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Abstract. Prediction is an important task in robot motor control where
it is used to gain feedback for a controller. With such a self-generated
feedback, which is available before sensor readings from an environment
can be processed, a controller can be stabilized and thus the performance
of a moving robot in a real-world environment is improved. So far, only
experiments with artificially generated data have shown good results. In
a sequence of experiments we evaluate whether a liquid state machine in
combination with a supervised learning algorithm can be used to predict
ball trajectories with input data coming from a video camera mounted on
a robot participating in the RoboCup. This pre-processed video data is
fed into a recurrent spiking neural network. Connections to some output
neurons are trained by linear regression to predict the position of a ball
in various time steps ahead. Our results support the idea that learning
with a liquid state machine can be applied not only to designed data but
also to real, noisy data.

1 Introduction

The prediction of time series is an important issue in many different domains,
such as finance, economy, object tracking, state estimation and robotics. The aim
of such predictions could be to estimate the stock exchange price for the next day
or the position of an object in the next camera frame based on current and past
observations. In the domain of robot control such predictions are used to stabilize
a robot controller. See [I] for a survey of different approaches in motor control
where prediction enhances the stability of a controller. A popular approach is
to learn the prediction from previously collected data. The advantages are that
knowledge of the internal structure is not necessarily needed, arbitrary non-
linear prediction could be learned and additionally some past observations could
be integrated in the prediction.
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Fig. 1. Comparison of the architecture of a feed-forward (left hand side) with a recur-
rent neural network (right hand side); the grey arrows sketch the direction of compu-
tation

Artificial Neural Networks (ANN) are a common method used for this compu-
tation. Feed-forward networks only have connections starting from external input
nodes, possibly via one or more intermediate hidden node processing layers, to
output nodes. Recurrent networks may have connections feeding back to earlier
layers or may have lateral connections (i.e. to neighboring neurons on the same
layer). See Figure [[l for a comparison of the direction of computation between a
feed-forward and a recurrent neural network. With this recurrency, activity can
be retained by the network over time. This provides a sort of memory within
the network, enabling it to compute functions that are more complex than just
simple reactive input-output mappings. This is a very important feature for net-
works that will be used for computation of time series, because a current output
is not solely a function of the current sensory input, but a function of the cur-
rent and previous sensory inputs and also of the current and previous internal
network states. This allows a system to incorporate a much richer range of dy-
namic behaviors. Many approaches have been elaborated on recurrent ANNs.
Some of them are: dynamic recurrent neural networks, radial basis function net-
works, Elman networks, self-organizing maps, Hopfield nets and the “echo state”
approach from [2].

Recently, networks with models of biologically more realistic neurons, e.g.,
spiking neurons, in combination with simple learning algorithms have been pro-
posed as general powerful tools for the computation on time series [3]. In Maass
et. al. [4] this new computation paradigm, a so called Liquid State Machine
(LSM), was used to predict the motion of objects in visual inputs. The visual
input was presented to a 8x8 sensor array and the prediction of the activation of
these sensors representing the position of objects for succeeding time steps was
learned. This approach appears promising, as the computation of such prediction
tasks is assumed to be similar in the human brain [5]. The weakness of the ex-
periments in [4] is that they were only conducted on artificially generated data.
The question is how the approach performs with real-world data. Real data, e.g.
the detected motion of an object in a video stream from a camera mounted on
a moving robot, are noisy and afflicted with outliers.
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In this paper we present how this approach can be extended to a real world
task. We applied the proposed approach to the RoboCup robotic-soccer domain.
The task was movement prediction for a ball in the video stream of the robot’s
camera. Such a prediction is important for reliable tracking of the ball and for
decision making during a game. The remainder of this paper is organized as
follows. The next section provides an overview of the LSM. Section [3] describes
the prediction approach for real data. Experimental results will be reported in
Section [l Finally, in Section Bl we draw some conclusions.

2 The Liquid State Machine

2.1 The Framework of a Liquid State Machine

The “liquid state machine” (LSM) from [3] is a new framework for computations
in neural microcircuits. The term “liquid state” refers to the idea to view the
result of a computation of a neural microcircuit not as a stable state like an
attractor that is reached. Instead, a neural microcircuit is used as an online
computation tool that receives a continuous input that drives the state of the
neural microcircuit. The result of a computation is again a continuous output
generated by readout neurons given the current state of the neural microcircuit.

Recurrent neural networks with spiking neurons represent a non-linear dy-
namical system with a high-dimensional internal state, which is driven by the
input. The internal state vector z(t) is given as the contributions of all neurons
within the LSM to the membrane potential of a readout neuron at the time
t. The complete internal state is determined by the current input and all past
inputs that the network has seen so far. Hence, a history of (recent) inputs is
preserved in such a network and can be used for computation of the current
output. The basic idea behind solving tasks with a LSM is that one does not
try to set the weights of the connections within the pool of neurons but instead
reduces learning to setting the weights of the readout neurons. This reduces
learning dramatically and much simpler supervised learning algorithms which
e.g. only have to minimize the mean square error in relation to a desired output
can be applied.

