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Distributed Graph Coloring Made Easy

YANNIC MAUS, TU Graz, Austria

In this article, we present a deterministic CONGEST algorithm to compute an O (kΔ)-vertex coloring in
O (Δ/k ) + log∗ n rounds, where Δ is the maximum degree of the network graph and k ≥ 1 can be freely
chosen. The algorithm is extremely simple: each node locally computes a sequence of colors and then it tries

colors from the sequence in batches of size k . Our algorithm subsumes many important results in the history
of distributed graph coloring as special cases, including Linial’s color reduction [Linial, FOCS’87], the cele-
brated locally iterative algorithm from [Barenboim, Elkin, Goldenberg, PODC’18], and various algorithms to
compute defective and arbdefective colorings. Our algorithm can smoothly scale between several of these
previous results and also simplifies the state-of-the-art (Δ+ 1)-coloring algorithm. At the cost of losing some
of the algorithm’s simplicity we also provide a O (kΔ)-coloring algorithm in O (

√
Δ/k ) + log∗ n rounds. We

also provide improved deterministic algorithms for ruling sets, and, additionally, we provide a tight charac-
terization for one-round color reduction algorithms.
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1 INTRODUCTION

In theC-vertex coloring problem the objective is to assign each vertex of ann-node graphG = (V ,E)
one of C colors such that adjacent vertices get different colors. In the distributed setting, graph
coloring is considered to be one of the core symmetry breaking problems with a huge amount of
published work and even a whole book almost exclusively covering the problem [13]. In this set-
ting, the usual goal is to compute aC-coloring with Δ + 1 ≤ C ≤ O (Δ2), where Δ is the maximum
degree of the graph. The bound of Δ+1 stems from the fact that any graph can be colored with the
respective number of colors, and this can even be done with a simple sequential greedy algorithm.
The bound of O (Δ2) colors stems from an algorithm in Linial’s seminal paper in which he intro-
duces one of the core models for distributed graph algorithms, i.e., the LOCAL model [50]. In this
model, the graph abstracts a communication network in which the nodes communicate through
the edges in synchronous rounds and at the end of the computation each node needs to output its
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own part of the solution, e.g., its own color. The complexity measure is the number of synchronous
rounds. Linial gave an extremely fast O (Δ2)-coloring algorithm that only uses O (log∗ n) rounds.
Further, he showed that Ω(log∗ n) rounds are needed to color rings (Δ = 2) with O (1) = ΔO (1)

colors. Due to the lower bound, a vast amount of published papers, e.g., [9, 14, 16, 29, 49, 51, 60],
study the setting that occurs after applying Linial’s coloring algorithm; i.e., they ask: Given an

O (Δ2)-coloring, how fast can one reduce the number of colors where the runtime of the algorithm can

only depend on Δ? The similar question of finding a fast algorithm with complexity f (Δ) + log∗ n
is also sometimes referred to as determining the truly local complexity of a problem [51].

In the current article, we devise several results to advance the understanding of this setting.
First, we provide a simple deterministic algorithm that scales between the two extremes of Δ + 1
(or rather O (Δ) colors) and O (Δ2) colors. In particular, for a parameter k ≥ 1 of the user’s choice
the algorithm computes aO (kΔ)-coloring with complexity f (Δ) = O (Δ/k ). In the algorithm, each
node v uses its input color, e.g., provided by Linial’s algorithm, to (locally) compute a sequence
pv (0),pv (1), . . . of colors. Then, node v tries to get colored with one of the first k colors in its
sequence by sending these color trials to its neighbors and receiving their trials. If v tries a color
c that is not conflicting with the neighbors’ trials node, v gets permanently colored with color c;
otherwisev continues to the next round in which it tries the nextk colors in its sequence, and so on.

Second, we show that this simple mother algorithm either immediately yields the core steps
of the aforementioned papers, e.g., the algorithms in [14, 50], or can be mildly adapted to obtain
crucial subroutines developed or used in [9, 10, 14, 16, 29, 45, 51]; e.g., a mild adaptation yields
d-defective colorings, which were the crucial ingredient in [10, 16, 45], or arbdefective colorings,

which were crucial in [9, 14, 29, 51]. A core strength of our result is that the algorithms for each
of these results are very similar. To get a feeling for this, let us look at defective colorings. In a
d-defective coloring a node is allowed to have at most d neighbors with the same color. Besides
a suitable choice of k and sequences pv (0),pv (1), . . ., the only change is in the execution of the
algorithm: when deciding whether to keep a color c, a node tolerates up to d neighbors with the
same color. This algorithm does not yet do the job as the defect of a node v might be larger than
d at the end of the execution if one or more neighbors of v choose the same color as v in later
rounds, but it still captures the essence of the adaptations that need to be performed.

Third, at the cost of losing some of the algorithm’s simplicity, we show how to compute an
O (Δ1+ε )-coloring in O (Δ1/2−ε/2) rounds, and we improve the state-of-the-art runtime for comput-
ing so-called ruling sets.

Fourth, we provide a full characterization of one-round coloring algorithms. Informally, we de-
termine the maximum number qm,Δ of colors that can be reduced by a one-round coloring algo-
rithm that works for any graph with a given maximum degree Δ and an inputm-coloring.

Next, we describe why this result, combined with our O (kΔ)-coloring algorithm in O (Δ/k )
rounds, might be of additional interest. Already [44, 49, 60] studied one-round color reduction
algorithms and showed lower bounds like our fourth contribution; then in [60] these one-round
lower bounds on the number of colors were used to prove a heuristic Ω(Δ log Δ) runtime lower
bound for computing a (Δ + 1)-coloring. As already pointed out by [60], the bound is heuristic in
the following sense (the following example uses the result of our article): given a coloring with at
most 2Δ colors, we can reduce exactly one color in a single round. By applying this tight bound
twice, one would wish to claim that one cannot go from a 2Δ coloring to a 2Δ − 2 coloring in
two rounds. However, this claim cannot be deduced via this method, as the second application
of the one-round lower bound assumes that the intermediate 2Δ − 1 coloring is worst case. But,
instead, a two-round algorithm might not produce an intermediate coloring at all, or it might
output a very specific intermediate coloring that enables it to reduce more than one color in its
second round. The heuristic lower bound in [60] is obtained by applying one-round lower bounds
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iteratively, purposely ignoring this important subtlety. Since the publication of [60], at least five
different algorithms for (Δ + 1)-coloring that beat this lower bound were published: given an
O (Δ2)-coloring, a (Δ + 1)-coloring was computed in O (Δ) rounds [10, 16, 45], in O (Δ3/4) rounds
in [9], in O (

√
Δ log Δ log∗ Δ) rounds in [14, 29], and in O (

√
Δ log Δ) rounds in [51]. Formally, only

the locally iterative O (Δ)-round algorithm by Barenboim et al. [14] beats this lower bound and
we explain why. It starts with an O (Δ2) coloring and maintains a feasible coloring in each round.
The color of a node in the next round only depends on the node’s own color and the colors of
its neighbors. The algorithm was celebrated as it is significantly simpler than the aforementioned
faster algorithms and it breaks the aforementioned heuristic lower bound in a clean way, due to
maintaining a feasible coloring in each round.

