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Introduction

In this report the interaction of plasma with the external low frequency resonant magnetic field

perturbations (RMPs) which occur in tokamaks due to the coil misalignment (error fields) or are

set up deliberately for the creation of ergodic divertor configurations and for ELM mitigation is

studied in kinetic approximation.

Basic equations

The form of the kinetic equation in action-angle variables (θ α ,Jα) convenient for account of

collisions and turbulence effects is obtained when these variables are defined using the unper-

turbed canonical momentum [3],
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Here canonical angles and actions correspond to the gyrophase φ , poloidal angle ϑ , toroidal an-

gle ϕ , perpendicular adiabatic invariant J⊥ (magnetic moment), poloidal action Jϑ , and toroidal

moment pϕ , respectively, Ωα are canonical frequencies, Ẽ and B̃ is the RMP field, and the diffu-

sion term in the r.h.s. describes the effect of turbulence in the weak turbulence approximation.

In the linear approximation, expanding all quantities in Fourier series over canonical angles,

f̃ = ∑
m

fmeimα θ α
, where m = (mφ ,mϑ ,mϕ), and assuming harmonic dependence on time and

radiation gauge for the perturbation field, one has
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Without the diffusion term or with diffusion term replaced by a Krook collision term, −ν fm,

equation (2) was used in [1, 2] to derive the plasma response currents in the straight inhomoge-

neous cylinder tokamak model using also a specific finite Larmor radius (FLR) expansion. The

results of the kinetic model [1] for the first order FLR expansion stay in agreement with results

of MHD model [3] in the case of RMP’s in DIII-D [2] despite the fact that the applicability of

MHD approximation is strongly violated by FLR effects in those conditions.

Role of the anomalous transport, mode locking threshold

In the low frequency range, the plasma response currents are mainly described by the zero
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cyclotron (Cherenkov) harmonics, m0 = (0,mϑ ,mϕ) of the distribution function fm. For esti-

mations, we use a slab model and retain only the spatial component of the diffusion term in

Eq. (2),

i
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, (4)

where D⊥ = const is used for simplicity. Expanding parallel wavevenumber k‖ up to linear order

around the resonant rational magnetic surface, r = rres, and introducing a new, dimensionless

variable x such that

νeff x = k′‖v‖ (r− rres)−ω, νeff =
(

k′‖v‖
)2/3

D
1/3

⊥ , (5)

Eq. (4) is reduced to the inhomogeneous Airy equation,

ix fm −∂ 2 fm/∂x2 = ν−1
eff Qm, (6)

whose solutions have the smallest scale x ∼ 1. The effective collision frequency νeff here is

the inverse decorrelation time τd , of the wave-particle phase by the combined effect of spatial

diffusion and magnetic shear. Indeed, during this time the particle is randomly displaced over

radius by δ r ∼ √
D⊥τd . Such a displacement leads to the change of k‖ and, consequently, to

a random change of the wave-particle phase by τdk′‖v‖δ r. The condition that this change is

of order one leads to (5). Such a decorrelation mechanism effectively reduces the resonant

response current generated by RMP around the rational magnetic surface and, respectively, leads

to stronger magnetic field penetration and a higher torque acting onto the plasma from the RMP.

Estimating the Coulomb collision frequency νe which enters the parallel conductivity σ‖ =

e2ne/(meνe) for the parameters typical for low density DIII-D discharges, ne = 3 · 1013 cm−3,

Te = 3 keV, one obtains νe ∼ 5 ·103 s−1 while for νeff using k′‖ = snϕ/(Rrres) where s = r
q

dq
dr is

the shear parameter and nϕ is the toroidal wavenumber, for nϕ = 3, s∼ 1, D⊥ = 104 cm2s−1, R =

170 cm and rres ∼ a = 80 cm one obtains νeff ∼ 105 s−1, i.e., a one order of magnitude higher

plasma resistivity. Such an increase of effective parallel resistivity by one order of magnitude

is obtained also in the reactor case. Thus, the retainment of the spatial diffusion term only in

the turbulent diffusion operator is justified: we suppose here that the turbulent diffusion in the

velocity space is much weaker than the collisional diffusion.

Note that unlike the classical resistivity which depends only on temperature, the effective resis-

tivity scales inversely with density so that resistive time τR = 4πr2
resσ‖/c2 scales with density

linearly. Therefore, shielding of RMP’s must increase with density too. According to [6] the

threshold value of RMP amplitude B̃thr needed to lock plasma rotation is determined by the

ratio of the RMP torque and the viscous force which leads in the classical, resistive-inertial

regime to the scaling B̃2
thr ∼ τ

1/2
H τ

3/4
R , where τH = R/(snϕvA) ∼ n

1/2
e is the Alfven time. Thus,

instead of a very weak scaling with density, B̃thr ∼ n
1/4
e , anomalous diffusion leads to the scaling

B̃thr ∼ n
1/2
e . This is still different from the experimentally observed linear scaling [4], however

the above estimates do not take into account the poloidal mode coupling in the ideal plasma

which has also a significant effect on the mode locking threshold [4].

