
Memory-Efficient On-Card Byte Code Verification
for Java Cards

Reinhard Berlach, Michael Lackner and
Christian Steger

Institute for Technical Informatics
Graz University of Technology

{reinhard.berlach, michael.lackner, steger}@tugraz.at

Johannes Loinig and Ernst Haselsteiner
NXP Semiconductors

{johannes.loinig, ernst.haselsteiner}@nxp.com

ABSTRACT
Java enabled smart cards are widely used to store confiden-
tial information in a trusted and secure way in an untrusted
and insecure environment, for example the credit card in
your briefcase. In this environment the owner of the card
can install and run any applet on his card, such as the loy-
alty application of your favorite store. However, every ap-
plet that runs on a trusted card has to be verified. On-card
Bytecode Verification is a crucial step towards creating a
trusted environment on the smart cards. The innovative
verification method presented in this work comes without
any additional off-card component and uses nearly the same
amount of memory as the execution of the applet uses. The
usage of a Control Flow Graph and Basic Blocks and the
implementation of a temporary transformation of the meth-
ods reduces the complexity of this new verifier. We will
show a detailed analysis of the implemented algorithm and
preliminary tests of a prototype on a Java Card.

1. INTRODUCTION
Smart cards are used in a wide range of applications (e.g.

digital wallets, transport tickets, credit cards) to store security-
critical code, data and cryptographic keys. Today’s smart
cards are more than a simple plastic card. They are used
as a secure element in NFC enabled smart phones. With
the help of these secure elements the NFC-phone is able to
emulate a smart card.

Smart cards are resource-constrained devices that include
an 8- or 16-bit processor, up to 4kB of volatile memory and
hundreds of kB of persistent memory and sometimes a cryp-
tographic co-processor.

Java enabled smart cards (Java Cards for short) allow
small Java applications, called applets, to run on such a
smart card. The write-once, run-everywhere approach of
Java is the primary purpose of implementing a Java Virtual
Machine (JVM) on a smart card. Another advantage of the
JVM is the sandbox concept. This box separates the differ-
ent application that are on one card and protects sensitive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CS2 January 20 2014, Vienna, Austria
Copyright 2014 ACM 978-1-4503-2484-7/14/01 ...$15.00.

data.
In the actual system the user gets a different smart card

for each application. So every one of us has a number of
different smart cards in our wallets. For example, a credit
card, bank card, several loyalty cards and maybe even a card
to access your workplace. This is called Issuer Centric Smart
Card Ownership Model (ICOM) [1]. In the ICOM the card
issuer controls the applets that are installed on the card.

Since NFC enabled smart phones are widely used today,
some users want to shift the functionality of their smart
cards to their smart phone. Java Card enables the users to
install as many applications on their ”smart cards” as they
want. The users are in complete control over which appli-
cations are installed on their cards. This is called the User
Centric Smart Card Ownership Model (UCOM). An illus-
tration of the UCOM we see in Figure 1. One of the major
issues of the UCOM is that applets from an untrusted source
are able to break the sandbox of the JVM. In the security
concept of the JVM, the Bytecode Verification (BCV) is a
crucial part. The BCV checks the correctness of the strong
typing used in the Java programing language.

Figure 2. Overview of User Centric Smart Card Ownership Model (UCOM)

availabi
2) Fa

smart c
loaded
to launc

3) Ea
one car
card an

4) C
the cos
cardhol
a smartFigure 1: Relationships in the User Centric Smart Card

Ownership Model between card supplier, card user, appli-
cation issuer and the service point(from [1])

The composition of this work is as follows: We present a
innovative on-card byte code verification method, we show
a proof-of-concept implementation that is able to run on
a smart card and we will give a analytical review of the
memory consumption of this algorithm.

The paper is organized as follows: Section 2 relates the
work regarding the on-card verifier. Section 3 focuses on the
concept and design of this method. In Section 4 we discuss
the analytical review, Section 5 shows the first results of the
implemented prototype and Section 6 discusses the results
and provides some potential for future work.

Trusted Environment

Smart Card

Virtual
Machine

Installer
On-Card

Installer
Off-Card

BCV
Off-Card

Cap-File

(a) off-card BCV

Smart Card

Trusted Environment

Virtual
Machine

Installer
On-Card

Installer
Off-Card

BCV
On-Card

Cap-File

(b) on-card BCV
Figure 2: Trusted environment with off-card and on-card BCV.

2. RELATED WORK
This section is split into related work about the security

model, the BCV algorithm and on-card BCV methods.