While we formally do not maintain a feasible coloring in each round in our algorithms,1 we pro-
vide a different insight. Our tight lower bounds for one-round algorithm provides a heuristic (false)
argument that shows that one needs Ω(Δ) rounds to go from a O (Δ2) coloring to a Δ2/5-coloring
(the 5 is chosen somewhat arbitrarily), and for a suitable k = Ω(Δ), our mother algorithm provides
a O (Δ/k ) = O (1)-round algorithm to perform such a color reduction. Thus, the heuristic lower
bound that is based on the repeated application of tight one-round lower bounds can be beaten
significantly in the number of colors by a simpleO (1)-round algorithm. In contrast, all the previous
algorithms that provide such an insight require ΔΩ(1) rounds. This is in particular interesting, as
there has been almost no progress in proving lower bounds for the (Δ+ 1)-coloring problem since
Linial’s initial seminal Ω(log∗ n) lower bound. Just as we do in this article, the only other known
lower bounds in the LOCAL model study one-round algorithms [44, 49, 60]. Our article suggests
that even in constant-time coloring algorithms there are still results to be discovered. In fact, we
do not even know a lower bound on the number of colors that a two-round algorithm must use.
Surprisingly, there is not even a lower bound that rules out that one can go from aO (Δ2) coloring
to a Δ+ 1 coloring in two rounds. Further evidence that understanding constant-time or even just
two-round algorithms is given by [51]. It provides a two-round algorithm for a list coloring vari-
ant of Linial’s color reduction. In list coloring each node v has a list L(v ) of colors and needs to
output a color from this list. Basically, the authors show that one can compute a list coloring in
two rounds if lists are of size Ω̃(Δ2)—the “equivalent” of theO (Δ2) colors in Linial’s coloring—and
interestingly for their choice of parameters the exact same problem cannot be solved in one round.
Of course, just as applying a lower bound for one-round algorithms twice does not give a tight
lower bound for two rounds, it is unclear whether understanding two-round algorithms will yield
a result for the holy grail, a tight runtime lower bound for (Δ + 1)-coloring.

1.1 Our Contributions

While we have already explained our contributions from a high-level point of view, we use this
section to state them formally; additional related work is presented afterwards. Our results hold
in the LOCAL model and in the CONGEST model (both lower and upper bounds).

The LOCAL and CONGEST model of distributed computing [50, 55]. In both models the graph
is abstracted as an n-node network G = (V ,E) with maximum degree at most Δ. Communication
happens in synchronous rounds. Per round, each node can send one message to each of its neigh-
bors. At the end, each node has to know its own part of the output, e.g., its own color. In the LOCAL

model there is no bound on the message size, and in the CONGEST model messages can contain
at mostO (logn) bits. Usually, in both models nodes are equipped with uniqueO (logn)-bit IDs and

1It is straightforward to tweak the algorithms to actually achieve this at the cost of losing some of the simplicity of the
algorithm, e.g., by encoding the state of a node into a proper vertex coloring.
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initially, nodes know their own ID or their own color in an input coloring but are unaware of the
IDs of their neighbors.

Linial’s algorithm treats the unique IDs as an input coloring to compute an O (Δ2)-coloring
in O (log∗ n) rounds; merely in one color reduction step he reduces an input m-coloring to an
O (Δ2 logO (1) m)-coloring, which then serves as the input coloring for the next step. All of our
algorithms do not make use of unique IDs but work in the more general setting where nodes are
only equipped with some input coloring withm colors. Similarly to most previously known results,
we assume thatm and Δ (and sometimes additional parameters) are global knowledge. It is easiest
to grasp our results when setting m = O (Δ2); that is, one first applies Linial’s algorithm. For an
integer x we use [x] to denote the set {0, . . . ,x − 1}; we use this notation frequently throughout
this article. Our main technical result is the following theorem.

Theorem 1.1. There exists a distributed deterministic algorithm that performs as follows in any

undirected graph G = (V ,E):

Input: At every node v ∈ V , the algorithm takes as input an integer m ≥ 1, a color cv ∈ [m] such

that the colors of the vertices form an m-coloring of G, the maximum degree Δ of G, and two

integers d,k, where 0 ≤ d ≤ Δ − 1 and 1 ≤ k ≤ X for Z = Δ
(d+1) and X = 4 · Z · �logZ m	.

Output: At every node v ∈ V , the algorithm outputs a color in [kX ] such that

(1) the set of monochromatic edges can be oriented such that no node is the source of more than

d of them, and

(2) the set of nodes can be partitioned into R = �X
k
	-induced subgraphs P1, . . . , PR such that

every node is incident on at most d monochromatic intra-part edges.

This algorithm runs in R = �X
k
	 rounds in the CONGEST model. The orientation and the partition

can be computed with no additional cost in the round complexity.

Note that whenever d � 0, the coloring computed by the algorithm of Theorem 1.1 may not be
proper; i.e., neighboring vertices may output the same color. Corollary 1.2 summarizes the most
important parameter settings for Theorem 1.1, including settings to compute proper colorings
(d = 0). While the algorithm for Theorem 1.1 is extremely simple (locally compute a permutation
of the output colors, try them in batches of size k, and tolerate up to d conflicts), the theorem,
stated in its general form, has a rather technical appearance to fit various choices of parameters at
once. But we believe that it is very approachable as soon as one considers precise choices for its
parameters; e.g., we can first use Linial’s algorithm (or an algorithm derived from Theorem 1.1) to
compute a O (Δ2)-coloring in O (log∗ n) rounds. If we treat this coloring as an input coloring with
m = O (Δ2) colors and if also d = 0 or d = Δε holds for some constant 0 < ε < 1, one can replace
the term �logZ m	 with a constant.

One step of Linial’s color reduction [50] is based on a suitable so-called low-intersecting set

family S1, . . . , Sm ; Linial uses the probabilistic method to show that the respective families exist.
In the algorithm a node with input color i simultaneously tries all colors in Si , and as Si ∩ S j is
small for each neighbor’s input color j � i , it is guaranteed that at least one color in Si is not
tried by any neighbor. The low-intersecting set families obtained by the probabilistic method are
not strong enough to go from a ΔO (1)-coloring to anO (Δ2)-coloring. Hence, Linial uses a different
construction for such families, based on polynomials.2 At its core is the fundamental theorem
that for two distinct polynomials p1 and p2 with degree d over a suitable finite set Fq , the sets

2Szegedy and Vishwanathan show how to compute a coloring with ΔO (1) colors in 0.5 log∗ n rounds; if this algorithm is
followed by O (1) iterations of Linial’s color reduction based on polynomials, this implies an O (Δ2)-coloring algorithm in
0.5 log∗ n +O (1) rounds [60].
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Si = {(x ,pi (x )) | x ∈ Fq }, i = 1, 2 intersect in at most d elements; see [25, Example 3.2]. Choosing
m distinct polynomials yields the respective set family with m sets. This argument is also the
core of our main result; in particular, Linial’s one-round color reduction is a special case of our
more general Theorem 1.1. Next, we discuss various settings for the parameters in Theorem 1.1
and explain which results it subsumes. An approachable summary is contained in Corollary 1.2. If
d = 0, the computed coloring is proper by point (1) of Theorem 1.1 and (2) can be ignored. The
parameter k trades the number of rounds versus the number of colors. For the extreme choice of
k = X = O (Δ) we obtain the aforementioned color reduction by Linial (the one built on top of
polynomials), and for k = 1 we obtain a generalization of the locally iterative algorithm of [14].
Other values of k scale between both algorithms and provide an extremely simple way to compute
O (k ·Δ)-coloring inO (Δ/k ) rounds. While our algorithm fork = 1 only computes anO (Δ)-coloring
in O (Δ) rounds, we can use an additional O (Δ) rounds, in each of which we remove a single color
class to transform it into a (Δ + 1)-coloring.