The LSM has several interesting features in comparison to other approaches
with recurrent circuits of spiking neural networks:

1. The liquid state machine provides “any-time” computing, i.e. one does not
have to wait for a computation to finish before the result is available. Results
start emitting from the readout neurons as soon as input is fed into the liquid.
Furthermore, different computations can overlap in time. That is, new input
can be fed into the liquid and perturb it while the readout still gives answers
to past input streams.

2. A single neural microcircuit can not only be used to compute a special out-
put function via the readout neurons. Because the LSM only serves as a
pool for dynamic recurrent computation, one can use many different read-
out neurons to extract information for several tasks in parallel. So a sort of
“multi-tasking” can be incorporated.



124 H. Burgsteiner et al.

3. In most cases simple learning algorithms can be used to set the weights of
the readout neurons. The idea is similar to support vector machines, where
one uses a kernel to project input data into a high-dimensional space. In
this very high-dimensional space simpler classifiers can be used to separate
the data than in the original input data space. The LSM has a similar effect
as a kernel: due to the recurrency the input data is also projected to a
high-dimensional space. Hence, in almost any case experienced so far simple
learning rules like e.g. linear regression suffice.

4. Last but not least it is not only a computational powerful model, but it is
also one of the biological most plausible so far. Thus, it provides a hypothesis
for computation in biological neural systems.

The model of a neural microcircuit as it is used in the LSM is based on
evidence found in [6] and [7]. Still, it gives only a rough approximation to a
real neural microcircuit since many parameters are still unknown. The neural
microcircuit is the biggest computational element within the LSM, although
multiple neural microcircuits could be placed within a single virtual model. In a
model of a neural microcircuit N = n; - n, - n, neurons are placed on a regular
grid in 3D space. The number of neurons along the x, y and z axis, ng, n, and
n, respectively, can be chosen freely. One also specifies a factor to determine
how many of the N neurons should be inhibitory. Another important parameter
in the definition of a neural microcircuit is the parameter A. Number and range
of the connections between the N neurons within the LSM are determined by

this parameter \. The probability of a connection between two neurons 7 and j
Dy:

is given by p(; ;) = C- exp” 2 where D, ;) is the Euclidean distance between
those two neurons and C' is a parameter depending on the type (excitatory or
inhibitory) of each of the two connecting neurons. There exist 4 possible values
for C for each connection within a neural microcircuit: Cgg, Cgr,Crg and Cyy
may be used depending on whether the neurons 7 and j are excitatory (E) or
inhibitory (I). In our experiments we used spiking neurons according to the
standard leaky-integrate-and-fire (LIF) neuron model that are connected via
dynamic synapses. The time course for a postsynaptic current is approximated
by the equation v(t) = w - eiﬁw where w is a synaptic weight and 7y, is the
synaptic time constant. In case of dynamic synapses the “weight” w depends
on the history of the spikes it has seen so far according to the model from
[8]. For synapses transmitting analog values (such as the output neurons in
our experimental setup) synapses are simply modeled as static synapses with a
strength defined by a constant weight w. Additionally, synapses for analog values
can have delay lines, modeling the time a potential would need to propagate
along an axon.

3 Experimental Setup

In this section we introduce the general setup that was used during our experi-
ments to solve prediction tasks with real-world data from a robot. As depicted
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in figure 2 such a network consists of three different neuron pools: (a) an input
layer that is used to feed sensor data from the robot into the network, (b) a pool
of neurons forming the LSM according to section2land (c) the output layer con-
sisting of readout neurons which perform a linear combination of the membrane
potentials obtained from the liquid neurons.

input input liquid output output
layer pool layer

Fig. 2. Architecture of our experimental setup depicting the three different pools of
neurons and a sample input pattern with the data path overview. Example connections
of a single liquid neuron are shown: input is received from the input sensor field on
the left hand side and some random connection within the liquid. The output of every
liquid neuron is projected onto every output neuron (located on the most right hand
side). The 8x6x3 neurons in the middle form the ”liquid”

For simulation within the training and evaluation the neural circuit simulator
CSint] was used. Parameterization of the LSM is described below. Names for
neuron and synapse types all originate from terms used in the C'Sim environment.
Letters I and E denote values for inhibitory and excitatory neurons respectively.

