles subjected to axial tension,84
bar EB-L are prohibitive for application scenarios with significant bending deformation. Beam EB-L,51,85,86 in contrast,
are conceptually different to embedded bar EB-L proposed in the 1990s for the modelling of steel cords in large strain
FEA of rubber composites71 or reinforcing agents in reinforced concrete structures87; the salient difference concerns the
bending part of the elastic strain energy which is explicitly regarded in the internal virtual work equations of beamEB-L.83
This extension ensures a mechanically consistent consideration of the structural resistance stemming from the bending
deformation mode; pile bending imposed by lateral ground pressure is a case in point where the bending component is
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228 GRANITZER et al.

expected to dominate the internal potential energy contribution of SSE.15 In comparison with bar EB-L, beam EB-L can,
therefore, be considered as more general version of EB-SSE. A detailed discussion on the role of beam theories adopted in
the context of EB-L can be found in Steinbrecher et al.49
From a continuummechanics perspective, the definition of realistic contact conditions is crucial to capture the contact

kinematics between two contacting bodies with high accuracy.42,69 This holds particularly true for geotechnical problems
experiencing SSI, as typically encountered in the envisaged field of EB-SSE applications. In the course of EB-SSE evolu-
tion, a paradigm shift from simplified linear stick EB-L73 to non-linear stick–slip EB-L described by a regularization of
Coulomb’s law51,85 could be observed, whereas the latter has been found eligible for the analysis of pile-type structures
subjected to axial loads.51,58 Research on the performance of EB-L under inclined and horizontal loading, potentially
resulting in the formation of a gap between the contacting bodies, is much rarer. However, recent studies68,88 indicate
that the performance of EB-L under mixed-mode loading, as it may occur in the case for horizontally loaded piles, is
yet sub-optimal.
Recent work concerning the generalization of EB-L has followed two lines of research, namely,

(i) the introduction of weak discontinuity enrichment functions at solid element nodes crossed by 1D structural FE
using the partition of unity enrichment method.89 The so-called strain discontinuity enriched embedded FEmodel,24
herein referred to as discontinuous EB-L, mitigates some shortcomings of traditional continuous EB-L. This includes
the artificial continuity constraint61 inside Ω𝑠 and numerical oscillations.58 The authors, however, state that discon-
tinuous EB-L are not yet competitive as they require the generation of a background integration mesh, at present a
computationally expensive process that impairs their deployment in traditional engineering problems.24

(ii) the supplementary enforcement of rotational coupling constraints between 1D structural FE andΩ𝑠, that is, full cou-
pling EB-L (Figure 2C).31,90 Unlike translational coupling EB-L, full coupling EB-L allow not only for the coupling of
translational DOF between the contacting bodies to describe the cross-section positions of 1D structural FE, but also
to enforce rotational constraints at mutual contacts in order to couple cross-section orientations to the solid. In this
way, EB-L gain the ability to transfer torsional loads in a mechanically consistent manner; for detailed information
regarding application scenarios where full coupling EB-L are generally preferred one is referred to Steinbrecher et al.31
Although full coupling EB-L appear promising, it should be noted that their validation has so far been restricted to
linear material models and conceptually simplified test scenarios; hence, future work is in demand to prove their
suitability to geotechnical BVP considering more realistic contact and material behaviour, that is, inherent sources of
non-linearity.

In principal, the abovementioned EB-L configurations involve truly dimensionally reduced 1D-to-3D coupling strate-
gies formulated in a weak variational sense on the basis of the virtual work principle,91 in which the coupling terms are
described by balance, compatibility and constitutive equations that are combined into one partial differential equation for
displacement1,92; from a numerical point of view, related problems consist in finding the equilibrium state within a dis-
crete Ω𝑠 that is subject to distinct interaction load components, namely, inner line loads acting at the centerline position
and inner point loads imposed at the proximal end.61 Adopting the nomenclature of Podio-Guidugli and Favata,92 these
load components give rise to the juxtaposition of problems similar to theKelvin problem.As a consequence, the exact solu-
tion to be approximated contains singularities in the sought field quantities close to the positions of interaction, possibly
yielding a badly conditioned problem that disqualifies the use of EB-L. Despite the existence of well-established solution
strategies to overcome deduced numerical obstacles,43,86 the 1D-to-3D coupling scheme impairs the general applicability
of EB-L in geotechnical FEA.61

2.2 Embedded FEmodels with implicit interaction surface

Amore natural choice for mathematically describing the coupling formalism is to expand the interaction geometry from
an implicit interaction line to an implicit interaction surface. This concept is adopted by embeddedFEmodelswith implicit
interaction surface (EB-I), as conceptually illustrated in Figure 2D. In the context of computational geotechnics, funda-
mental research on EB-I can be found in Refs.62,63,79,93,94 Since there is no explicit interaction surface inΩ𝑠 to impose the
coupling constraints on, these models incorporate frame-invariant mapping schemes that map the relevant DOF of the
contacting bodies to a well-defined interaction surface, over which coupling constraints are imposed in a weak sense.
In contrast to 1D-to-3D coupling schemes associated with EB-L, this strategy induces a surface-to-volume (2D-to-3D)
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GRANITZER et al. 229

F IGURE 3 Generic overview of sub-scale element modelling approaches with precise categorization of embedded FE models.

coupling problem where an implicit interaction surface, defined by the geometrical properties of 1D structural FE, is
embedded into the background solid domain; in this way, 1D structural FE interact with all solid FE along their surface,
instead of one central solid FE located at the centerline position only. It should be pointed out that 1D-to-3D versus 2D-to-
3D coupling terms have a different physical dimensionality, and therefore different units; while the former are associated
with a line load, the latter refer to a surface load.49 Increasing the physical dimensionality of the coupling scheme allows
the high-slenderness restriction of EB-SSE49 to be lifted. Conceptually, EB-I can, therefore, be considered suitable for
analysing geotechnical structures other than micropiles, as initially intended with respect to EB-L.85
Recently published comparative studies demonstrate principalmerits of EB-I compared to EB-L, some ofwhich are con-

sidered relevant for geotechnical FEA.58,61,62,68,88,95 A considerably important advantage is that EB-I predict the near-field
displacements close to the physical contact interaction with significantly higher accuracy (Figure 2E); EB-I can, therefore,
be regarded as generally superior in terms of calculation fidelity. This observation, together with EB-L related considera-
tions stressed in Section 2.1, are put into context in the form of an EB-SSE classification scheme that assesses the individual
numerical performance in a qualitativemanner based on findings reported in the literature (Figure 3). To the authors’ best
knowledge, the latter represents the first attempt to structure a dynamically growing number of developments related to
EB-SSE in the context of computational geotechnics, thereby adopting mechanically justified categories combined with a
semantically consistent terminology. It is hoped that this endeavour sheds light on the fundamental principles of EB-SSE,
and paves the way to generally applicable formulations that reduce the computational demands of D-SSE while retaining
their solution fidelity.
Above considerations have motivated the development of an enhanced EB-I that explicitly accounts for non-linear

interface behaviour along implicit interaction surfaces covering both, the shaft and the base (combined coupling). The
reader should notice that this feature represents an enhancement compared to the EB-I versions highlighted in Figure 3
where coupling is restricted to perimetral positions along the shaft (shaft coupling); since the proposed EB-I is additionally
equipped with a Coulomb-type failure criterion, it can be classified as stick-slip EB-I. In the next section, insight into
relevant implementational details is provided.

3 EMBEDDED BEAMWITH INTERACTION SURFACE: MODEL DEVELOPMENT

Extending the mechanical framework of the EB-I models detailed in Refs.,62,63 we present an enhanced EB-I formula-
tion for embedding three-noded shear flexible Timoshenko beams96 into a 3D solid domain, that is, shear deformability is
explicitly taken into account.83 Contrary to previous publications concerning the capabilities of earlier versions of the pro-
posed EB-I model in a practical context,58,61,68,84,88 the present paper provides detailed information about the underlying
implementational framework developed in the FE code PLAXIS 3D as well.
Without loss of generality, coupling between the contacting domains is described at implicit61 interaction surfaces Γ𝑐

where displacement compatibility and stress equilibrium conditions are satisfied. Essentially, the EB-I interface behaviour
is numerically described not only by means of contact conditions established along the shaft, but also across the base
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F IGURE 4 Basic notation used in the development of the proposed EB-I model with implicit interaction surface Γ𝑐 including reference
systems of interest.

surface. In addition, a non-linear interface constitutive model is introduced which is able to account for the soil stress
state in the vicinity of Γ𝑐. The significance of these features in geotechnical FEA will be demonstrated in Section 4.2.
Adopting continuum mechanics fundamentals, non-contacting boundaries of the beam domain Ω𝑏 and Ω𝑠 are

decomposed into Dirichlet and Neumann boundaries, Γ𝑢 and Γ𝜎, which satisfy

Γ𝑢 ∪ Γ𝜎 ∪ Γ𝑐 = Γ (1)

Γ𝑢 ∩ Γ𝜎 = Γ𝑢 ∩ Γ𝑐 = Γ𝜎 ∩ Γ𝑐 = 0 (2)

where Γ is the complete set of boundaries over which boundary conditions are defined (Figure 4).
Subsequently, the mathematical description of the proposed EB-I model is provided in symbolic notation where scalars

are denoted by means of Greek and Italic letters, for example, 𝜑 and R. Lowercase bold letters are used to denote vectors
(e.g., �̃�𝑏). Likewise, uppercase bold letters represent tensors of higher order (e.g.,𝐍𝑠). Components of vectors and higher-
order tensors are defined considering a right-handed Cartesian basis, with a fixed set of orthonormal base unit vectors.
Unless stated otherwise, the normal pressure is assumed positive in compression.

