

SCIENCE PASSION TECHNOLOGY

SAT-Based Verification of **Differential Characteristics**

Marcel Nageler, Shibam Ghosh, Maria Eichlseder

Beating Real Time Crypto 2024 – Lorentz Center, Leiden 💳

> www.iaik.tugraz.at

Differential Characteristics

Method

Attack Goals

••

Key-dependency in a Differential Characteristic

$$\mathcal{YDDT}(a,2)=\{0,2\}$$

 $K_{1,0}$ must be 0

$$\mathcal{XDDT}(2,a) = \{0,2\}$$

Potential Remedies

Contract Service Service and Service Service

- Infeasible for low-probability characteristics
- Identifying and checking constraints [PT22]
 - Cumbersome to implement
 - Experimental verification of probability is hard
- ⊘ SAT-based verification
 - Create simple cipher model in SAT
 - Recover more information about characteristic

Our Tool

- Input
 - Cipher description as CNF
 - Differential Characteristic
- Output
 - Estimated probability averaged over all keys / specific key
 - Estimate number of valid keys
 - Find necessary conditions for valid keys

Creating the Cipher Description

- Encode block cipher as a CNF
 - Linear layer
 - S-boxes
 - Key schedule with round constants
- Active S-boxes need additional constraints
 - Must follow solution set $\{x, y : S(x) = y \land S(x \oplus \Delta_i) = y \oplus \Delta_o\}$

Applying a SAT Solver

- Use a SAT solver to verify whether any solution exists
 - can detect impossible characteristics
- Solve with a SAT solver for many random keys
 - approximate the number of valid keys
 - SAT Solver might learn clauses over the key

Background: Approximate Model Counting

- We use ApproxMC [SGM20]
- Given tolerance ϵ , confidence δ and a CNF formula F
- output approximate number of solutions *c*
- $(1 + \epsilon)^{-1} \cdot |\operatorname{sol}(F)| \le c \le (1 + \epsilon) \cdot |\operatorname{sol}(F)|$ with probability $p \ge 1 \delta$
- ${ig Q}$ use this to count probability

Counting number of valid keys

- The model counter provides one extra input:
 - the sampling set
 - $ightarrow\,$ count how many assignments for this subset of variables exist
- use this to count key space

Results

- MIDORI-64 with characteristic [ZHWW20, Fig. 2] ($p = 2^{-52}$)
 - ✓ verify probability = 2^{-52} (11 seconds with $\delta = \epsilon = 0.1$)
 - ✓ estimate key space: 2^{111} (10 seconds with $\delta = \epsilon = 0.1$)
 - ✓ find 17 linear conditions on key bits (2.5 seconds)
- GIFT-64 with characteristic [ZDY18, Table 4] ($p = 2^{-59}$)
 - ✓ estimate key space: 2¹²⁵
 - ✓ $K_{8,0} = K_{10,0}$, $K_{24,1} = K_{26,1}$, $K_{25,1} = K_{27,1}$ (5 seconds)
- GIFT-64 with characteristic [LWZZ19, Table 2] ($p = 2^{-42}$)
 - ✓ estimate key space: 2^{124} (4 seconds with $\delta = 0.1, \epsilon = 0.1$) ✓ $K_{8,1} = K_{10,1}, \quad K_{9,1} = K_{11,1}, \quad K_{24,0} = K_{26,0}, \quad K_{25,0} = K_{27,0}$ (3 seconds)

Conclusion

- Framework for verification of differential characteristics
- Easily extensible for more ciphers
- Many different use-cases
 - Verify probability for average / fixed key
 - Measure size of key space
 - Find necessary conditions on key bits

Bibliography I

[LWZZ19] Lingchen Li, Wenling Wu, Yafei Zheng, and Lei Zhang. The Relationship between the Construction and Solution of the MILP Models and Applications. Cryptology ePrint Archive, Paper 2019/049. https://eprint.iacr.org/2019/049.2019. URL: https://eprint.iacr.org/2019/049.

[PT22] Thomas Peyrin and Quan Quan Tan. Mind Your Path: On (Key) Dependencies in Differential Characteristics. IACR Trans. Symmetric Cryptol. 2022.4 (2022), pp. 179–207. DOI: 10.46586/TDSC.V2022.I4.179–207. URL: https://doi.org/10.46586/tosc.v2022.i4.179–207.

[SGM20] Mate Soos, Stephan Gocht, and Kuldeep S. Meel. Tinted, Detached, and Lazy CNF-XOR Solving and Its Applications to Counting and Sampling. Computer Aided Verification - 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part I. Vol. 12224. Lecture Notes in Computer Science. Springer, 2020, pp. 463–484. DOI: 10.1007/978-3-030-53288-8_22. URL: https://doi.org/10.1007/978-3-030-53288-8%5C_22.

Bibliography II

[ZDY18] Baoyu Zhu, Xiaoyang Dong, and Hongbo Yu. MILP-based Differential Attack on Round-reduced GIFT. Cryptology ePrint Archive, Paper 2018/390. https://eprint.iacr.org/2018/390.2018.URL: https://eprint.iacr.org/2018/390.

[ZHWW20] Hongluan Zhao, Guoyong Han, Letian Wang, and Wen Wang. MILP-Based Differential Cryptanalysis on Round-Reduced Midori64. IEEE Access 8 (2020), pp. 95888–95896. DOI: 10.1109/ACCESS.2020.2995795. URL: https://doi.org/10.1109/ACCESS.2020.2995795.