To feed activation sequences into the liquid pool, we use Ezxternal Input Neu-
rons that conduct an injection current L, jec; via Static Analog Synapses (Ineise
= OnA, Wimean = 3 % 1078 (EE) or 6 x 1078 (EI), delaymean = 1.5ms (EE) or
0.8ms (EI) with C'V =0.1) into the first layer of the liquid pool. EE, EI, IE and IT
denote connections between the two types of neurons. Inspired from information
processing in living organisms, we set up a cognitive mapping from input layer
to liquid pool. The value of I, je.s depends on the value of the input data, in
this case the activation of each single visual sensor.

The liquid consists of Leaky Integrate And Fire Neurons (Cy, = 30nF, R, =
IM 82, Vihresn = 15mV, Viesting = 0mV, Vicger uniform distributed in the inter-
val [13.8mV 14.5mV], V;,,;; uniform distributed in the interval [13.5mV 14.9mV],
Trefract = 3ms (E) or 2ms (I), Lpise = OnA, Iipjeet uniform distributed in the

! The software simulator CSim and the appropriate documentation for the liquid state
machine can be found on the web page http://www.lsm.tugraz.at/
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interval [13.5nA 14.5nA]), grouped in an 8- 6 - 3 cuboid, that are randomly con-
nected via Dynamic Spiking Synapses (Umean = 0.5, 0.05, 0.25, 0.32, Dyean =
1.1,0.125, 0.7, 0.144; Fean = 0.05s, 1.2s, 0.02s, 0.06s; delaymean = 1.5ms, 0.8ms,
0.8ms, 0.8ms with CV = 0.1; 7, = 3ms, 3ms, 6ms, 6ms; for EE, IE, EI, II), as
described above. The probability of a connection between every two neurons is
modeled by the probability distribution depending on a parameter A described
in the previous section. Various combinations of A (connection probability) and
mean connection weights 2 (connection strength) were used for simulation. 20%
of the liquid neurons were randomly chosen to produce inhibitory potentials. C
was chosen to be 0.3 (EE), 0.4 (EI), 0.2 (IE) and 0.1 (II). Figure [2 shows an
example for connection within the LSM.

The information provided by the spiking neurons in the liquid pool is pro-
cessed (read out) by External Output Neurons (Vipit, Viesting: Inoise are the
same as for the liquid neurons), each of them connected to all neurons in the
liquid pool via Static Spiking Synapses (Tsyn = 3ms (EE) or 6ms (EI), w =
—6.73 x 1077 (e.g., set after training), delaymean = 1.5ms (EE) or 0.8ms (EI)
with CV = 0.1). The output neurons perform a simple linear combination of
inputs that are provided by the liquid pool.

We evaluate the prediction approach by carrying out several experiments
with real-world data in the RoboCup Middle-Size robotic soccer scenario. The
experiments were conducted using a robot of the “Mostly Harmless” RoboCup
Middle-Size team [9]. The task within the experiments is to predict the movement
of the ball in the field of view a few frames into the future. The experimental
setup can be described as follows: The robot is located on the field and points
its camera across the field. The camera is a color camera with a resolution of
320 times 240 pixel. The ball is detected within an image by simple color-blob-
detection leading to a binary image of the ball. We can use this simple image
preprocessing since all objects on the RoboCup-field are color-coded and the ball
is the only red one. The segmented image is presented to the 8 times 6 sensor
field of the LSM. The activation of each sensor is equivalent to the percentage
of how much of the sensory area is covered by the ball.

We collect a large set of 674 video sequences of the ball rolling with differ-
ent velocities and directions across the field. The video sequences have different
lengths and contain images in 50ms time steps. These video sequences are trans-
fered into the equivalent sequences of activation patterns of the input sensors.
Figure B shows such a sequence. The activation sequences are randomly divided
into a training set (85%) and a validation set (15%) used to train and evalu-
ate the prediction. Training and evaluation is conducted for the prediction of
2 timesteps (100ms), 4 timesteps (200ms) and 6 timesteps (300ms) ahead. The
corresponding target activation sequences are simply obtained by shifting the
input activation sequences 2, 4 or 6 steps forward in time.

Simulation for the training set is carried out sequence-by-sequence: for each
collected activation sequence, the neural circuit is reset, input data are assigned
to the input layer, recorders are set up to record the liquid’s activity, simula-
tion is started, and the corresponding recorded liquid activity is stored for the
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Fig. 3. Upper Row: Ball movement recorded by the camera. Lower Row: Activation of
the sensor field

training part. The training is performed by calculating the Weightsﬁ of all static
synapses connecting each liquid neuron with all output layer neurons using linear
regression.

Analogous to the simulation with the training set, simulation is then carried
out on the validation set of activation sequences. The resulting output neuron
activation sequences (output sequences) are stored for evaluating the network’s
performance.

4 Results

We introduce the mean absolute error and the correlation coefficient to eval-
uate the performance of the network. The mean absolute error is the positive
difference between the activation values of target and output sequences of the
validation set divided by the number of neurons in the input/output layer and
the length of the sequence. This average error per output neuron and per image
yields a reasonable measure for the performance on validation sets with different
length. Figure [ shows an example for a prediction and its error.