3.1 Preliminaries and kinematical description

Figure 4 illustrates the basic layout of the proposed EB-I model, which comprises the following ingredients and
assumptions:

∙ Global system coordinates {𝑥1, 𝑥2, 𝑥3} are described bymeans of orthonormal base unit vectors {𝐞1, 𝐞2, 𝐞3}; by adopting
the Einstein notation, the position vector of a generic global point is defined as 𝐱 = 𝑥𝑖 ⋅ 𝐞𝑖 . Likewise, it is useful to define
a local coordinate system {𝑥𝑙1, 𝑥

𝑙
2, 𝑥

𝑙
3} with orthonormal base unit vectors {𝐞

𝑙
1, 𝐞

𝑙
2, 𝐞

𝑙
3} whereas 𝐞

𝑙
3 is aligned with the

beam axis 𝜉, hence 𝑥𝑙3 ∈ [0, 𝐿beam]. The position vector of a generic local point at the beam axis is defined as 𝐱𝑙 = 𝑥𝑙
𝑖
⋅ 𝐞𝑙

𝑖
.

∙ The proposed EB-I coupling formalism enforces coupling constraints on multiple coupling points 𝐱𝑖 distributed over
the perimeter Γ𝑐,𝑝 as well as the base Γ𝑐,𝑏 of the implicit coupling surface. With reference to Equations (1) and (2), this
can conveniently be expressed by Γ𝑐 = Γ𝑐,𝑝 ∪ Γ𝑐,𝑏. Depending on the beam loading mode, this results in the distributed
mobilization of discrete coupling forces; see Figure 5A. The corresponding orthonormal base unit vectors are denoted
as {�̃�1, �̃�2, �̃�3}. In Section 3.3, we will introduce a consistent mapping procedure to describe the interaction behaviour
in a discrete manner by means of beam and solid displacement fields �̃�𝑏, �̃�𝑠 ∈ ℝ3 computed at 𝐱𝑖 , assuming that the
intersection boundary of both domains initially occupies the same position; see Figure 5B.

∙ Due to inherent limitations of EB-SSE addressed in Section 2, Ω𝑠 is discretized without subtracting the beam volume
from the solid volume, resulting in the spurious overlapping of material points at identical positions. This modelling
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GRANITZER et al. 231

F IGURE 5 (A) Mobilization of coupling forces over the perimeter of the implicit interaction surface; (B) schematic representation of
displacement vectors at a selected coupling point.

error is proportional to the beam volume fraction and the relative stiffness ratio between beam and solid.49 In view of
the envisaged application classes, the beam stiffness is considerably higher compared to the solid stiffness; hence, the
influence of the modelling error can be considered insignificant.

∙ At present, the proposed EB-I model is unable to keep track of gap formation mechanisms as a consequence of lateral
loading; it should therefore be applied to geotechnical problems where the beam is assumed to remain in contact with
the surrounding soil throughout the analyses. Future EB-I model extensions may address its generalization to more
complex loading situations where gapping phenomena are likely to occur.

∙ The variational fundamentals concerning coupling constraints betweenΩ𝑠 and Ω𝑏 read:

�̃�𝑏 − �̃�𝑠 = 𝟎, ∀ 𝐱𝑖 ∈ Γ𝑐, ∀ 𝑡 (3)

which are fulfilled in the reference configuration, that is, the coupling operator is constant and requires no evaluation of
the normal vector𝐧 on Γ𝑐 in the current configuration. In Equation (3), t denotes amotion parameter. It should be noted
that this formulation of the coupling conditions is only valid for contact problemswhich donot include frictional sliding,
as the friction process is dissipative, that is, the solution becomes path-dependent. As will be shown in Section 3.4,
however, this hypothesis represents no limitation of the EB-I model, which is completely general from a constitutive
point of view. This includes, but is not restricted to the constitutive description of the non-linear interface behaviour.

3.2 Variational fundamentals

Under the assumption of small deformations, contributions to the total potential energy of the ERM can be split into
beam Π𝑏(∙), solid Π𝑠(∙) and coupling terms Π𝑐(∙), whereas the beam and solid terms are independent of the coupling
constraints, that is, traditional discretization andmodelling techniques can be used forΩ𝑏 andΩ𝑠. Applying the principle
of virtual work, the Lagrangian functional (∙) reads

(𝐮𝑏, 𝐮𝑠) = Π𝑏(𝐮𝑏) + Π𝑠(𝐮𝑠) + Π𝑐(𝐮𝑏, 𝐮𝑠) (4)
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232 GRANITZER et al.

where 𝐮𝑏, 𝐮𝑠 ∈ ℝ3 denote beam and solid displacement vector fields, respectively. Equilibrium of the mechanical ERM
system is achieved by minimizing (∙),97 hence we search for the solution to the problem:

(𝐮𝑏, 𝐮𝑠) = arg min(
𝐮∗
𝑏
, 𝐮∗𝑠 ∈ 𝐔𝑏×𝐔𝑠

) {(𝐮∗𝑏, 𝐮∗𝑠 )} (5)

where𝐔𝑏 × 𝐔𝑠 denotes the admissible solution space. With regard to the first and the second term in Equation (4) repre-
senting the virtual work equations of the beam and Ω𝑠, well-established discretization and modelling techniques can be
adopted without modifications; since this is not the main aspect of the present work, the interested reader is referred to
Refs.83,91 The last term in Equation (4) constitutes the potential energy related to the kinematic coupling constraints in
Equation (3), which are enforced at 𝐱𝑖:

Π𝑐 =
∑
𝐱𝑖∈Γ𝑐

𝜖𝑝

2
(�̃�𝑏 − �̃�𝑠)

𝑇
(�̃�𝑏 − �̃�𝑠) (6)

Herein, 𝜖𝑝 ∈ ℝ+ represents a scalar-valued penalty parameter used to penalize any violation of the kinematic coupling
constraints. Adopting the penalty method, it can be shown that Equation (3) is exactly enforced for 𝜖𝑝 → ∞; compare
Wriggers.42 The stationary point of the potential energy function formulated inEquation (4) is found by setting its variation
equal to zero:

𝛿Π = 𝛿Π𝑏 + 𝛿Π𝑠 +
∑
𝐱𝑖∈Γ𝑐

𝜖𝑝(�̃�𝑏 − �̃�𝑠) ⋅ (𝛿�̃�𝑏 − 𝛿�̃�𝑠)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝛿Π𝑐

= 0 (7)

In Equation (7), 𝜖𝑝(�̃�𝑏 − �̃�𝑠) can be interpreted as discrete coupling forces mobilized at 𝐱𝑖 . In order to mathematically
explore the load transfermechanismof the EB-Imodel inmore detail, we can re-formulate the coupling conditions defined
in Equation (3):

𝐱𝑏 − 𝐱𝑠 = 𝟎, ∀ 𝐱𝑖 ∈ Γ𝑐, ∀ 𝑡 (8)

𝐱𝑏 (𝜉, 𝑅, 𝜑) = 𝐫𝑏 (𝜉) + 𝑅 ⋅ cos (𝜑) ⋅ 𝐞
𝑙
1 (𝜉) + 𝑅 ⋅ sin (𝜑) ⋅ 𝐞

𝑙
2 (𝜉)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝐫𝑐𝑠 (𝜉,𝑅,𝜑)

(9)

where 𝐱𝑏, 𝐱𝑠 ∈ ℝ3 denote the current positions of coupled solid and beam material points initially sharing the same
location at Γ𝑐 in the reference configuration (Figure 5B), 𝐫𝑏 (𝜉) ∈ ℝ3 defines the beam centerline curve connection
cross-section centroids (Figure 6A), and 𝐫𝑐𝑠 (𝜉, 𝑅, 𝜑) ∈ ℝ3 represents cross-section position vectors that point from the
cross-section centroid to Γ𝑐, defined by means of the polar coordinates 𝑅 ∈ ℝ+ and 𝜑 ∈ [0, 2𝜋); compare Figure 4. The
rate form of Equation (8) in the reference configuration is defined by the material time derivative:

̇̃𝐱𝑏 − ̇̃𝐱𝑠 = 𝟎, ∀ 𝐱𝑖 ∈ Γ𝑐, ∀ 𝑡 (10)

which may be interpreted as enforcing zero relative velocities between the contacting bodies at 𝐱𝑖 . By inserting
Equations (8) and (9) into Equation (6), an equivalent relationship is obtained for the penalty potential:

Π𝑐 =
∑
𝐱𝑖∈Γ𝑐

𝜖𝑝

2
(𝐫𝑏 + 𝐫𝑐𝑠 − 𝐱𝑠)

𝑇(𝐫𝑏 + 𝐫𝑐𝑠 − 𝐱𝑠) (11)

Eventually, variation of Equation (11) allows for a direct inspection of the load transfer mechanism invoked by the
proposed EB-I model:

𝛿Π𝑐 =
∑
𝐱𝑖∈Γ𝑐

𝛿𝐫𝑇
𝑏
𝜖𝑝(𝐫𝑏 + 𝐫𝑐𝑠 − 𝐱𝑠) ⋅ Γ𝑐,𝑖
⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

𝐟𝑐,𝐱𝑖

+ 𝛿𝜽𝑇
𝑏
𝜖𝑝(𝐒(𝐫𝑐𝑠)(𝐫 − 𝐱𝑠)) ⋅ Γ𝑐,𝑖
⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

𝐦𝑐,𝑏

+ 𝛿𝐱𝑇𝑠 𝜖𝑝(−𝐫𝑏 − 𝐫𝑐𝑠 + 𝐱𝑠) ⋅ Γ𝑐,𝑖
⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

−𝐟𝑐,𝐱𝑖

(12)

Therein, 𝜽𝑇
𝑏
signifies an infinitesimal rotation variation, Γ𝑐,𝑖 represents the discrete interaction surface segment

(Figure 4) belonging to 𝐱𝑖 , and 𝐒 ∈ 𝐬𝐨3 denotes a skew-symmetric tensor, with 𝐬𝐨3 representing a set of skew-symmetric
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GRANITZER et al. 233

F IGURE 6 (A) Spatial description of interaction surface segment Γ𝑐,𝑖 as well as (B) illustration of complete set of Γ𝑐,𝑖 and specification of
coupling point patterns.

tensors that satisfies

𝐒(𝐫𝑐𝑠)(𝐫𝑏 − 𝐱𝑠) = 𝐫𝑐𝑠 × (𝐫𝑏 − 𝐱𝑠), ∀ 𝐫𝑐𝑠, 𝐫𝑏, 𝐱𝑠 ∈ ℝ3 (13)

This reformulation in Equation (12) leads to a direct expression of coupling forces 𝐟𝑐,𝐱𝑖 acting on both, the beam
centerline and the solid. In addition, Equation (12) pinpoints the coupling moment 𝐦𝑐,𝑏 acting on the beam cross-
section. Obviously, this demonstrates the projection of purely translational coupling constraints enforced on Γ𝑐 onto
the beam centerline, and highlights arising beam rotational coupling terms. Interested readers may refer to the work
of Granitzer and Tschuchnigg61 which highlights engineering problems in which this aspect may govern the structural
response considerably.

3.3 Finite element approximation

The numerical treatment of coupling constraints is crucial in the development of EB-SSE since they may add severe non-
linearity to the problem at hand. This includes the constitutive description of the interface behaviour, the numerical
enforcement of coupling constraints as well as the discretization of Γ𝑐. With regard to the proposed EB-I model, coupling
is incorporated by means of kinematical constraints established over the beam and solid displacement field as previously
stated in Equation (3). More specifically, at each beam node 𝐫𝑏(�̂�) along the beam centerline, multiple equally spaced
coupling points 𝐱𝑖 are defined along Γ𝑐,𝑝 as well as at Γ𝑐,𝑏 covering the virtual beam geometry. Therefore, all displacements
and tractions describing the coupling behaviour are evaluated at the barycenter of individual Γ𝑐,𝑖 (Figure 6A).
From a mechanical point of view, each 𝐱𝑖 is tied to the underlying Ω𝑠 through linear penalty constraints. Coupling

contributions are numerically integrated, stipulating that

∫
Γ𝑐

⋅ 𝑑Γ𝑐 ≡ ∑
𝐱𝑖∈Γ𝑐,𝑝

⋅
2𝜋𝑅

𝑛𝑝
⋅
𝐿beam
𝑛𝐿

+
∑

𝐱𝑖∈Γ𝑐,𝑏

⋅
𝜋𝑅2

𝑛𝑏
(14)

where 𝑛𝑝, 𝑛𝐿 and 𝑛𝑏 denote the number of 𝐱𝑖 specified over the perimeter, the length and the base of respective beam
elements (Figure 6B). In this context, it should be noted that an Γ𝑐,𝑖(𝐱𝑖) does not follow from a direct discretization of
Γ𝑐, instead it is analytically described via the beam cross-section orientation, the beam cross-section geometry and the
discretized beam centerline. As a consequence, the proposed EB-I does not require an additional surface mesh to be
integrated inΩ𝑠, hence it maintains the mesh-independency feature of EB-L models, as discussed in Section 2.1.
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234 GRANITZER et al.

Adopting the Galerkin method,91 we can mathematically express the beam constituent in Equation (3) on the basis of
Lagrangian element functions𝑁𝑏

𝑖
occupied by the ith node of consecutive three-noded beam FE, and related translational

and rotational DOF �̂�𝑏, 𝜽𝑏 ∈ ℝ9:

�̃�𝑏,ℎ =
⎡⎢⎢⎣
𝑁𝑏
1

𝑁𝑏
1

𝑁𝑏
1

…

…

…

𝑁𝑏
3

𝑁𝑏
3

𝑁𝑏
3

⎤⎥⎥⎦ ⋅ �̂�𝑏

+ 𝑅 ⋅ cos 𝜑 ⋅

⎡⎢⎢⎢⎣
0 𝑒𝑙1,𝑥3

−𝑒𝑙1,𝑥2
−𝑒𝑙1,𝑥3

0 𝑒𝑙1,𝑥1
𝑒𝑙1,𝑥2

−𝑒𝑙1,𝑥1
0

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
𝑁𝑏
1

𝑁𝑏
1

𝑁𝑏
1

…

…

…

𝑁𝑏
3

𝑁𝑏
3

𝑁𝑏
3

⎤⎥⎥⎦ ⋅ 𝜽𝑏

+ 𝑅 ⋅ sin 𝜑 ⋅

⎡⎢⎢⎢⎣
0 𝑒𝑙2,𝑥3

−𝑒𝑙2,𝑥2
−𝑒𝑙2,𝑥3

0 𝑒𝑙2,𝑥1
𝑒𝑙2,𝑥2

−𝑒𝑙2,𝑥1
0

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
𝑁𝑏
1

𝑁𝑏
1

𝑁𝑏
1

…

…

…

𝑁𝑏
3

𝑁𝑏
3

𝑁𝑏
3

⎤⎥⎥⎦ ⋅ 𝜽𝑏

(15)

Therein, 𝑒𝑙
𝑖,𝑗
denotes a scalar projection of the Euclidian base unit vector 𝐞𝑙

𝑖
in the direction of the Euclidian base unit

vector 𝐞𝑗; see Section 3.1 for a specification of reference systems. Assembling �̂�𝑏 and 𝜽𝑏 in a single vector ̂̂𝐮𝑏 ∈ ℝ18, we can
re-write the discrete beam displacement field at 𝐱𝑖 in compact form introducing the mapping function matrix𝐇 ∈ ℝ3𝑥18:

�̃�𝑏,ℎ(𝐱𝑖) = 𝐇(𝐱𝑖) ⋅ ̂̂𝐮𝑏 (16)

In view of the solid constituent in Equation (3), the most natural choice for estimating the solid displacement field at
Γ𝑐,𝑖 is to interpolate within the corresponding solid FE:

�̃�𝑠,ℎ(𝐱𝑖) = 𝐍(𝐱𝑖) ⋅ �̂�𝑠 (17)

where𝐍 ∈ ℝ3×𝑛 is the element functionmatrix of the 𝑛-noded solid FE, and �̂�𝑠 ∈ ℝ𝑛 denotes the solid FE nodal displace-
ment vector. Depending on the mesh topology, a solid FE may include zero, one or multiple 𝐱𝑖 within its boundaries. For
this purpose, a search algorithm is implemented which allows for the determination of corresponding pairs of target solid
FE (TSFE) and 𝐱𝑖 (Figure 6A) based on the inverse mapping of isoparametric solid element functions, similar to Ninić
et al.20 To limit the computational effort, this procedure is executed only once during the mesh discretization.
The coupling constraints stated in Equation (8) are locally enforced through a point collocation method, meaning that

the differential equation in Equation (10) is explicitly solved for all 𝐱𝑖 using the penalty method. In this way, coupling
contributions to the global stiffness matrix as well as the global force vector are computed in a point-wise manner; see
alsoRemark 3.1. Describing the variation of the total coupling potential in Equation (12) on the basis of discretized beam
and solid displacement fields as defined in Equations (16) and (17), we can derive the local stiffness matrix �̃�𝑐,𝐱𝑖 and the
resisting force vector 𝐟𝑐,𝐱𝑖 with respect to 𝐱𝑖 in single tensorial equations:

�̃�𝑐,𝐱𝑖 = 𝜖𝑝

[
𝐇𝑇 ⋅ 𝐇 −𝐇𝑇 ⋅ 𝐍

−𝐍𝑇 ⋅ 𝐇 𝐍𝑇 ⋅ 𝐍

]
(18)

𝐟𝑐,𝐱𝑖 = 𝜖𝑝

[
𝐇𝑇 ⋅

(
𝐇 ⋅ ̂̂𝐮𝑏 − 𝐍 ⋅ �̂�𝑠

)
𝐍𝑇 ⋅

(
𝐇 ⋅ ̂̂𝐮𝑏 − 𝐍 ⋅ �̂�𝑠

)] (19)

whereas point-wise information on nodal quantities related to individual 𝐱𝑖 is stored in vector form 𝐪𝐱𝑖 = [ ̂̂𝐮𝑏, �̂�𝑠]
𝑇 . For

practical reasons, ̂̂𝐮𝑏 is explicitly solved, hence they are kept in the discrete weak form of the BVP; relative merits of this
approach have been addressed in Section 2.1 in the context of semi-discrete ERM. The local contributions can readily
be assembled to the global system of equations using standard procedures, hence will not be stated here for the sake of
brevity.
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GRANITZER et al. 235

Remark 3.1. The proposed coupling approach naturally captures the three-dimensionality of the problem, circumventing
the need to incorporate additional kinematical hypotheses, such as incorporated on the basis of a projection operator in
Turello et al.63 Without loss of generality, this aspect reduces the implementational complexity of the proposedEB-Imodel.

3.4 Incorporation of non-linear interface constitutive model

Conceptually, the proposed EB-I is not necessarily treated as direct problem of compatibility on the basis of Equation (3),
but can be extended by incorporating constitutive relationships that relate coupling forces to slip and compression.
Inspired by the EB-L formulation51 currently employed in the commercial software code PLAXIS 3D, the proposed EB-I
modelwithweakly enforced coupling constraints is augmentedwith a non-linear interface constitutive in order to account
for axial slipping and separation betweenΩ𝑏 andΩ𝑠. This yields the advantage that the gradual mobilization of skin resis-
tance can be tracked with higher accuracy, while allowing for reasonable estimates of the ultimate bearing capacity,43 as
will be shown in Section 4.2.
Contrary to the abovementioned case, in which perfect adherence coupling constraints stated in Equation (3) are

enforced along Γ𝑐 by adding the penalty term in Equation (12) to the weak form in Equation (7), the coupling term to
be used here is governed by a constitutive relationship that is locally established at each 𝐱𝑖:

𝛿Π𝑐 = ∫
Γ𝑐

�̃� ⋅ (𝛿�̃�𝑏 − 𝛿�̃�𝑠) 𝑑Γ𝑐 = ∫
Γ𝑐

�̃� ⋅ 𝛿�̃�rel 𝑑Γ𝑐 (20)

The latter is equivalent to the virtual work produced by the traction vector �̃� ∈ ℝ3 (Figure 6B) and the virtual relative
displacements �̃�rel, omitting virtual work contributions stemming from any external loads and body forces. Adopting the
methodology first employed by Tschuchnigg and Schweiger,51 an elasto-plastic relationship between �̃�rel and �̃� in both
contact tangential directions �̃�2 and �̃�3 is defined. This means that the hypothesis regarding the coupling constraints doc-
umented in Equation (3) is no longer enforced, that is, depending on the loading history relative displacements between
Ω𝑏 and Ω𝑠 may contribute to the dissipation of internal energy induced by friction processes.98
The energy-conjugated components of �̃�rel = [𝑢rel,1, 𝑢rel,2, 𝑢rel,3]

𝑇 and �̃� = [̃𝑡1, �̃�2, �̃�3]
𝑇 defined by the local axes 𝑂𝑥1𝑥2𝑥3

with the origin placed at 𝐱𝑖 are related using 1D constitutive laws:

�̃� =

⎧⎪⎨⎪⎩
𝐊𝑝 ⋅ �̃�rel = diag(𝐾𝑛, 𝐾cir, 𝐾ax) ⋅ 𝐮rel, ∀ 𝐱𝑖 ∈ Γ𝑐,𝑝

𝐊𝑏 ⋅ �̃�rel = 𝐾𝑏 ⋅ 𝐈 ⋅ �̃�rel, ∀ 𝐱𝑖 ∈ Γ𝑐,𝑏

(21)

One can easily see that the introduction of the above constitutive equations can be interpreted as an uncoupled non-
linear penalty formulation42 that describes the constitutive behaviour during the pre-failure loading stage; compare
Remark 3.2. Therein, 𝐾𝑛, 𝐾cir and 𝐾ax represent the embedded interface stiffness in normal, circumferential and axial
directions with respect to Γ𝑐,𝑖(𝐱𝑖) specified over the perimeter of the virtual beam geometry, 𝐊𝑝 denotes the embed-
ded interface stiffness in both lateral directions as well as in axial direction with respect to Γ𝑐,𝑖(𝐱𝑖) specified at the base
(Figure 7A), and 𝐈 ∈ ℝ3 represents the identify matrix. 𝐊𝑝 and 𝐊𝑏 denote the diagonal matrices comprising the embed-
ded interface stiffness parameters computed at the perimeter and the base, respectively, which are defined as (see also
Remark 3.3)

𝐾𝑛 =
50 ⋅ 𝐺avel
2 ⋅ 𝑅 ⋅ 𝜋

⋅
2 ⋅ (1 − 𝜈𝑖)

1 − 2𝜈𝑖
⋅ Γ1 + Δ1 (22)

𝐾cir = 𝐾ax =
50 ⋅ 𝐺avel
2 ⋅ 𝑅 ⋅ 𝜋

⋅ Γ2 + Δ2 (23)

𝐾𝑏 =
50 ⋅ 𝐺avel ⋅ 𝑅

𝑅2 ⋅ 𝜋
⋅ Γ3 (24)

In Equations (22)–(24), 𝐺𝑎𝑣
𝑒𝑙
is the average shear modulus at the stress points belonging to the TSFE corresponding to

𝐱𝑖 ,51 𝜈𝑖 is the interface Poisson’s ratio, which has a default value of 0.4543 and R is the virtual beam radius. Γ1, Γ2 and
Γ3 as well as Δ1 and Δ2 are scalars assigned with default values of 1 and 0, respectively; these optional parameters are
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236 GRANITZER et al.

F IGURE 7 (A) Definition of embedded interface stiffness parameters and (B) mapping procedure considered in layer-dependent option
to recover 𝜎′𝑛 from the stress field of the solid Gauss points.

incorporated for scientific purposes, for example, to study the influence of the embedded interface stiffness magnitude on
the well-posedness of the global stiffness matrix in order to ensure a high level of numerical robustness of the proposed
EB-I model.42

Remark 3.2. The proposed EB-I model adopts well-validated relations from Tschuchnigg43 where 𝐺𝑎𝑣
𝑒𝑙
, 𝑅 and 𝜈𝑖 have

been found suitable for describing the non-linear interface behaviour. In case, the behaviour of Ω𝑠 is described using a
constitutive model that accounts for the stress-dependent stiffness of the soil, 𝐺𝑎𝑣

𝑒𝑙
is updated at the beginning of each

load step based on the solid stress field state at the end of the previous load step. In this way, the non-linearity of the
coupling behaviour is naturally included in the proposed EB-I model, omitting the tedious definition of fictitious consti-
tutive parameters on a case-by-case basis followed by existing approaches for describing non-linear interface behaviour
in combination with EB-I models; for example, see Turello et al.63

Remark 3.3. In each time step [𝑡𝑛, 𝑡𝑛+1], a quasi-static implicit time integration is applied, in which the traction vector
�̃�𝑖,𝑛+1 ∈ ℝ3 at 𝐱𝑖 is calculated based on the elastic predictor-plastic corrector concept. Correspondingly, the traction vector
update can be rewritten in incremental form:

�̃�𝑛+1
𝑖

= �̃�𝑛
𝑖
+ Δ̃𝐭𝑖 (25)

Δ̃𝐭𝑖 =

{
𝐊𝑝 ⋅ Δ�̃�rel ∀ 𝐱𝑖 ∈ Γ𝑐,𝑝

𝐊𝑏 ⋅ Δ�̃�rel ∀ 𝐱𝑖 ∈ Γ𝑐,𝑏
(26)

As can be inferred from Equations (25) and (26), the proposed EB-I performs an incremental traction update at each
𝐱𝑖 since the coupling behaviour is described on the interaction surface. This differs from the underlying concept of the
existing EB-L model51 where the coupling behaviour is described on a line, resulting in an incremental update of the
nodal force vectors Δ𝐭𝑗 residing on the jth beam node �̂�𝑏,𝑗 . However, with some abuse in notation, the latter can be related
knowing the traction vectors Δ̃𝐭𝑖 at each time step residing on the same cross-section:

Δ𝐭𝑗
(
�̂�𝑏,𝑗

)
=

𝑛𝐱𝑖∑
𝑖

Δ̃𝐭𝑖(𝐱𝑖) ⋅ Γ𝑐,𝑖(𝐱𝑖) (27)

Regarding the constitutive description, it should be noted that this requires dimensional changes of the proposed con-
stituents in𝐊𝑝 and𝐊𝑏, defined in Equations (22)–(24), compared to the existing EB-Lmodel, which are, therefore, defined
as the original relations divided by the perimeter (2 ⋅ 𝑅 ⋅ 𝜋) and the base area (𝑅2 ⋅ 𝜋), respectively.
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GRANITZER et al. 237

Remark 3.4. In the scope of envisaged application classes described in Section 3.1, publications61,84,88 showcase the suitabil-
ity of the proposed interface constitutive model for describing the mechanical behaviour of slender structures embedded
in different soil types, while ensuring a high level of numerical robustness. However, the authors believe that it is some-
what premature to claim the general applicability of the proposed relations in Equations (22)–(24) given the wide field of
potential EB-SSE application cases.58 Hence, further validation studies are in demand to prove the generality of the above
relations, or detect limitations for practical use. In the latter case, Γ1, Γ2 and Γ3 can readily be modified to achieve the
desired system behaviour.

As a novelty, the interface constitutive model of the proposed EB-I is equipped with a limit criterion which couples the
ultimate skin resistance to both the stress state and the soil parameters of the TSFE. The response along the perimeter
is, therefore, locally controlled at each 𝐱𝑖 by means of a penalty regularization of Coulomb’s friction law, in combination
with the Kuhn–Tucker–Karush condition42 in order to exclude the occurrence of tensile stresses perpendicular to the
interaction surface: [̃

𝑡1, �̃�2, �̃�3
]𝑇
= 𝐊𝑝 ⋅ �̃�rel (28)√

�̃�22 + �̃�
2
3 ≤ 𝑐′ + 𝜎′𝑛 tan 𝜑

′ (29)

�̃�1 ≥ 0, 𝑢rel,1 ≥ 0, �̃�1 ⋅ 𝑢rel,1 = 0, ∀ 𝐱𝑖 ∈ Γ𝑐 (30)

In analogy to Tschuchnigg et al.,51 this approach is referred to as layer-dependent (LD) option, indicating that the
ultimate skin resistance EB-I is a result of the analysis; see Tschuchnigg and Schweiger51 for alternative options. Therein,
𝑐′ and 𝜑′ are the effective shear strength parameters of the TSFE associated with 𝐱𝑖 . It should be noted that the effective
normal stress 𝜎′𝑛 considered in Equation (29) is coaxial with the normal traction constituent �̃�1 of �̃� with its origin placed
at 𝐱𝑖 . However, it is pointed out that they are not necessarily equal in magnitude. While �̃�1 is directly related to the relative
displacement field, as described in Equation (21), 𝜎′𝑛 is obtained from the known effective stress tensor at the Gauss points
𝝈′
𝑠,GP belonging to the TSFE; see Remark 3.5. As schematically illustrated in Figure 7B, the mapping procedure includes

four operations. At first, the stress components computed at the Gauss points are projected from the solid Gauss points to
the solid nodes of the TSFE using a nodal extrapolation scheme99:

�̂�′
𝑠,𝑗𝑁𝑜𝑑𝑒

=

𝑛GP∑
𝑖GP

𝑁𝑖GP

(
𝜉′, 𝜂′, 𝜁′

)
⋅ 𝝈′

𝑠,𝑖GP
(31)

where �̂�′
𝑠,𝑗𝑁𝑜𝑑𝑒

represents the effective stress tensor extrapolated to the 𝑗th node belonging to the TSFE, 𝑛GP denotes the
number of Gauss points occupied by the TSFE, 𝜉′, 𝜂′ and 𝜁′ are the stretched intrinsic coordinates of the TSFE, while
𝑁𝑖GP and 𝝈

′
𝑠,𝑖GP

constitute the element function and the stress tensor associated with Gauss point 𝑖GP. Subsequently, the
effective stress tensor at 𝐱𝑖 can be determined using the isoparametric interpolation concept, similar to Equation (17):

𝝈
′ global
𝑠,𝐱𝑖

= 𝐍(𝐱𝑖) ⋅ �̂�
′
𝑠 (32)

with �̂�′𝑠 being the nodal stress vector obtained from Equation (31). Since the stress quantities are evaluated in the global
coordinate system 𝑂𝑥1𝑥2𝑥3 of Ω𝑠, the mapping procedure needs to consider two rotations in three-dimensional space,
which are defined by

𝝈′ local
𝑠,𝐱𝑖

= 𝐓T⋅ 𝐑T
𝜑 ⋅ 𝝈

′ global
𝑠,𝐱𝑖

⋅ 𝐑𝜑 ⋅ 𝐓 (33)

where 𝐓,𝐑𝜑 ∈ ℝ3𝑥3 are the (transposed) orthogonal rotation matrices that describe the sequential transformation from
the global to the local coordinate system of the beam axis, and from the local coordinate system at the beam axis to the
local coordinate system at Γ𝑐,𝑖 . Finally, 𝜎′𝑛 can be expressed as the Euclidean norm of the stress component vector:

𝜎′𝑛 = ‖ 𝝈′ local
𝑠,𝐱𝑖

⋅ 𝐧(𝐱𝑖)‖ (34)

where 𝐧 is the unit outward normal vector with respect to Γ𝑐,𝑖 .
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238 GRANITZER et al.

The definition of the ultimate base resistance 𝐹max that can be mobilized across Γ𝑐,𝑏 conceptually differs from the
LD option described above, as it is provided as direct input to the analysis. The selection of this approach is attributed
to the wide range of possible values, which may be well in excess of the ultimate structural strength of Ω𝑏100; hence,
in many cases, 𝐹max is not of great importance to design and performance considerations, as it is very often the base
resistance mobilization rate that governs the numerical performance under both serviceability and ultimate limit state
conditions, which in turn is highly controlled by the definition of the embedded interface stiffness at the base expressed
byEquation (24). Viewed in the context of ultimate limit state design, however,𝐹max can be used as a safeguard in FEA, and
allows to define limiting values based on empirical data ranges, such as documented in German Geotechnical Society,15
numerical benchmark analyses58 or experimental results.101 We note that in the limit case, 𝐹max is internally averaged
over Γ𝑐,𝑏, satisfying

�̃�1 =
𝐹max
𝑅2 ⋅ 𝜋

, ∀ 𝐱𝑖 ∈ Γ𝑐,𝑏 (35)

Remark 3.5. After initialization of an EB-I, �̃�1 is locally computed at each 𝐱𝑖 based on the incremental change in 𝑢rel,1
representing the relative displacement between Ω𝑏 and Ω𝑠 in the perpendicular direction to Γ𝑐,𝑖; compare Figure 7A.
Initially, thematerial points belonging toΩ𝑏 andΩ𝑠 are assumed to share the same position across the interaction surface.
With respect to the activation phase of a vertically oriented EB-I, it follows for ∀ 𝐱𝑖 ∈ Γ𝑐,𝑝:

𝑢rel,1 = 0
yields
bbbbb→ �̃�1 = 0 (36)

From Equation (36), it can be inferred that zero-valued normal traction constituents �̃�1 tend to underestimate the mobi-
lized confining stresses along the perimeter, giving rise to overly conservative estimates of the shear resistance along the
interaction surface throughout the simulation. To overcome this shortcoming, 𝜎′𝑛 considered in the Coulomb-type limit
criterion formulated in Equation (29) is directly obtained from the stress state in TSFE, which in turn naturally accounts
for both the initial stress field and the gradual evolution upon loading. It is, therefore, concluded that 𝜎′𝑛 addresses the
normal stress history at Γ𝑐,𝑝 in a more realistic way.