We now explain Theorem 1.1 in the case of d > 0. A β-outdegree c-coloring is a vertex coloring
with c colors together with an orientation of the edges between neighbors with the same color such
that each node has at most β outgoing edges. Note that the edges between vertices with different
colors do not need to be oriented.3 Consider the setting of k = 1 and d = β = Δε for a constant
0 < ε < 1. Due to the first condition of Theorem 1.1, we obtain a simple β-outdegreeO ( Δ

β
)-coloring

algorithm that runs in O ( Δ
β

) rounds. Further, by assigning a vertex v with output color ϕ (v ) the

color tuple (ϕ (v ), i ), where i is the index of the subgraph Pi that it belongs to in (2), we obtain a
d-defective O (( Δ

d
)2)-coloring in O ( Δ

d
) rounds. For k = X = O (Δ), the same defective coloring can

be computed in one round. This simplifies and subsumes several results in the literature.
A β-outdegree O ( Δ

β
)-coloring algorithm is one of the two crucial components in the state-of-

the-art (Δ+ 1)-coloring algorithm in [51]. Our simpler algorithm to compute such a coloring thus
also simplifies the overall algorithm; see Section 3.1 for details.

The next corollary summarizes the parameter settings in Theorem 1.1 that are most interesting
with our current knowledge. In the future, other settings of parameters might be of interest.

Corollary 1.2. There are the following deterministic CONGEST algorithms that compute the

stated proper colorings in the stated runtimes on any input Δ4-colored graph with maximum degree

Δ, given a globally known parameter k ≥ 1 (in 2. and 3.):

(1) 256Δ2-coloring in one round (Linial’s color reduction [50])

(2) 16Δ · k-coloring in O ( Δ
k

) rounds (subsumes results in [10, 16, 45])

(3) Δ2-coloring in O (1) rounds

There are the following deterministic CONGEST algorithms that compute the stated improper colorings

in the stated runtimes on any input Δ4-colored graph, given a globally known parameter β = Δε (in

4.) or d = Δε (in 5. and 6.) for a constant 0 < ε < 1:

(4) β-outdegree O ( Δ
β

)-coloring in O ( Δ
β

) rounds (subsumes a result in [14])

(5) d-defective O (( Δ
d

)2)-coloring in one round (subsumes a result in [16, 45])

(6) d-defective O (( Δ
d

)2) coloring in O ( Δ
d

) rounds (subsumes some results in [10, 16])

The required input Δ4-coloring can be computed with Linial’s algorithm for a sufficiently large
constant Δ. The precise choice of the constants in the O-notation in the defective coloring in

3These colorings with a bound on the outdegree are closely related to arbdefective colorings, which were introduced in [11]
and have played a significant role in the development of sublinear in Δ algorithms (more details in [51]).
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Corollary 1.2 depends linearly on the exponent ε . The algorithm of (6) is clearly inferior to the
one in (5), as it computes a d-defective coloring with the same number of colors but is slower.
We merely state (6) for its proof (see Section 2), which gives a slightly different perspective on
Theorem 1.1.

We also provide algorithms that are faster than the previous state of the art.

Theorem 1.3. For any constant ε > 0, there is a deterministic CONGEST algorithm that computes

a O (Δ1+ε )-coloring in O (Δ1/2−ε/2) + log∗ n rounds on any graph with maximum degree Δ.

Instantiating Theorem 1.3 with ε = logΔ k yields the following corollary.

Corollary 1.4. For any 1 ≤ k ≤ Δ, there is a deterministic CONGEST algorithm that computes

an O (kΔ)-coloring in O (
√

Δ/k ) + log∗ n rounds on any graph with maximum degree Δ.

Ruling sets. For an integer r ≥ 1, a (2, r )-ruling set of a graphG = (V ,E) is a subset S ⊆ V of the
vertices that is an independent set and satisfies that for any vertex v ∈ V there is a vertex s ∈ S in
hop distance at most r [1]. Ruling sets and their extensions (larger distance between nodes in S)
have played an important role as subroutines in several algorithms, e.g., [1, 24, 34, 54]. We provide
a faster algorithm for (2, r )-ruling sets.

Theorem 1.5. For any constant integer r ≥ 2, there is a deterministic CONGEST algorithm that

computes a (2, r )-ruling set in O (Δ
2

r+2 ) + log∗ n rounds on any graph with maximum degree Δ.

The runtime guarantee of the previously fastest algorithm is O (Δ2/r ) + log∗ n rounds [57]. So,
e.g., for r = 2 the Δ-dependency improves from O (Δ) to O (

√
Δ) and for r = 3 it improves from

O (Δ2/3) toO (Δ2/5). For r = 1 the problem is equivalent to the maximal independent set problem and
has a Ω(Δ) lower bound, if the dependency on n is limited to O (log∗ n) rounds [3]. For (possibly
non-constant) r ≥ 1 there is a very recent lower bound of Ω(rΔ1/r ) rounds for the problem, even
if an initial O (Δ) coloring is given [4]. Thus, the bound of Theorem 1.5 is tight for r = 2.

Lower bounds for color reduction. We give tight characterization for one-round color reduction
algorithms, given an inputm-coloring and no unique IDs.

Theorem 1.6. For any integer Δ ≥ 1 and Δ+1 ≤ m ≤ Δ2

4 +
3Δ
2 +

9
4 let 1 ≤ k ≤ Δ

2 +
3
2 be the largest

integer such thatm ≥ k (Δ−k+3). Then, there is a one-round CONGEST algorithm that on any input

m-colored graph with maximum degree Δ computes an (m−k )-coloring. Additionally, if also k ≤ Δ−2
holds, then there is no one-round LOCAL algorithm that outputs a proper (m − k − 1)-coloring on

every inputm-colored graph with maximum degree Δ.

Theorem 1.6 roughly states that reducing k colors requires kΔ−Θ(k2) input colors. For concrete
choices of k the bound in Theorem 1.6 says that to reduce one color one needs at least Δ+ 2 input
colors, to reduce two colors one needs 2Δ + 2 input colors, to reduce three colors one needs 3Δ
input colors, to reduce four colors one needs 4Δ − 4 input colors, and so on.

The fastest randomized algorithms compute O (Δ) colorings in O (log∗ n) rounds for Δ ≥
logO (1) n [23, 58] and they can be adapted to also compute (1+ε )Δ-colorings. However, it seems that
the hardest part of (Δ+ 1)-coloring is to reduce a (1+ ε )Δ coloring to a (Δ+ 1)-coloring. We show
that an algorithm with runtime T that reduces an input coloring with (1 + ε )Δ colors to a (Δ + 1)
coloring can be used with O (log1+ε Δ) overhead to reduce a O (Δ2)-coloring to a (Δ + 1)-coloring.
If T = ΔΩ(1) , there is only a constant factor overhead (for details see Section 5).

1.2 Related Work

The state of the art for (Δ + 1)-coloring when the runtime is expressed as f (Δ) + log∗ n is
O (
√

Δ log Δ) + log∗ n rounds and given by [51]. Just like the slightly slower algorithms [9, 14, 29],
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the result of [51] works for the more general (deд + 1)-list coloring problem in which the size of
the list of each node exceeds its degree. The result in [29] applies for the even more general local

conflict coloring problem in which one can specify for each edge of the graph which colors are not
allowed to be adjacent. For an extensive overview on algorithms whose runtime is f (Δ) + log∗ n
as well as an overview on the influence of arbdefective colorings during the last decade we refer
to the related work section in [51]. Further, almost all published papers until 2013 are discussed
in the excellent monograph by Barenboim and Elkin [13], and another very detailed overview on
more recent results on coloring is contained in [46]. Detailed overviews on randomized algorithms
are contained in [23, 37]. Due to the sheer amount of published papers on distributed coloring, we
focus on selected results that have not been discussed in detail in [13, 23, 37, 46, 51], are most re-
lated to the current work, or indicate in which direction future research should continue or should
probably not continue.