Fig. 4. Sensor activation for a prediction one timestep ahead. Input activation, target
activation, predicted activation and error (left to right)

A problem which arises if only the mean absolute error is used for evaluation
is that also networks with nearly no output activation produce a low mean

2 In fact also the injection currents Ij,jec: for each output layer neuron is calculated.
For simplification this bias is treated as the 0" weight
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absolute error - because most of the neurons in the target activation pattern
are not covered by the ball and therefore they are not activated leading to
a low average error per image. The correlation coefficient measures the linear
dependency of two variables. If the value is zero two variables are not correlated.
The correlation coefficient is calculated in similar way as the mean absolute
error. Therefore the higher the coefficient the higher the probability of getting a
correlation as large as the observed value without coincidence involved. In our
case a relation between mean absolute error and correlation coefficient exists. A
high correlation coefficient indicates a low mean absolute error.

In Figure Bl the mean absolute errors averaged over all single images in the
movies in the validation set and the correlation coefficients for the prediction
one timestep (50ms) ahead are shown for various parameter combinations. The
parameter values range for both landscapes from 0.1 to 5.7 for {2 and from 0.5
to 5.7 for A. If both 2 and X are high, there is too much activation in the liquid.
Remember, A controls the probability of a connection and {2 controls the strength
of a connection. We assume that this high activity hampers the network making
a difference between the input and the noise. Both values indicate a good area if
at least one of the parameters is low. Best results are achieved if both parameters
are low (e.g. £2=0.5, A=1.0). The figure clearly shows the close relation between
the mean absolute error and the correlation coefficient. Furthermore, it shows
the very good results for the prediction as the correlation coefficient is close to
1.0 for good parameter combinations.

Fig. 5. Mean absolute error landscape on the left and correlation coefficient on the
right for a prediction one time step ahead. 2(wscale) [0.1,5.7], A [0.5,5.7]

We also compare the results achieved with two (100ms) and four (200ms)
time steps predicted. In order to compare the results of both predictions for
different parameter combinations, we use again a landscape plot of the correla-
tion coefficients. Figure [6] shows the correlation coefficient for parameter values
range from 0.1 to 5.7 for {2 and from 0.5 to 5.7 for A. The regions of good results
remain the same as in the one timestep prediction. If at least one parameter - {2
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Fig. 6. Correlation coefficient landscape for two timesteps (100ms) on the left hand
side and four timesteps (200ms) on the right hand side

=

Fig. 7. Sensor activation for a prediction two timesteps ahead. Input activation, target
activation, predicted activation and error (left to right). Parameter: 2=1.0, A=2.0

or A - is low the correlation coefficient reaches its maximum (about 0.7 at two
timesteps and about 0.5 at four timesteps). With increasing {2 and A, the correla-
tion coefficients decrease again. We believe that the too high activation is again
the reason for this fact. Not surprisingly the maximum correlation compared
to the one step prediction is lower because prediction gets harder if the pre-
diction time increases. Nevertheless, the results are good enough for reasonable
predictions.

Figure [ shows an example for the activations and the error for the prediction
of two timesteps ahead. It clearly shows that the center of the output activation
is in the region of high activation in the input and the prediction is reasonable
good. The comparison to Figure [ also shows that the activation is more and
more blurred around its center if the prediction time increases.

Furthermore we confronted the liquid with the task to predict 300ms (6
timesteps) without getting a proper result. We were not able to visually identify
the ball position anymore. We guess this is mainly caused by the blur of the
activation.

5 Conclusion and Future Work

In this work we propose a biologically more realistic approach for the compu-
tation of time series of real world images. The Liquid State Machine (LSM),
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a new biologically inspired computation paradigm, is used to learn ball predic-
tion within the RoboCup robotic soccer domain. The advantages of the LSM
are that it projects the input data in a high-dimensional space and therefore
simple learning methods, e.g. linear regression, can be used to train the readout.
Furthermore, the liquid, a pool of inter-connected neurons, serves as a memory
which holds the current and some past inputs up to a certain point in time (fad-
ing memory). Finally, this kind of computation is also biologically more plausible
than other approaches like Artificial Neural Networks or Kalman Filters. Pre-
liminary experiments within the RoboCup domain show that the LSM approach
is able to reliably predict ball movement up to 200ms ahead. But there are still
open questions. One question is how the computation is influenced by the size
and topology of the LSM. Moreover, deeper investigation should be done for
more complex non-linear movements, like balls bouncing back from an obstacle.
Furthermore, it might be interesting to directly control actuators with the out-
put of the LSM. We currently work on a goalkeeper, which intercepts the ball,
controlled directly by the LSM approach.
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