3.5 Numerical implementation

The proposed EB-I model is general in the sense that the mapping procedure described in Section 3.3 allows for the
modelling of arbitrarily oriented structures, without occurrence of “geometrical” inaccuracies, such as explored in Turello
et al.53 This is attributed to the point collocationmethod used to assemble the global system of equations, with which local
coupling contributions, defined in Equations (18) and (19), stemming from 𝐱𝑖 that lie outside Ω𝑠 can be omitted by the
subroutine used to loop over Γ𝑐 in order to form the linearized system of equations.
In this paper, the formulation is implemented for 10-noded tetrahedral solid FE with C0-continuous element functions

of second order. It is noted that this is not a limiting factor inherent to the presented EB-I framework, that is, it can be
applied with different types of solid FE. Due to the introduction of discrete coupling forces localized inside the solid FE,
the exact solution to BVP involving embedded FE models may contain singularities; hence, optimal spatial convergence
towards the exact solution is not generally expected.61 A simple way to overcome this issue is to define an elastic zone
which comprises the virtual beam geometry as well as the half sphere adjoining the pile base.51,86 In these regions, solid FE
stress points are assigned with a stiffness similar to the soil stiffness and forced to remain elastic, yielding local stress field
approximates that may be regarded as unrealistic. However, this is not considered critical within the scope of envisaged
application classes since the mechanical response is well covered by the Timoshenko beam.
In this manuscript, the global system of non-linear equations that can be formally written as

𝐊 ⋅ Δ�̂� = 𝐟 𝑛+1
𝑒𝑥 − 𝐟 𝑛

𝑖𝑛
(37)

is iteratively solved using the multi-core solver PICOS102 which achieves parallelism through the domain decomposition
technique. In Equation (37), 𝐊 is the global stiffness matrix, Δ�̂� is the increment vector describing the iterative change
in sought nodal field quantities, 𝐟 𝑛+1

𝑒𝑥 is the external force vector applied at the current load step and 𝐟 𝑛
𝑖𝑛
is the internal

reaction force vector obtained from the previous load step. A detailed description of the incremental-iterative solution
process including stopping criteria is beyond the scope of the present manuscript and can be found elsewhere.65
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GRANITZER et al. 239

F IGURE 8 (A) Analysis domain and boundary conditions, (B) mesh discretizations, (C) cross-sectional view of shaft and base coupling
point patterns. Due to limited space, only one half and one quarter of the FE models are described in (A) and (B), respectively, although full
3D models are used.

4 VERIFICATION AND NUMERICAL VALIDATION

The next section uses a single-pile problem to analyse the numerical characteristics of the EB-I model proposed in this
work. Although single piles are rarely constructed in isolation, it is useful to consider their analysis for the performance
assessment of novel EB-SSE; for example, see Refs.62,63,86 It should be noted, however, that the proposed formulation
can be applied to a variety of technical problems comprising ERM; see Section 1. The parametric studies are designed
to gain insight into two key model features of the proposed EB-I, namely the combined coupling scheme and the non-
linear interface constitutive model, and to assess its computational efficiency. All FEA are carried out using a research
calculation kernel of the FE code Plaxis 3D Connect Edition V22.01.00.452, installed on a conventional personal computer
with 64-bit Windows 11 Pro OS, Intel Core i7-1165G7 2.8 GHz processor, 16 GB of available RAM and a solid-state drive.

4.1 Investigated scenario and model description

In the course of this section, thewell-documentedAlzey Bridge static pile load test103 executed in slightly overconsolidated
Frankfurt clay serves as reference scenario to study the numerical performance of the proposed EB-I model. Figure 8A
depicts the model geometry and boundary conditions, together with the groundwater table that is located 3.5 m below the
ground surface. In an additional series of FEA, the pile domainΩ𝑝 is discretized employing both the EB-L model and the
SFEA model described in Tschuchnigg and Schweiger51 for purposes of comparison. Standard zero-thickness interface
elements104 are introduced at the pile–soil interface with the same properties of the soil. In order to reduce the effect of
singular plasticity points developing close to the pile edge, these elements are extended beyond the physical pile boundary;
compare van Langen and Vermeer.105 As discussed in Section 2, this SFEAmodel represents a D-SSEmodelling approach
and is, therefore, regarded as numerical benchmark; compare Figure 3. The pile material parameters are listed in Table 1.
As shown in Figure 8B, Ω𝑠 is discretized with a varying number of 10-noded tetrahedral solid FE; unless otherwise

stated, the results are obtained with 8329 (EB-L, EB-I) and 84,148 (SFEA) solid FE. For the sake of numerical consistency,
all simulations are carried out using full 3D models, instead of axisymmetric or reduced 3D models for the SFEA. This
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240 GRANITZER et al.

TABLE 1 Overview of constitutive model parameters considered in Alzey Bridge model.

Pile parameters (constitutive model: linear elastic)
𝛾 (kN/𝑚3) 𝐸 (MN/𝑚2) 𝐹𝑚𝑎𝑥 (kN) 𝑅𝑖𝑛𝑡𝑒𝑟 (1) 𝐿 (m) 𝜈 (1)
25.0 (5.0) 10,000 2,300 0.9 9.5 0.2
Soil parameters (constitutive model: Hardening Soil Small)
𝛾 (kN/𝑚3) 𝐸

𝑟𝑒𝑓

50 (kN/𝑚2) 𝐸
𝑟𝑒𝑓

𝑜𝑒𝑑
(kN/𝑚2) 𝐸

𝑟𝑒𝑓
𝑢𝑟 (kN/𝑚2) 𝑚 (1) 𝜈′𝑢𝑟 (1)

20.0 45,000 27,150 90,000 1.0 0.2
𝜑′ (◦) 𝑐′ (kN/𝑚2) POP (kN/𝑚2) 𝑝𝑟𝑒𝑓 (kN/𝑚2) 𝐺

𝑟𝑒𝑓

0 (kN/𝑚2) 𝛾0.7 (1)
20.0 20.0 50.0 100.0 116,000 0.00015

allows for a direct comparison between both EB-SSE and the SFEA in terms of computational performance. Likewise,
all simulations are carried out employing identical calculation phase sequences; these include the initial stress field gen-
eration employing the K0 procedure, followed by the activation of Ω𝑝 as well as displacement-driven and force-driven
head-down loading, respectively.
Figure 8C provides a visual representation of the standard EB-I coupling point patterns considered along Γ𝑐,𝑝 and across

Γ𝑐,𝑏. While these coupling point patterns comply with respect to the number of perimetral coupling points 𝐱𝑝
(∙),𝑖

, the base
coupling point pattern additionally incorporates a central coupling point𝐱𝑐

𝑏
. In order to avoid co-local𝐱𝑝

(∙),𝑖
at the perimeter

of the base interaction surface (i.e., pairs of 𝐱𝑝
𝑝,𝑖
and 𝐱𝑝

𝑏,𝑖
sharing the same initial spatial coordinates), 𝐱𝑝

𝑏,𝑖
are specified at

an offset ratio r∕R = 0.75.
Ω𝑠 is modelled with the Hardening Soil Small model (HSS) with non-associated flow rule and small-strain stiffness

overlay,106 an extension of theHardening Soilmodel (HS).107 Table 1 lists theHSSmaterial parameters; while the calibrated
HS parameters and drainage conditions are defined in accordance with Engin et al.,86 HSS-specific model parameters,
namely the initial shear modulus, 𝐺0, and the threshold shear strain for stiffness degradation, 𝛾0.7, are specified on the
basis of empirical correlations documented in Refs.108,109

4.2 Pile resistance mobilization

Despite the remarkable developments in the field of EB-SSE explained in Section 2, the coupling formalism at the pile
base has received little attention to date, with the notable exception of Tschuchnigg43 where this aspect is investigated in
the context of EB-L. As a crucial enhancement of the proposed EB-I, its combined coupling scheme additionally accounts
for SSI evolving betweenΩ𝑏 andΩ𝑠 at the base in the form of 𝐱𝑝

𝑏,𝑖
placed across Γ𝑐,𝑏 (Figure 8C), that is, Γ𝑐 = Γ𝑐,𝑝 ∪ Γ𝑐,𝑏. It

should be pointed out that this feature extends existing EB-I models with purely shaft coupling documented in Refs.62,63
where Γ𝑐 = Γ𝑐,𝑝; see also Figure 3. While this simplified coupling procedure may reasonably describe the mechanics of
related problem classes where the base response will rarely influence the global pile response (e.g., laterally loaded piles
or friction piles), it undermines the EB-I calculation fidelity in geotechnical problems with a potentially significant base
resistancemobilization. This is demonstrated in Figure 9A,which shows the load-settlement curves under vertical loading
for the cases of shaft and combined 2D-to-3D coupling, respectively. While the results obtained with the shaft coupling
scheme in the first stage of loading are in reasonable agreement with the numerical benchmark, it becomes apparent
that this method fails to accurately represent the pile response at load levels 𝐹𝑧𝑧 > 1800 kN with dominant pile resistance
mobilization rates. The proposed combined coupling scheme, in contrast, captures the numerical benchmark throughout
the complete calculation phase sequence; apparently, the incorporation of Γ𝑐,𝑏 extends the EB-I applicability, such that
it is no longer limited to loading situations with insignificant base resistance mobilization. For instance, this allows for
more realistic estimates of load-sharing mechanisms traditionally of interest in the design of pile-supported foundations;
for example, see Nguyen et al.110
Figure 9B studies the development of skin tractions along the pile length computedwith the combined coupling scheme.