The objective in the edge coloring problem is to assign a color to each edge of a graph such that
adjacent edges obtain different colors. Even though Vizing’s Theorem [61] states that any graph
with maximum degree Δ can be colored with Δ+1 colors and several randomized and deterministic
algorithms get close to this bound, e.g., [18, 36, 42, 59] in LOCAL and [39] in CONGEST, the classic
objective is to use 2Δ − 1 colors. The reason is that (2Δ − 1)-edge coloring is a (Maxdegree + 1)-
vertex coloring of the line graph. The problem has a f (Δ) + log∗ n LOCAL algorithm with f (Δ) =

logO (1) Δ [5]. Obtaining such a runtime for computing a (Δ + 1)-vertex coloring would be a major
breakthrough. In the CONGEST model, the state of the art for (2Δ−1)-edge coloring is an algorithm
usingO (Δ+ log∗ n)-round deterministic algorithm [14]. An edge coloring withO (Δ) colors can be
computed in the CONGEST model with f (Δ) = logO (1) Δ [5].

Besides optimizing the dependency on Δ after spending only log∗ n rounds on Linial’s coloring
algorithm, another big branch of research has tried to settle the complexity of the problem as a func-

tion of n. For almost 30 years the best deterministic algorithm in this regime was a 2O (
√

log n) �
logO (1) n-round algorithm [1, 54], which has been improved to O (log5 n) rounds [32, 56] in the
LOCAL model and in the CONGEST model [8, 32] (slightly slower). The crucial building block of
all of these results is a decomposition of the graph into O (logn) classes C1, . . . ,CO (log n) of small-
diameter clusters. To solve the (Δ + 1)-coloring problem one iterates through the O (logn) classes
and solves each cluster C ∈ Ci in parallel in time that is (at least) linear in the cluster diame-
ter. Even existentially, such decompositions require that the cluster diameter is at least Ω(logn),
and as a result these methods can probably not yield runtimes that are o(log2 n). Thus, the fastest
algorithm [35] that needs O (logn log2 Δ) rounds uses a different approach: similar to [8], it deran-
domizes a simple randomized one-round algorithm. Output colors are represented as bit strings
of length O (log Δ) and in one round of the algorithm each node flips a (suitably weighted) coin to
determine the next bit in the string. In expectation, after allO (log Δ) bits are fixed, a constant frac-
tion of the vertices can be colored. Bamberger et al. derandomize this algorithm for each cluster
of a given network decomposition [8]. In contrast, instead of computing a network decomposition
and derandomizing within a cluster, Ghaffari and Kuhn derandomize the algorithm globally with
the help of a special kind of a defective coloring [35]. Their derandomization step takes O (log Δ)
rounds for each of the O (log Δ) bits and the O (logn) factor follows as only a constant fraction of
the vertices gets colored in each phase, yielding a total runtime of O (log2 Δ logn) rounds. Similar
methods, also yielding logn · logO (1) Δ runtimes, have been successful for edge-coloring [33, 42]
and computing maximal matchings [27]. Very recently these techniques have also been extended
to provide new algorithms for computing maximal independent sets [26] and even network decom-
positions [31]. If one allows O (Δ1+ε ) colors for a constant ε > 0, a O (log Δ logn)-round algorithm
has been known for more than a decade [12].
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As shown in [20, 22], a logarithmic dependency on n (logΔ logn-dependency for randomized al-
gorithms) is unavoidable if one colors with fewer than Δ + 1 colors; that is, Δ-coloring requires at
least Ω(logΔ n) rounds. Similar bounds hold for the edge coloring problem for coloring with fewer
than (2Δ − 1)-colors [7] and for coloring trees and bounded arboricity graphs with significantly
fewer than Δ colors [11, 50]. Very recently it was shown that the Δ term in the base of the random-
ized lower bound is necessary as the problem can be solved inO (log∗ n) rounds with a randomized
CONGEST algorithm if Δ is lower bounded by C · log21 n for a sufficiently large constant C [28].

Little is known on lower bounds forC-coloring whenC ≥ Δ+ 1 (in contrast to other symmetry
breaking problems, e.g., maximal matching, MIS, or ruling sets [3, 6, 48]). Linial’s Ω(log∗ n) de-
terministic lower bound has recently been re-proven in a topological framework [30]. A Ω(Δ1/3)
lower bound for O (Δ)-coloring holds in a weak variant of the LOCAL model [44]. Several pa-
pers analyzed special cases of coloring algorithms that can only spend a single communication
round [44, 49, 60]. Just like the lower bounds in this article, none of these results gives anything
non-trivial for two rounds. Also, the speedup technique (e.g., [2, 3, 6, 19–21]), which proved very
successful, e.g., for MIS and ruling set lower bounds, is not yet helpful for graph coloring. To make
full use of the technique, one uses a computer program [53] to automatically transfer a problem P0,
e.g., the (Δ+1)-coloring problem, into a problem P1 that requires exactly one communication round
less in the LOCAL model. Then, one iterates the process to obtain problems P0, P1, . . . , Pt , and if Pt

cannot be solved with a 0-round algorithm, problem P0 has a lower bound of t rounds. Usually, the
program is applied for small values of Δ, and in a second step, the gained insights are transferred
into a formal proof for general Δ. For graph coloring the description of the problems grows so
quickly with t that even for small values of Δ one cannot even compute P1 with current computers.

There has also been a lot of progress in randomized coloring algorithm, e.g, [17, 23, 37, 43],
where the state of the art for (Δ + 1)-vertex coloring is a O (log3 logn) algorithm in the LOCAL

model [23, 35] and O (log6 logn) in the CONGEST model [37]. Remarkably, there is a randomized
O (log∗ Δ)-round algorithm to compute a coloring with Δ + logγ n colors for a large enough con-
stant γ > 0 [23]. Prior to this, Schneider and Wattenhofer [58] showed that one can compute
a O (Δ + log1.1 n)-coloring in O (log∗ Δ) rounds of LOCAL. Very recently, Halldórsson and Nolin
showed that these results can be extended to the CONGEST model [41]. All of these latter ran-
domized algorithms make use of the concept of trying several colors in one round, similar to our
algorithm for k > 1. In 2021, Halldórsson et al. [38] showed that (deд + 1)-list coloring can be
solved in logO (1) logn rounds in the randomized LOCAL model. In 2022, Halldórsson et al. ob-
tained similar result in the CONGEST model [40]. These randomized algorithms run in O (log∗ n)

time if (additionally) it is guaranteed that each list is of size at least log2+Ω(1) n) or Ω(log7 n), re-
spectively; otherwise they run inO (log3 n) LOCAL rounds. While Naor extended Linial’s Ω(log∗ n)
lower bound to randomized algorithms [52] (on rings with Δ = 2), it is not known whether the
bounds for O (Δ)-coloring for large Δ are tight. When Δ ≥ logΩ(1) n holds, our current knowledge
does not rule outO (1)-round algorithms forO (Δ)-coloring. This question is even more of interest
as in this setting a ΔO (1)-coloring can be computed in one round from unique IDs from a space of
size nO (1) .