Applicability of linear (quasilinear) approximation

In the low frequency range the main effect of the RMP on the plasma is caused by the radial

perturbation magnetic field B̃r which leads to radial transport (the same as in ergodic magnetic

fields, see [7]) and respective re-distribution of parallel plasma response current. Ignoring for
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estimates the electrostatic field Ẽ‖, the driving term Qm0
in (4) has the form

Qm0
= −v‖

(

B̃r/B0

)

∂ f0/∂ r, (7)

where B0 is the main magnetic field. The nonlinear regime is achieved if the nonlinear wave-

particle phase shift during the decorrelation time, τdk′‖v‖δ rNL, is greater than one. Here δ rNL =

τdv‖B̃r/B0 is radial resonant particle displacement due to the perturbation magnetic field. If this

displacement is smaller than the random displacement by anomalous diffusion, δ r (see above),

nonlinear phase shift is negligible and the problem of RMP interaction with plasma can be

treated within the linear (quasilinear) approximation. Note that the same result is obtained also

from the direct estimation of the nonlinear terms in the kinetic equation (1). Expressing the ratio

of displacements via the separatrix half-width, δ risl of the islands created by the RMP,

δ rNL/δ r = δ r2
isl/(16δ r2), δ risl = 4
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for the DIII-D parameters mentioned above one obtains that linear theory is applicable up to

island sizes of the order of δ risl ∼ 1 cm.

Quasilinear modelling

As shown in Ref [2] the RMP’s interact primarily with the electron component of the plasma

such that the torque is applied directly to this component. In order to estimate the consequences

of this fact in the case of mode locking we use the collisionless quasilinear model. Omitting the

turbulent diffusion term in (1), the quasilinear equation is obtained in the usual form,
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Calculating the moments of this equation and adding the anomalous and neoclassical trans-

port terms, the following set of balance equations for plasma density ne, toroidal ion rotation

frequency V ϕ
(i), electron and ion temperatures Te,i is obtained,
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where r, S, g, 〈gϕϕ〉, Bϑ
0 , Φ, mi and µ

(A)
ϕ are effective radius, flux surface area, metric deter-

minant, flux surface averaged covariant component of the metric tensor, contra-variant poloidal

component of the main magnetic field, equilibrium electrostatic potential, ion mass and anoma-

lous toroidal viscosity coefficient, respectively. Here, the anomalous particle and heat fluxes

densities Γ
(A)
(e,i) and Q

(A)
(e,i) are taken from the same simple Onsager-symmetric model as in [2],

neoclassical heat flux Q
(NEO)
(i) is taken into account only for ions, and sources denoted with S(...)

...

in the r.h.s of Eqs. (10) are chosen in order to sustain the initial profiles in absence of the RMP.

The quasilinear particle and heat flux densities are given by
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and diffusion coefficients D11, D12 = D21 = (1+Z2)D11 and D22 =
(

1+(1+Z2)2
)

D11 are
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Here ωE is the RMP frequency in the moving frame where radial electric field is absent, k⊥ is the

perpendicular component of the wavevector within the flux surface and vT is thermal velocity.

It can be checked that whenever quasilinear particle and heat fluxes become comparable with

the anomalous fluxes, applicability of the linear (quasilinear) approach is violated. Thus, in the

linear limit, the only equation (10) which needs to be solved is the equation for the toroidal

velocity V ϕ
(i). Nevertheless, for estimation of the trend we solve the whole set for relatively large

RMP amplitudes which are obtained when the rotation is locked. From the results for the steady

state shown in Fig.1 it can be seen that the toroidal ion velocity is finite at the resonant surface.

Summary.

Within the kinetic theory it has been shown that the combined effect of the anomalous transport

and of magnetic shear leads to an increased effective plasma resistivity which, in turn, causes

higher RMP penetration and higher torque than previously expected. One of the consequences

is stronger scaling of the mode locking threshold with density. The quasilinear modelling shows

that for medium range RMP amplitudes mode locking does not lead to the complete braking of

the ion component.
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Fig. 1. Toroidal rotation frequency V ϕ
(i) with (green) and without (blue) the perturbation field

(left). Perpendicular rotation velocities, V⊥ of electrons and ions and electric drift velocity VE

(right).
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