2.1 Java Card Security Model
Witteman [10] discussed the key characteristics of the se-

curity model in Java Cards. According to the specifica-
tion [7], Witteman identified four main aspects of the Java
Card security concept. These points are:

• Bytecode Verification

• Secure Loading

• Applet Isolation and Object Sharing

• Atomic Operations

The first two points and the last point are mandatory. Se-
cure loading is needed to implement the safe path between
the off-card BCV and the on-card installer, as seen in Fig-
ure 2a.

To implement this secure loading, today’s off-card loader
calculates a cryptographic signature for the verified applica-
tion and then transmits it to the card. There the signature
is verified and if it is correct, the application is installed. To
verify the signature on-card an exchange of keys is needed.
To prevent misuse a single source of trust has to be imple-
mented. In the ICOM [1] this is the card issuer.

However, the paradigm shift in the ownership model [1]
makes it impossible to implement a single source of trust.
Moving the BCV to the card renders this trusting source
obsolete.

2.2 Bytecode Verification
The original BCV was presented in 1995 by Goslin [4]

as a part of the low level security of the JVM. The BCV
has to check every non abstract method in all classes of an
application. Therefore, each Bytecode instruction will have
to be interpreted by an abstract JVM.

As an example the SADD instruction has to add two shorts.
The two shorts have to be at the Operand Stack (OS) and
they are taken from there and the result is pushed back to
the OS. Consequently, the abstract JVM has to check the
OS to see if there are two shorts; if so, it takes them from
the OS and pushes one short back to the OS.

As we see this abstract interpretation has to be done on
the Memory Frame (MF), which contains the OS and the Lo-
cal Variable (LV) Registers, and each Bytecode is ”executed”
regarding to the types of the instruction. The verification
fails when the OS does not contain the right types for an
instruction.

Branching instructions are of special interest. Here the
program flow forks. In such a fork the state of the MF in
the JVM has to be forwarded to each branch. Therefore
the Suns BCV [4] saves a ’dictionary’. Later, when they
are joined together each of the states of the MF from the
two branches has to be merged. The dictionary contains the
states and the offset of the instructions and has to be saved
until the method is verified.

This dictionary has to save the states of the MF for each
fork and for each join in a method. The saved MFs can be
changed very often during the verification. The size of such
a dictionary in the memory can be given by O(B× (S+L)),
where B is the number of branches and exception handlers
in the method, S the maximum height of the OS and L the
number of LV used. This will get for a moderate complex
method in an applet with 50 branches, 5 words maximal
on the stack and 15 words for LV about 3500 bytes for the
dictionary [3].

2.3 On-card Verifier
Soon after the initial presentation of Java Card the sci-

entific community began with the research for a possible
solution of an on-card BCV. The main problem with the
existing algorithm is the memory consumption. For a smart
card with only hundreds of byte of RAM or tenth of kilo-
bytes of EEPROM/Flash it is not possible to store the whole
dictionary. Even if it fits into the persistent memory, the
amount of write access to the memory will stress it. Several
authors proposed methods to overcome these problems. We
will discuss two of them in the following section.

2.3.1 Reducing the dictionary
The first idea was to minimize the memory usage of the

dictionary on the card. We will discuss two approaches
forthwith.

Naccache et al. [6] proposed the use of BBs in their work.
For each BB, Naccache et al. calculated the elements used in
LV and OS. In the dictionary they only saved the elements
used for each BB and so can save up to 90% of the size
of the dictionary. The major drawback of this algorithm
was the complex calculation of the elements used, and their
representation in the dictionary.

The second approach was brought by Bernardeschi et al. [2].
In a similar way to Naccache et al. [6], they used the BB, or
regions as they called them, to determine which entries in
the dictionary can be deleted. They deleted an entry in the
dictionary, if there was no path from the actual BB to the
BB corresponding to that entry. Therefore, this approach
only saved the reachable entries in the dictionary and re-
duced the memory usage of the dictionary by 75%.

Split into BB

End

Build CFG

More BBs?

Normalise BB

Start

Y

N

Verify BB

(a) Verification of a
method

Execute iOK? StartError i=first of BB

Changed?

i=next instr.End?

Mark not
verified

Empty? normalise

Mark
verified

Y

Y

N

N

N

Y

N

Y

End

(b) Verification of a BB.

Actual MF

Transformed MF

Normalisation

O
S

o
cc

u
p

an
cy

LV occupancy(0,0)

(c) Normalisation from
[5].

O
S

o
cc

u
p

an
cy

LV occupancy

Actual MF

Transformed MF

Normalisation

(0,0)

(d) Normalisation pro-
bosed in this work.