Additionally, we want to point out that, independently from this work, Barenboim et al. have
extended their clever algorithm [14] to computeO (kΔ)-colorings inO (Δ/k+ log∗ n) rounds. These
results appear in the journal version [15].

1.3 Roadmap

In Section 2 we present theO (Δ/k )-roundO (kΔ)-coloring algorithm and its implications and mod-
ifications to compute defective and outdegree colorings. In Section 3 we explain how this simplifies
the state of the art for (Δ + 1)-vertex coloring, our O (kΔ)-coloring in O (

√
Δ/k )-rounds, and our
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results on computing ruling sets. In Section 4 we analyze one-round color reduction algorithms. In
Section 5 we conclude and explain why reducing an input (1 + ε )Δ-coloring to a (Δ + 1)-coloring
might be the hardest part of the (Δ + 1)-coloring problem.

2 MAIN ALGORITHM: COLORING MADE EASY

The objective of this section is to prove Theorem 1.1, where the emphasis is on the fact that the
algorithm is extremely simple if one ignores the precise choice of parameters. Before we prove
Theorem 1.1, we prove Corollary 1.2 with useful settings of the respective parameters in Theo-
rem 1.1; while Theorem 1.1 is the technical result, the corollary is supposed to be the interface to
the outer world. To formally state the corollary, we begin with two definitions.

Proof of Corollary 1.2. In each of the results we apply Theorem 1.1 with different parameters.
Proof of (1). Choose d = 0, which implies X = 16Δ. With k = X we obtain a proper C = X · k =
256Δ2-coloring in one (R = X

k
= 1) round. Proof of (2). Choose d = 0, which implies X = 16Δ.

Then we obtain a 16Δ · k-coloring in R = 16Δ
k

rounds. Proof of (3). Choose all parameters as in 2.,

but set k = � Δ
16 	, which implies Δ2 colors in R = 16Δ

k
= O (1) rounds.

In (4)–(6). the condition d = β = Δε implies X = O ���
Δ ·log Δ

β+1
Δ4

β+1
��� = O

(
Δ
β

)
.

Proof of (4). Let k = 1, which implies the claimed number of colors (X · k = O ( Δ
β+1 ) and

the claimed round complexity (R = O (Δ/β ). The coloring is a β-outdegree coloring due to part
(1) of Theorem 1.1. Proof of (5). With k = X the runtime is R = X

k
= 1 rounds and we obtain

C = X · k = O (( Δ
d

)2)) colors. Theorem 1.1 says that the coloring has defect at most d as there is
only one subgraph (R = 1). Proof of (6). Choose k = 1. Let P1, . . . , PR be the partition of part (2).
If vertices consider their color and the index of their part of the partition as a color tuple, i.e., if
a vertex v ∈ Pj with color ϕ (v ) colors itself with color (ϕ (v ), j ), we obtain a d-defective coloring
with O (( Δ

d
)2) colors in O ( Δ

d
) rounds. �

Corollary 1.2 shows that one algorithm is sufficient for many of the essential steps of several
previous important papers, and it further allows to smoothly scale between these results. Addition-
ally, the algorithm for computing β-outdegree colorings is simpler and more direct than previous
algorithms. The algorithm in [14] first needs to compute a certain defective coloring and only
then can proceed to compute a low outdegree coloring. The slower algorithm in [9] uses a more
involved recursive approach. The algorithm(s) in [11, 12] are more involved and require Ω(logn)
rounds.

We continue with explaining the algebraic basics to construct the sequences for the algorithm
for Theorem 1.1 (Algorithm 1). Given a prime q, let Fq denote the field of size q over the elements
[q] and let

P
f
q = {p : Fq → Fq | p is polynomial of degree ≤ f }

be the set of all polynomials over Fq of degree at most f . Recall that Z = Δ
d+1 . To run the algorithm

on a graph with maximum degree Δ, an inputm-coloring and a defect parameter d fix f = �logZ m	
and a prime q with

2f · Z < q < 4f · Z , (1)

which exists due to Bertrand’s postulate. Then we can locally and without communication assign

each input color i ∈ [m] a distinct polynomial pi ∈ P
f
q as m ≤ |P f

q | = qf +1 and since all vertices

know m and f . For example, we can represent each element p (x ) =
∑f

i=0 aix
i of P f

q as a tuple
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(a0, . . . ,af ), order the tuples lexicographically, and assign the polynomial corresponding to the ith
tuple with input color i . Given these polynomials, uncolored nodes try the colors in their sequences
in batches of size k (k is an integer parameter that can be freely chosen). To try a color it is sent to
its neighbors and nodes evaluate for each of their tried colors how many neighbors try the same
color or are already colored with it. Then a node gets permanently colored with a color c or adopts

color c if it causes conflicts with at most d neighbors. To this end call a color c tried by some nodev
d-proper for nodev in some iteration if at most d neighbors try color c in the same iteration or are
already permanently colored with color c . Note that the property of a color of being d-proper for a
nodev in some iteration depends on the batches of tried colors ofv and all of its neighbors, as well
as the colors that are already adapted byv already permanently colored neighbors. More formally,
fix some iteration and let D ⊆ be the nodes that have already determined their final output color in
one of the previous iterations; forv ∈ D denote that permanent output color byψ (v ). Forv ∈ V \D
let B (v ) be the batch of colors tried by node v in that iteration. Then, a color c ∈ B (v ) is d-proper

for nodev in that iteration if |{u ∈ N (v ) ∩V \D | c ∈ B (u)}| + |{u ∈ N (v ) ∩D | c = ψ (u)}| ≤ d . The
details are given by Algorithm 1 and the following paragraph.

ALGORITHM 1: For vertex v with color i . Parameters d,k,m,Δ. (LOCAL model)

Locally compute:

polynomial pi : Fq → Fq with q chosen by Equation (1)
sequence si : (x mod k,pi (x ) mod q), x = 0, . . . ,q − 1
Split si into �q/k	 consecutive batches B1 (v ),B2 (v ), . . ., each of size k (except for the last)

For j = 1, . . . , �q/k	
Send the colors in batch Bj (v ) (in a single round) to neighbors
if ∃ (d-proper c ∈ Bj (v )) then adopt c , join Pj , and return;

Observation 2.1. For each v ∈ V , 1 ≤ j ≤ �q/k	, the colors tried in one batch Bj (v ) are distinct.

Proof. The colors in a batch are of the form (x mod k,y), where x ranges through (at most) k
consecutive integers. �

Sending the colors of one batch takes one round of communication in the LOCAL model. We
reason at the end of the proof of Theorem 1.1 that processing one batch also can be done in a
single round of CONGEST. If k does not divide q, a node that is uncolored before the last itera-
tion tries less than k tuples in the last iteration, i.e., |B �q/k 	 | < k . In fact, it will try q − k �q/k�
tuples. When a vertex picks a tuple as its permanent color c , it orients all edges toward neigh-
bors that have previously chosen c as a permanent color. If two neighbors both pick the same
permanent color c in the same iteration, the edge between them is oriented arbitrarily (e.g., using
the input coloring for symmetry breaking from smaller input color to larger input color). A node
joins the subgraph Pj , where j is the index of the iteration in which it decides for a permanent
color.

Note that vertices with the same input color compute the same sequence and that all steps that
are related to orientations and subgraphs are obsolete whend = 0. We will show that the algorithm
is well defined, i.e., that every vertex is colored before it reaches the end of its sequence. To prove
the result, we need the following well-known algebraic result on the number of intersections of
two degree-bounded polynomials over finite fields.