In order to obtain the equivalent results in the SFEA model, the stress field at Ω𝑝 is post-processed by means of integra-
tion at the pile cross-section and filtered to remove unwanted noise triggered by stress gradients at both pile ends.104 At
𝐹𝑧𝑧 = 1500 kN, the EB-I achieves a reasonable agreement with the numerical benchmark, with approximately linear skin
traction increase along the pile shaft despite an almost constant distribution of relative displacement in axial direction
(Figure 9C). This behaviour is a favourable consequence of the stress-dependent formulation of the interface constitu-
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GRANITZER et al. 241

F IGURE 9 (A) Influence of base coupling surface Γ𝑐,𝑏 on load-settlement response; (B) skin resistance mobilization and (C) relative
displacements 𝑢𝑟𝑒𝑙,3 at different loading conditions. In (C), 𝑢𝑟𝑒𝑙,3 is the mean value of 𝑢𝑟𝑒𝑙,3 averaged over 𝐱

𝑝

𝑝,𝑖
belonging to the same cross

section.

tive model formally described in Equations (21)–(24), in which �̃� is directly coupled to 𝐺𝑎𝑣
𝑒𝑙
computed at the stress points

belonging to the TSFE; compare Figure 6A. From the power law exponent𝑚 = 1.0 specified in Table 1, it follows that these
coupled quantities have to develop linearly with depth.43,107 Skin traction oscillations observed with the EB-I represent an
intrinsic feature of EB-SSE, which are attributed to the non-smoothness of the relative displacement field; the interested
reader may refer to Refs.,24,95 where this aspect has been discussed in detail. The EB-I skin traction distribution computed
at a relative pile head displacement u∕D = 3% is automatically limited by the Coulomb-type formulation of the limit cri-
terion, in which 𝜎′𝑛 is recovered from TSFE; compare Figure 7B. Apparently, the EB-I behaves similar to the numerical
benchmark where standard zero-thickness interface elements are used to limit the skin resistance. The corresponding
relative displacement profile in axial direction shown in Figure 9C implies the transition from stick to slip behaviour at
all shaft coupling points 𝐱𝑝

𝑝,𝑖
, that is, the embedded interface stiffness in axial direction adopts zero values.

4.3 Coupling point pattern analysis

The choice of the coupling point pattern is important for the mathematical properties of the discretized system, since
it influences the connectivity between the DOF occupied by the beam FE and solid FE, respectively. To the best of the
authors’ knowledge, this aspect along with the sparsity structure ofK, a crucial factor that may significantly influence the
performance of iterative solvers,59 will be investigated for the first time in the context of EB-I models.
Let us consider the shaft coupling point pattern illustrated in Figure 8C, in which eight 𝐱𝑝

𝑝,𝑖
are placed at Γ𝑐,𝑝. As can

be inferred from Equations (25) to (27), this coupling point configuration results in Δ𝐭𝑗 being linked to a maximum of
eight solid FE, depending on the mesh discretization; compare Figure 2E. In extreme cases of high occupation density
(Figure 10A), in which each potential TSFE is occupied by at least one 𝐱𝑝

𝑝,𝑖
, the element stiffness matrix describing the

coupling between three-noded beam FE (with three translational and rotational DOF per 𝐫𝑏) and eight 10-noded TSFE
(with three translational DOF per solid node 𝐫𝑠) becomes 𝐊𝑒

𝑐 ∈ ℝ738×738, because 3 (𝐫𝑏) ⋅ [6 (DOF∕𝐫𝑏) + 3 (DOF∕𝐫𝑠) ⋅
10 (𝐫𝑠∕TSFE) ⋅ 8 (TSFE∕𝐫𝑏)] = 738 DOF. In the presence of both loose and dense arrangements with varying occupation
density, however, the size of 𝐊𝑒

𝑐 may vary between consecutive three-noded beam FE, thereby adding complexity to the
global stiffnessmatrix assembly procedure. To overcome this obstacle and simplify the assembly process, we pursue a point
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F IGURE 10 (A) Schematic representation of coupling point-to-solid arrangements; (B) influence of coupling point pattern on (B) nnz
in𝐊 obtained at u∕D = 3% and (C) load-settlement response.

TABLE 2 Global stiffness matrix properties of the Alzey Bridge model (fine mesh).

Property
EB-
L

EB-I
#𝐱

𝒑

𝒑,𝒊
= 𝟒 #𝐱

𝒑

𝒑,𝒊
= 𝟏𝟔 #𝐱

𝒑

𝒑,𝒊
= 𝟔𝟒 #𝐱

𝒑

𝒑,𝒊
= 𝟐𝟓𝟔

Bandwidth (1) 7732 7732 7732 7732 7732
nnz (×103) 2571 2582 2586 2587 2587
nnz/DOF (1) 73.99 74.30 74.44 74.46 74.47
nnz/total entries (%) 0.213 0.214 0.214 0.214 0.214

collocation method where the point-wise contributions obtained from Equations (18) and (19) are separately assembled to
𝐊 as well as the internal reaction force vector.
Figure 10B shows the number of non-zero entries (nnz) in𝐊 for different mesh discretizations and a varying number of

𝐱
𝑝
𝑝,𝑖
indicating the occupation density. nnz around the main diagonal imply interactions between different nodes, either

belonging to Ω𝑏 or Ω𝑠. Consequently, counting the number of nnz provides a direct picture of the nodal connectivity.111
Adopting this analysis strategy, the results highlight two interesting characteristics with respect to the sparsity structure
of 𝐊. First, the number of nnz increases with increasing mesh refinement. This observation can be intuitively explained
by the fact that the number of DOF in the ERM increases with increasing mesh density, resulting in an increase of nnz
as each DOF is associated with one or more nnz in𝐊. The second observation is that the number of nnz (or equivalently
the sparsity pattern) converges to a certain state beyond which the number of nnz remains constant, regardless of the
number of 𝐱𝑝

𝑝,𝑖
. This refers to the situation where all potential TSFE are occupied by at least one 𝐱𝑝

𝑝,𝑖
. With reference to

the coarse and medium mesh, this state is reached at #𝐱𝑝
𝑝,𝑖
= 64 and #𝐱𝑝

𝑝,𝑖
= 128, respectively. With reference to the fine

mesh, Table 2 summarizes selected numerical values describing the sparsity structure of 𝐊 including the bandwidth.38
The latter produces constant values irrespective of #𝐱𝑝

𝑝,𝑖
, indicating a similar level of memory consumption for storing

𝐊. Although not shown in this paper, the same holds true for the coarse and medium mesh. A more detailed analysis of
the sparsity structure of 𝐊, together with an improvement of the iterative solver performance on the basis of improved
deflation and preconditioning methods is at the core of ongoing research and will be presented in future work.
The choice of the coupling point pattern could become critical with regard to the potential occurrence of unwanted

contact locking effects triggered by an over-constraining of the ERM, that is, coupling point configurations with relatively
high occupation density may produce inaccurate results that are regarded too stiff. In the context of 1D-to-3D coupling,
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GRANITZER et al. 243

F IGURE 11 (A) Mesh-dependent computational performance; embedded (B) point load and (C) line load acting on infinite solid,
representing the Kelvin and plane Kelvin problem, respectively.

TABLE 3 Comparison of computational costs as function of sub-scale element modelling approach.

Model #𝐱
𝒑

𝒑,𝒊
DOF Time (s) Speedup ratio (1) # Iter (1) 𝜿𝟐 (1)

SFEA 350,520 974.93 1.0 443
EB-L 7431 118.84 8.2 733 2.571 ×109

EB-I 4 7431 119.67 8.1 580 7.727 ×107

EB-I 256 7431 214.92 4.5 651 7.725 ×107

this is a thoroughly studied topic that can bemathematically attributed to a violation of the discrete inf-sup condition.49,112
Figure 10C provides insight into the influence of the coupling point pattern on the mechanical pile response employing
the combined coupling scheme in combination with the LD option. The results show an insignificant increase of pile
stiffness with increasing number of 𝐱𝑝

𝑝,𝑖
, demonstrating the numerical robustness of the proposed EB-I model under ver-

tical loading. As of now, however, the potential occurrence of contact locking phenomena under more general loading
situations cannot be excluded and may be revisited in future research.