Figure 3: Verification of a Method, of a BB and the normalisation.

2.3.2 Adding off-card components
The second idea was to use some off-card components to

modify the applet so that it can be processed using an on-
card verification in a more efficient way.

Rose & Rose [9] used the off-card verifier to add Proof
Carrying Code (PCC) to the applet. The PCC enabled the
on-card verifier to verify the code in a single pass and the
memory usage was reduced to the same amount that the
execution of the method needed.

Leroy [5] used an off-card normalization for the applet to
reduce the memory consumption. This normalization en-
sured that at each jump in the code, the OS of the JVM
was empty. Overall he reported of additional 5% applet size
and 2% more RAM space needed for the applets.

These two approaches reduced the memory consumption
to O(S + L), but both needed an off-card component to do
their work.

3. CONCEPT OF THE NEW VERIFICATION
METHOD

For all applets the security of the card has to be ensured
in the UCOM. A crucial step therefore is to verify the cor-
rectness of the applet in respect to the types. At this point
we introduce requirements for the on-card BCV:

• The BCV shall fulfill the given specification from Sun [8]

• The BCV shall run with respect to the resource con-
straints of the card, e.g. small RAM (hundreds bytes),
usage of EEPROM (slow write access, tearing)

• The BCV shall run without any additional off-card
components

Using these requirements, we propose a method that will
verify an applet on the card. This method will be based
on the previous work of Naccache [6], Bernardeschi [2] and
Leroy [5].

Our proposed verifier will also use the abstract interpre-
tation as it was introduced by Goslin [4]. As proposed by
Naccache [6] and Bernardeschi [2] our algorithm splits each
non abstract method of the application into BBs. The next
step in our verification is the normalisation and the abstract
interpretation. The normalisation is used, as discussed at

Leroy [5], to make the process that verifies the method state-
less. This can be seen in Figure 3a

This stateless process is archived in a similar manner as
Leroy [5], but contrary to him we move the normalisation
onto the card. Therfore, our system will not change the
code that will be executed later on the card. Consequently
our BCV has to store the normalising function temporarily,
i.e. it stores the results of the normalisation in the transient
memory.

3.1 Normalization
The normalization process proposed by Leroy has to en-

sure that the OS is empty at the beginning and end of each of
these BBs. In our new verification method this precondition
of each BB will be met through the usage of a temporary
normalization. Temporary means that the normalized code
will not be executed later on the JVM. It only is needed for
the verification.

Each BB that has a non-empty OS at the end, has to be
normalized. A normalization can be seen as an transforma-
tion of the MF from the actual state to a predefined. In
our case this predefined state is a MF with an empty OS.
We call the predefined state of the MF MFdef . The state
at the end of a BB we call MFBB . Then we can define
NBB : MFBB 7→MF def , where NBB is the transformation
function of the BB. The differences between Leroy’s func-
tion and our proposed system can be seen in Figure 3c and
3d.

3.2 Verification
The verification of a BB starts with the abstract interpre-

tation of the instructions as it is shown in Figure 3b. This
works in the same way as the original BCV [4]. If an error
occurs while interpreting the instructions, the system goes
to an Error-state. When the last instruction from the BB
is correctly interpreted, the MF is checked to see if there
were any type changes in the LV. If an element of the LV
has changed, the verification of the BB starts again at the
beginning, and also all following BBs have to be marked as
not verified. If not, the status of the OS is checked. If
the stack is empty, the actual BB is marked as verified

and the next BB in the queue has to be verified. If the stack
is not empty after the last instruction from the BB, the BB
has to be normalized and reverified.

4. IMPLEMENTATION
Our first prototype is implemented completely in Java and

runs on a Java Card. The required queue and BBs are im-
plemented as objects and therefore stored in the persistent
memory. Since the BBs are only written a few times in one
verification and the queue and its elements are mostly used
statically, this decision will not result in a tearing problem in
the persistent memory. Also runtime drawbacks only come
with the write-access of the EEPROM.

The MF is implemented as a static object. The LV and
OS are put into the RAM and can only be accessed through
methods of the MF. The MF is also responsible for calcu-
lating the function N and its inverse.

Normalized BB will hold the normalization function N , or
its inverse, in the transient memory. The inverse transform
function will be interpreted before the first Bytecode and the
function itself will be interpreted after the last Bytecode.
This normalization functions can be discharged, when the
verification of the method is finished.

A rather simple method is used in this proof-of-concept
implementation to save the normalizing function N . We
merely save the elements of the OS in a transient array.
Since in 95% of the normalizations only one element (most
of the time a short) is on the stack, this simple method does
not use to much of the valuable RAM.