Lemma 2.2. Let q be a prime, f ∈ N0, and let p1,p2 ∈ P f
q be distinct polynomials of degree f1, f2,

respectively. Then there are at most max{ f1, f2} points in which p1 and p2 intersect, i.e., |{x ∈ Fq |
p1 (x ) = p2 (x )}| ≤ max{ f1, f2} .
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Proof of Theorem 1.1. Recall that the prime number q is the size of the field Fq from which
the coefficients of the polynomials are taken. Due to the choice of q and f (see Equation 1), the

set P f
q contains at least one distinct polynomial for each input color i ∈ [m]. Recall the choice of

parameters: Z = Δ
d+1 , X = 4 · Z · �logZ m	, and R = Δ/k . Let C = X · k and note that X ≥ q. We

first prove all statements under the assumption that all vertices are colored after the R iterations
of the loop; afterward we show that this is indeed the case.

Bounding # colors: Each color is of the form (x mod k,p (x ) mod q) for some polynomial p
that is evaluated over Fq . Thus, the number of colors C can be upper bounded by k · q ≤ k · X .

Proof of (1): When a vertex v is colored with a color ϕ (v ) in iteration j, there are at most d
other vertices that try to get the same color in this round or are already colored with this color.
Since only edges to these vertices are oriented outward from v, the outdegree of v is bounded
by d . Further, each edge between vertices with the same permanent color is oriented: either they
picked the color in the same iteration and the edge is oriented from the node with the smaller
input color to the vertex with larger input color, or the edge is oriented outward from the vertex
that got permanently colored in a later iteration.

Proof of (2): A vertex v joins Pj if it is colored in iteration j of the loop. As a vertex v only gets
colored with a color ϕ in iteration j if there are at most d neighbors of v that want to get colored
with color ϕ in iteration j, the maximum degree of the graph induced by all vertices in Pj with
color ϕ is at most d .

All vertices are colored after the R iterations of the loop: A node is not colored in one
iteration only if for all of the k tuples, i.e., colors of the form (x ,pi (x )) ∈ [k]×[q], that it tries in that
iteration there are strictly more than d neighbors that try the same tuple in the current iteration or
are already colored with the tuple. Before we proceed with the proof that all vertices are colored
at the end, we bound the number of conflicts that a node experiences during the execution of the
algorithm. We consider two types of conflict.

Bounding the number of conflicts with an active node by f : Let us bound the number of times in
which two neighbors u, v with polynomials pu and pv , respectively, try the same tuple in some
iteration j ∈ [�q/k	] (conditioned on both nodes not being permanently colored yet). In iteration j,
the nodes simultaneously try all of the following tuples (where we omit the j · k mod k = 0 term
in the first coordinate):

u tries:
(
l ,pu (j · k + l )

)
with l ∈ [k] and (2)

v tries:
(
l ,pv (j · k + l )

)
with l ∈ [k]. (3)

Two tuples tried by u and v in iteration j can only cause a conflict, i.e, be the same, if they are the
same in both coordinates. As all k tuples that are simultaneously tried by a node differ in the first
coordinate, any conflict in iteration j between u and v implies that pu (j ·k + l ) = pv (j ·k + l ) holds
for some l ∈ [k]. Since pu and pv are polynomials of degree at most f , Lemma 2.2 implies that
there are at most at most f combinations of j and l for which this holds.

Bounding the number of conflicts with an inactive node by f : Consider a neighbor u that chose
some permanent color (xu ,yu ) ∈ [k] × [q]. For v to try this tuple in iteration j ∈ [q/k] we need

(
(j · k + l ) mod k,pv (j · k + l ) mod q

)
=
(
xu ,yu

)

for some l ∈ [k]. This can only be the case if pv (j · k + l ) equals the fixed number yu , which is the
case for at most f different choices of j and l due to Lemma 2.2 (yu is a polynomial of degree 0).

Thus, for fixed u and v , there are at most f tuples causing a conflict while u and v are active,
and at most f tuples causing a conflict after (at least) one of the nodes has chosen a permanent
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color. A nodev cannot get permanently colored with a tuple (l ,pv (j ·k+l )) if there are strictly more
than d conflicts for the tuple, i.e., strictly more than d neighbors try the same tuple in the same
iteration or have already permanently adapted the color. In this case we call the tuple blocked.
As each of the at most Δ neighbors contributes at most 2f such conflicts, there can be at most
z = 2f · Z blocked tuples. As the length q of the sequence (of tried tuples) is strictly larger
than z, there is at least one tuple that is not blocked and each node is colored at the end of the
algorithm.

CONGEST implementation: During the execution of the algorithm all nodes have knowledge

of m, q, f , d, and k and all nodes can construct the set of polynomials P f
q locally according to the

same lexicographic order. Thus, for an uncolored node to send k trials in iteration j, it is sufficient
to send its input color (together withk and j,which are global knowledge). A node that gets colored
can inform its neighbors about the choice in one round. Hence, a node never needs to send more
than a single color per round and the message size is upper bounded by O (log Δ) = O (logn) bits
and can be executed in the CONGEST model. �

We remark that it becomes significantly easier to read the algorithm if m = ΔO (1) and if Δ/d =
ΔΩ(1) , as this implies f = O (1), which simplifies many of the parameters. However, we chose to
present the result in a more general form.

Remark 2.3. With a tighter analysis for special cases one can reduce the constants in Corol-
lary 1.2; e.g., in the case of k = X , the size of the field Fq can be chosen smaller. Due to such a
tighter analysis and by assuming m = Δ3, the leading constant in the O (Δ2)-coloring by Linial is
some 1 < α < 10 [50]. In contrast, the lower bound for the one-round algorithms from Section 4
only provides impossibilities below Δ2/2+Θ(Δ) colors, that is, for a constant α < 1. Thus, there is
a large regime for α where we have neither one-round upper bounds nor lower bounds. As even
optimized constants in Theorem 1.1 and Corollary 1.2 leave a gap for the regime of α where lower
bounds are known, we focus on having simple proofs that cover all cases of the theorem, instead
of optimizing these constants.

The condition d = β = Δε in Corollary 1.2: One would wish to use a variant of Corollary 1.2
to compute a Δ/2-defective O (1)-coloring in one round, given a O (Δ2)-coloring. Note that this
setting would require the finite field over which we operate—the field size essentially determines
the number of colors—to contain only q = O (1) elements, and to obtain a distinct polynomial
for each input color we would have to choose polynomials of degree f = O (log Δ) � q. This
immediately violates Equation 1. Also, in that case, the proof of Theorem 1.1 breaks as we might
have Ω( f · Δ

d
) = Ω( f ) = ω (1) blocked tuples while only having q = O (1) tuples in the sequence.

While slightly weaker requirements on d are possible without breaking the proof, our requirement
ensures that we do not run into these issues. See [16, 45] for the parameter-heavy details on how to
iterate the result of Theorem 1.1 for O (log∗ Δ) iterations to obtain a d-defective O (( Δ

d
)2)-coloring

with no condition on d (essentially Corollary 1.2 (5) can also take a defective coloring as input
coloring, and then defects add up).