4.4 Assessment of computational performance and condition number

The aim of this study is to assess the computational efficiency of the proposed EB-I. Figure 11A compares the total run-
time duration recovered from EB-I simulations with different coupling point configurations. It should be noticed that the
presented total runtime comprises the setup time, required for setting up the pre-conditioner, and the iteration time for
solving the system of equations, and is obtained by running the simulations until the out-of-balance force obtained in the
loading phase with u∕D = 3% is less than the default tolerated global error of 1%.65 The presented speedup ratio, defined
as the total runtime of the EB-I model divided by the total runtime consumed by the SFEA model, serves as comparative
measure to assess the runtime efficiency relative to the numerical SFEA benchmark. The reader should note that this
measure is also deployed in Table 3 to assess the runtime efficiency of the EB-L model.
It can be inferred from the figure that an increase in#𝐱𝑝

𝑝,𝑖
leads to an increase of total runtime and, inversely, a decrease

of the computed speedup ratio.With reference to the coarsemesh, amaximumspeedup ratio of 8.1 is reported for#𝐱𝑝
𝑝,𝑖
= 4,

while aminimum value of 4.5 is achievedwith#𝐱𝑝
𝑝,𝑖
= 256. A similar trendwith reduced values is found for the finemesh.

Succinctly, this observed tendency is not surprising as it can be explained by an increasing computational effort required
to keep track of the coupling variables betweenΩ𝑏 orΩ𝑠, which is, in turn, influenced by the coupling point configuration.
For example, this concerns the setup time period consumed by the search algorithm to detect the TSFE belonging to the
individual 𝐱𝑖 , followed by the solution of a local system of equations required for the projection of the point on the beam
centerline into the solid FE parameter space; compare Section 3.3. With reference to Section 4.3, an increase in #𝐱𝑝

𝑝,𝑖
may lead to assembly procedures that must be regarded cumbersome for practical problems. The computational cost may,
therefore, be considered as roughly proportional to #𝐱𝑝

𝑝,𝑖
.
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Table 3 additionally compares the computational efficiency of the proposed EB-I with the EB-L; it is important to note
that deviations in the tabular data are caused by the different coupling schemes as it is the only variable in the sensitivity
analysis. Interestingly, the EB-I produces generally smaller iteration numbers as well as similar speedup ratios close to
the lower bound of considered #𝐱𝑝

𝑝,𝑖
, despite the relatively more expensive coupling formalism, compare Section 2.2. To

investigate the numerical origin of this aspect in more detail, we evaluate the condition number 𝜅2 describing the well-
posedness ofK. This is because the performance of iterative solvers is closely linked to 𝜅2, whereas smaller values indicate
more efficient simulations and faster convergence to the exact solution.24,97 SinceK is symmetric positive definite,113

𝜅2(𝐊) =
𝜆𝑚𝑎𝑥(𝐊)

𝜆𝑚𝑖𝑛(𝐊)
(38)

where 𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥 are the maximum and minimum eigenvalues of 𝐊. To facilitate the numerical calculation of 𝜅2,
K is recovered from the coarse mesh. Preliminary analyses of K indicate that 𝜅2 does not significantly change as the
load level changes. Obviously, the EB-I reduces 𝜅2 by more than one order of magnitude compared to the EB-L, that is,
the conditioning of K is significantly improved. This is a beneficial feature of the EB-I as it speeds up the total runtime
compared to the EB-L and, to some extent, compensates for the more expensive coupling scheme.
From a solid mechanics perspective, relative merits of the EB-I with respect to 𝜅2 can be reasonably interpreted by

re-assessing the mechanical problems illustrated in Figure 11, for which analytical solutions, valid under the premise of
elasticity, exist.92 With regard to the EB-L, the definition of the coupling forces in the 1D-to-3D coupling scheme is a
problem similar to the Kelvin problem (Figure 11B), while the 2D-to-3D coupling scheme employed with the EB-I can be
interpreted as a generalization of the plane Kelvin problem (Figure 11C). It should be noted that the exact solution to both
mixed-dimensional coupling problems exhibits local singularities in the displacement and stress fields close to the position
of concentrated contact interaction, that is, beam centerline for EB-L and interaction surface for EB-I. One of the main
consequences of the distributed mobilization of coupling forces encountered with the EB-I is that it reduces the influence
of the singularities, which is reflected in the reduced condition number with respect to K. In this context, it should be
pointed out that relative merits of the EB-I are further amplified due to the proposed changes in the coupling formalism
at the pile base, where the redistribution of coupling forces suppresses unwanted coupling force localization effects.
Although our numerical evidence seems to imply that the computational efficiency is optimal for small #𝐱𝑝

𝑝,𝑖
, how-

ever, one could argue that coupling point patterns with low occupation density may lead to the non-fulfilment of basic
consistency tests, such as described in Steinbrecher et al.49; needless to say that spurious predictions may have adverse
consequences in the interpretation of the results. Of course, related studies concerning the accuracy of the solutions and
convergence rates are generally favoured by a regular subdivision of Ω𝑠,114 a condition that is not met in the simulation
framework used in this manuscript where we generally deploy an unstructured mesh with tetrahedral solid FE. As a con-
sequence, we can only suggest to produce similar studies to that presented in Figures 10C and 11A. Nevertheless, as a
first empirical recommendation deduced from the results of numerous simulations involving the EB-I, some of which are
presented in this paper, we suggest #𝐱𝑝

𝑝,𝑖
= 8.

5 CONCLUSIONS

This work has been motivated by the growing demand for slender structure modelling concepts that combine a high
level of computational efficiency with a reasonable level of numerical fidelity, with particular emphasis on embedded FE
models (EB-SSE) where pile-type structures are discretized by 1D structural FE. The key scientific contributions of this
work can be split into three parts. First, significant contributions related to EB-SSE are theoretically discussed and put into
context in the form of an EB-SSE classification scheme. To the authors’ knowledge, the latter represents the first approach
to structure-related developments with clear reference to the field of computational geotechnics, and pinpoints a number
of relevant limitations that should be considered in future research.
The second part introduces the theoretical framework of an enhanced EB-SSE formulation, in which the interaction

between the Timoshenko beamFE and surrounding solid FE is established bymeans of an implicit surface-to-volume (2D-
to-3D) coupling scheme comprising non-linear coupling constraints enforced at multiple coupling points. As a novelty of
the proposed embedded FE model with implicit interaction surface (EB-I), the combined 2D-to-3D coupling formalism
additionally accounts for endpoint interaction, a crucial feature considering the potentially significant mobilization of
base resistance encountered in many geotechnical problems. Relevant components of the proposed EB-I framework are
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GRANITZER et al. 245

mathematically described and visually explained,whereas particular focus is placed on the variational principles,mapping
scheme and formulation of the non-linear interface constitutive model.
In part three, we investigate the performance of selected EB-I model features on the basis of numerical studies con-

cerning a single pile problem under vertical loading. The first set of analyses showcases the beneficial consequence of the
enriched coupling scheme, which allows for more realistic estimates of the mechanical pile behaviour at load levels fairly
above the ultimate pile skin resistance. Moreover, it is shown that the LD normal stress recovery technique considered
by the Coulomb-type limit criterion enforced along the shaft interaction surface captures the response of the numeri-
cal benchmark solution with reasonable accuracy. The second set of analyses investigates the role of the coupling point
configuration with regard to the global stiffness matrix K properties and mechanical pile response. The results indicate
that the proposed 2D-to-3D coupling scheme is beneficial in terms of global stiffness matrix conditioning. This is a par-
ticularly relevant feature of the EB-I as it improves the computational performance of the iterative solver compared to
the classical EB-L with geometrically simplified 1D-to-3D coupling schemes, making the EB-I competitive for practical
applications despite the computationally more expensive coupling formalism. Although it is observed that an increasing
number of coupling points has detrimental effects on the sparsity structure ofK as well as the total runtime duration, the
determination of a generally optimal coupling point configuration has been out of reach, as it depends on the problem
at hand. Nevertheless, within our studies, we have observed a relatively small influence of this variable on the numerical
predictions, which makes the proposed EB-I model suitable for a wide range of geotechnical problems.
Further understanding of the numerical performance under more complex loading situations will be instrumental to

moving the proposed EB-I forward to eventually harness its capabilities for large-scale 3D FE simulations involving a
high number of slender structures. Furthermore, future work will investigate the capabilities of alternative normal stress
recovery procedures considered in the ultimate skin resistance limit criterion, as well as the extension of the 2D-to-3D
coupling scheme to explicitly account for non-circular cross-sections.
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