5. RESULTS
From the work of Leroy [5] we have seen that only up to

5% of BBs have to be normalized. Also we have seen that
the normalization function N only needs less than 5 byte for
each BBs.

So when we take the moderate complex method from Sec-
tion 2.2 with a maximal stack size of 5 words, 15 words of
LV and 50 branches, we will get around 70 to 75 BBs. Four
of these BBs need normalization, which will use additional
5 bytes each. In this example the usage of RAM will be
about 80 bytes, 4 × 5 = 20 bytes for the transformation
functions and (5 + 15)× 3 = 60 bytes for the MF.

The verification of an applet from our industrial partner
shows that the BCV does not need more than 100 bytes of
RAM, when working on an industrial Java Card applet.

First tests with the implementation have shown that all
explained algorithms (Figure 3) are capable of running on a
commercial Java Card, which was provided by our industrial
partner.

6. CONCLUSION AND FUTURE WORK
In this work we have shown that it is possible to imple-

ment and use an on-card BCV on a low-cost Java Card.
This verification is a first crucial step forward to a trusted
environment that lies completely on the card.
The proposed BCV can verify an uploaded applet without
any off-card preprocessing. Also the BCV runs with less
memory consumption and a similar runtime behavior. The
proposed BCV will not extend the memory consumption of
the methods, when they are executed, as Leroy’s BCV does.
A further advantage of the shown algorithm is, that it won’t
revert the optimizations of the compiler or programmer.

For the moderate complex method (50 Branches, 5 words
OS and 15 words LV) our BCV uses 80 bytes of RAM. The
original BCV [4] uses, for the same method, 3500 bytes.
The verifier using the PCC will only use 60 bytes for the

MF. Leroy’s BCV [5] needs 66 bytes, because of the expan-
sion of the MF for the normalization. These two verifiers are
better than the proposed one but they need some off-card
components.
The verifiers that are not using an off-card component need
more than four times the memory than our BCV needs. In
the case of Naccache et al. [6] it is 10% of the memory con-
sumption of the original BCV, also 350 bytes. The verifier of
Bernardeschi et al. [2] needs 25% of memory as the original
BCV. This gives a memory consumption of 875 bytes. This
shows that our proposed BCV is capable of running even in
the most constrained environment like a smart card.

A possible field of further development could be the im-
plementation of transient objects in the Java Card Runtime
Environment. This could further optimize access to objects
that are only created for the verification, such as the BB or
the Control Flow Graph.

Acknowledgments
This work is part of the CoCoon Project. This project is
funded by the Austrian Federal Ministry for Transport, In-
novation, and Technology under the FIT-IT contract FFG
830601. The authors would like to thank the project part-
ners, NXP Semiconductors Austria GmbH and Graz Univer-
sity of Technology, for their support and encouragement.

7. REFERENCES
[1] R. Akram, K. Markantonakis, and K. Mayes. A

Paradigm Shift in Smart Card Ownership Model. In
International Conference on Computational Science
and Its Applications (ICCSA), 2010, March 2010.

[2] C. Bernardeschi, L. Martini, and P. Masci. Java
bytecode verification with dynamic structures. In
International Conference on Software Engineering and
Applications (SEA), Cambridge, MA, USA, 2004.

[3] D. Deville and G. Grimaud. Building an ”impossible”
verifier on a java card. In Proceedings of the 2nd
conference on Industrial Experiences with Systems
Software - Volume 2, Berkeley, CA, USA, 2002.
USENIX Association.

[4] J. Gosling. Java intermediate bytecodes. ACM
SIGPLAN workshop on intermediate representations
(IR’95), 30(3):111–118, 1995.

[5] X. Leroy. Bytecode verification on Java smart cards.
Software: Practice and Experience, 32(4):319–340,
2002.

[6] D. Naccache, A. Tchoulkine, C. Tymen, and
E. Trichina. Reducing the memory complexity of
type-inference algorithms. In Information and
Communications Security, volume 2513 of Lecture
Notes in Computer Science, pages 109–121. Springer
Berlin / Heidelberg, 2002.

[7] Oracle. Virtual Machine Specification. Java Card
Platform, Version 3.0.4, Classic Edition, 2011.

[8] Oracle. Java card 3 platform off-card verification tool
specification, classic edition. Beta Draft Version 1.0,
Oracle, February 2012.

[9] E. Rose and K. H. Rose. Lightweight Bytecode
Verification. Journal of Automated Reasoning,
31:303–334, 2003.

[10] M. Witteman. Java Card Security. Information
Security Bulletin, July 2003.