We point out that the sequences required for Theorem 1.1 need not be constructed via polyno-
mials. The proof only requires that the elements of the sequence are from a small enough domain,
sequences are long enough, there is one sequence for each input color, and any two sequences
intersect in few positions. In [51, arxiv version] such sequences are constructed greedily. Here, we
chose to use a construction based on polynomials as the dependency on the input m-coloring is
better; in particular, when m = ΔO (1) , it implies that f = O (1), instead of f = O (log Δ) for the
greedy-based construction.
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3 APPLICATIONS

3.1 Simplifying (Δ + 1)-coloring Algorithms

Corollary 1.2 provides a simpler algorithm to compute so-called β-outdegree colorings with
O (Δ/β ) colors in O (Δ/β ) rounds matching the state of the art of [14]. Recall that an β-outdegree
c-coloring is an improper coloring with c colors in which each monochromatic edge is equipped
with an orientation such that the outdegree of each vertex is at most β . These colorings are used
in all known (Δ + 1)-coloring algorithms whose round complexity is sublinear in Δ [9, 14, 29, 51],
and hence our simplifications carry over to these algorithms. The core message of our work is
that all results in Corollary 1.2 can be obtained through modifications of Linial’s algorithm. Next,
we sketch the algorithm in [51] to explain that the same is true for their result. The algorithms
of [9, 14, 29, 51] use the following high-level scheme: First compute a β-outdegree z-coloring for a
suitable choice of β such that z = O (Δ/β ) = o(Δ). Its color classes yield a partitionV1, . . . ,Vz of the
vertex set. In a second step, the partition is used as a schedule. In order to compute the nodes’ final
output color, we iterate through the schedule. For the purpose of this exposition we may assume
that all nodes of Vi are colored with their final output color after processing them (formally, this
is only true for certain nodes of Vi and an additional recursion is required to color all nodes of
the graph). When processing Vi , we ensure that a node does not get colored with a color of any
of its already colored neighbors in V1 ∪ . . . ∪ Vi−1; that is, when a node is processed it does not
have all of the Δ + 1 output colors available, but instead its list of available colors does not include
the colors of its already colored neighbors. Thus, the resulting problem that we need to solve on
G[Vi ] is a so-called list coloring problem. The additional lever, when coloring Vi , is that G[Vi ] is
equipped with an orientation with a small outdegree. The core result of the paper with the subtitle
"Linial for Lists" [51] is a generalization of Linial’s one-round color reduction algorithm to the list
coloring problem that works in two rounds in graphs with small outdegrees. Hence, the crucial
coloring step and the algorithm to compute the necessary schedule, i.e., the β-outdegree coloring,
are generalizations of Linial’s algorithm.

3.2 Improved O (Δ1+ε )-coloring Algorithms

If one aims for O (Δ) colors (instead of (Δ + 1) colors), the scheme that we explained in Section 3.1
works for a suitable choice of β = Θ(

√
Δ), yielding a runtime of O (Δ/β ) = O (

√
Δ) rounds.

Theorem 3.1 ([9, 14]). There is a deterministic CONGEST algorithm that computes a O (Δ)-

coloring in O (
√

Δ + log∗ n) rounds on any graph with maximum degree Δ.

We use this algorithm and our defective coloring algorithm from Corollary 1.2 to improve the
tradeoff between the number of colors and the runtime from O (kΔ) vs. O (Δ/k ) (Corollary 1.2) to
O (kΔ) vs. O (

√
Δ/k ).

Theorem 1.3. For any constant ε > 0, there is a deterministic CONGEST algorithm that computes

a O (Δ1+ε )-coloring in O (Δ1/2−ε/2) + log∗ n rounds on any graph with maximum degree Δ.

Proof. First, compute an O (Δ2)-coloring in log∗ n +O (1) rounds using Linial’s algorithm [50].
Set d = Δ1−ε , and then use Corollary 1.2 (part 6) to compute a d-defective coloringψ withO (( Δ

d
)2)

colors inO (Δ/d ) = O (Δε ) rounds. Then, on each color class in parallel compute aO (d )-coloring in
O (
√
d ) = Δ1/2−ε/2 rounds (the internals of [9, 14] show that the log∗ n term from the application of

Theorem 3.1 actually is log∗C when we are given an inputC-coloring; as in our case we are given
an input coloring withC = (Δ2) colors, the log∗C term is subsumed in the remaining runtime) via
Theorem 3.1 using a distinct color space for each color class ofψ ; that is, each node v gets a color
ϕ (v ) from this second step and the final output color of node v is set to be the tuple (ψ (v ),ϕ (v )).

In total, we use O (( Δ
d

)2 · d ) = O ( Δ2

d
) = O (Δ1+ε ) colors. �
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While the above way is a simple way to prove Theorem 1.3 when using Theorem 3.1 as a black-
box, an alternative algorithm can be obtained by using the β-outdegree coloring result from Corol-
lary 1.2 (with β = Δ1/2+ε/2) and carefully choosing the remaining parameters in the framework
of [9]. The corresponding parameters do not appear in the scheme in Section 3.1.

3.3 Ruling Sets

A (2, r )-ruling set of a graph G = (V ,E) is a subset S ⊆ V of the vertices that is an independent
set and satisfies that for any vertex v inV there is a vertex s ∈ S in hop distance at most r [1]. The
following result uses colorings to compute a ruling set.

Lemma 3.2 ([47, arxiv version]). For any B ≥ 2 there exists a deterministic distributed

CONGEST algorithm that, given a C-coloring, computes a (2, �logB C	)-ruling set in O (B logB C )
rounds.

We use Lemma 3.2 and Theorem 1.3 to compute (2, r )-ruling sets by adjusting the number of
colors such that the runtime of computing the coloring and using it via Lemma 3.2 are balanced.

Theorem 1.5. For any constant integer r ≥ 2, there is a deterministic CONGEST algorithm that

computes a (2, r )-ruling set in O (Δ
2

r+2 ) + log∗ n rounds on any graph with maximum degree Δ.

Proof. Set ε = r−2
r+2 and use Theorem 1.3 to compute anO (Δ1+ε )-coloring inO (Δ1/2−ε/2)+ log∗ n

rounds. LetC = O (Δ1+ε ) = O (Δ
2r

r+2 ) be the number of colors of this coloring. Now, set B such that
�logB C	 = r and apply Lemma 3.2 to compute a (2, r )-ruling set in O (B logB C ) = O (B · r ) =
O (C1/r ) rounds. Ignoring the log∗ n term, the total runtime is upper bounded by

O (Δ
1
2−

r−2
2r+4 +C1/r ) = O (Δ

1
2−

r−2
2r+4 + Δ

2
r+2 ) = O (Δ

2
r+2 ) . �

Interestingly, for r = 2 the state-of-the-art runtimes for the (2, r )-ruling set is the same as the
complexity for computing an O (Δ) coloring. Note that the runtime bound of Theorem 1.5 cannot
be achieved for r = 1. In that case, the ruling sets are better known under the name maximal

independent sets for which a Ω(Δ)-round lower bound is known if the runtime’s n-dependency is
limited to O (log∗ n) [3].

An (α , r )-ruling set is a subset S ⊆ V that is an independent set in the power graph Gα−1 that
satisfies that each vertex v ∈ V has a vertex in S in distance at most r . In the LOCAL model the
results of Theorem 1.5 can be extended to (α , r )-ruling sets as one can simulate any algorithm on
Gα−1 in the original network graph. For details on these black-box extensions see, e.g., [17, 47].

4 ONE-ROUND COLOR REDUCTION

The objective of this section is to show the following theorem:

Theorem 1.6. For any integer Δ ≥ 1 and Δ+1 ≤ m ≤ Δ2

4 +
3Δ
2 +

9
4 let 1 ≤ k ≤ Δ

2 +
3
2 be the largest

integer such thatm ≥ k (Δ−k+3). Then, there is a one-round CONGEST algorithm that on any input

m-colored graph with maximum degree Δ computes an (m−k )-coloring. Additionally, if also k ≤ Δ−2
holds, then there is no one-round LOCAL algorithm that outputs a proper (m − k − 1)-coloring on

every inputm-colored graph with maximum degree Δ.

In addition to the values for k that are stated in Section 1 (k = 1, 2, 3, 4), note that one requires
5Δ − 10 input colors to reduce five colors, and 6Δ − 18 input colors to reduce six colors. The proof
is split into two lemmas. In Lemma 4.1, we provide a one-round color reduction algorithm, and in
Lemma 4.3 we show that the algorithm is tight up to each single color. For a function f : V → [m]
and a set S ⊆ V we denote f (S ) = { f (v ) | v ∈ S }. For a node v ∈ V of a given graph G = (V ,E)
we denote the set of its neighbors by N (v ).
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The following result reduces more colors than the one-round algorithms in [49, 60].

Lemma 4.1 (Color Reduction). For an integer 1 ≤ k ≤ Δ
2 +

3
2 there is a one-round color reduction

procedure fromm ≥ k (Δ − k + 3) to k (Δ − k + 2) (reduces k colors).

The intuitive idea of the algorithm is that only vertices in the k largest color classes change their
color. Each of these recoloring colors has its own small hardcoded output color regime from which
it can pick a free color. However, the size of the regime is smaller than Δ+1 and it might be that all
of its colors are blocked by neighbors that do not recolor themselves. But this implies that there
are some recoloring colors that do not appear in the node’s neighborhood and it can steal colors
from those recoloring colors’ regimes to gain the desired freedom (one stolen color per regime).

Recall that for an integer x , we use the notation [x] to refer to the set {0, . . . ,x − 1}.

Proof of Lemma 4.1. We may assume that m = k (Δ − k + 3) is the number of input colors
as for m′ ≥ m input colors, one can leave m′ −m colors unchanged and apply the algorithm to
the remaining m colors. Let � = k (Δ − k + 2) ≥ Δ + 1 be the number of (desired) output colors,
ϕ : V → [m] the input coloring, and ψ : V → [�] the to-be-computed output coloring. Observe
thatm = � + k .

Fix k disjoint color regimes of output colors R0, . . .Rk−1, each of size Δ − k + 2, as follows: for
i ∈ [k] and j ∈ [Δ−k + 2], let ri (j ) = i · (Δ−k + 2) + j ∈ [�] and Ri = {ri (j ) | j ∈ [Δ−k + 2]} ⊆ [�].

We refer to Ri as the ith regime. The regimes are disjoint and each regime Ri is of size |Ri | =
Δ − k + 2 ≥ k − 1 because k ≤ Δ

2 +
3
2 holds. Additionally, for each of the k regimes, let fi :

[m]\([�]∪ {� + i}) → Ri be an abitrary injective function into the regime. Note that fi exists as its
domain is of size m − � − 1 = k − 1 ≤ |Ri |. Nodes execute the following algorithm that takes one
round as a node needs to learn its neighbors’ input colors.

ALGORITHM 2: Executed at each node v , output coloringψ , input coloring ϕ

Send input color ϕ (v ) to neighbors; Receive set of neighbors’ input colors ϕ (N (v ));
Case ϕ (v ) < �:ψ (v ) := ϕ (v ); exit;
Case maxu ∈N (v ) {ϕ (u)} < �:ψ (v ) := min([Δ + 1]\ϕ (N (v ))); exit;
Case (else): F (v ) := Rϕ (v )−� ∪ { fj (ϕ (v )) | 0 ≤ j < k, � + j � ϕ (N (v ))}

ψ (v ) := min(F (v )\ϕ (N (v )))

Let v be a node. If v executes the first case, it does not change its color and neighbors ensure to
not output the same color as v . If v executes the second case, all of its neighbors execute the first
case and do not change their colors; v selects a color not conflicting with any of these. Hence, for
the rest of the proof assume thatv executes the third case. By the next lemma we have F (v )∩F (w ) =
∅ for any neighbor w of v , regardless of which case w executes.

Claim 4.2. For any two neighbors v and w we have F (v ) ∩ F (w ) = ∅.

Proof. Since ϕ (w ) � ϕ (v ), we obtain that the regimes Rϕ (v )−� and Rϕ (w )−� are disjoint. By the
definition of F (v ) and F (w ) (more particular by the co-domains of the fj s used in the definition
of F (v ) and F (w ), respectively), we additionally obtain that F (v ) does not intersect Rϕ (w )−� and
F (w ) does not intersectRϕ (v )−� . Hence, if F (v ) and F (w ) intersect, the intersection must lie in some
regime R j , where j � ϕ (v ) and j � ϕ (w ). However, F (v ) and F (w ) each contain at most one color in
each such R j . These colors are fj (ϕ (v )) and fj (ϕ (w )), respectively. We obtain fj (ϕ (v )) � fj (ϕ (w ))
because fj is injective and ϕ (v ) � ϕ (w ) holds. �

As v executes the third case, we have ϕ (v ) ≥ �, and no neighbor of v can execute the second
case. Hence, all neighbors of v either stick to their color that is already < � or also execute the
third case. Let d (v ) be the number of neighbors of v that execute the first case, i.e., do not recolor
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themselves. As v does not execute the second case, we obtain d (v ) < Δ. In order to show that v
can always select a color, i.e., that F (v )\ϕ (N (v )) � ∅ holds, we show that |F (v ) | ≥ d (v ) + 1 holds.
We lower bound the size of F (v ) in two cases.

Case Δ−d (v ) ≤ k − 1: Let Y = {ϕ (w ) | w ∈ N (v ),w executes the third case} be the set of input
colors of neighbors ofv that execute the third case. We obtain |Y | ≤ min{k − 1,Δ−d (v )} (the k − 1
term appears as the input color of node v cannot appear as an input color in its neighborhood).
Let X = [m]\([�] ∪ Y ∪ {ϕ (v )}) be the set of input colors ≥ �,� ϕ (v ) that do not appear in the
neighborhood ofv . We have |X | = (k − 1) − |Y | ≥ (k − 1) −min{k − 1,Δ−d (v )} = d (v ) +k −Δ− 1.
For each color inX there is a corresponding regime from which F (v ) contains one color. We obtain

|F (v ) | ≥ |Rϕ (v )−� | + |X | ≥ Δ − k + 2 + d (v ) + k − Δ − 1 = d (v ) + 1.

Case Δ − d (v ) > k − 1: The condition implies that d (v ) < Δ − k + 1 holds and we obtain

|F (v ) | ≥ |Rϕ (v ) − � | = Δ − k + 2 > d (v ) + 1.

In both cases we obtain |F (v ) | ≥ d (v ) + 1. Thus, in the last line of the algorithm, v can pick a
color in F (v ) not used by the d (v ) neighbors that do not recolor themselves, and due to Claim 4.2
there is no conflict with any neighbor that executes the third case. To finish the proof, recall that
no neighbor executes the second case. �

Next, we show that the result of Lemma 4.1 is tight. The next lemma can be seen as a general-

ization of a result in [44], which proved a result of a similar flavor but only for m ≥ Δ2

4 +
Δ
2 + 1.

Lemma 4.3 (Lower Bound for One-Round Algorithms). Let k,Δ, andm be arbitrary integers

satisfying 1 ≤ k ≤ Δ − 1 and m ≤ k (Δ − k + 3) − 1. Then, there is no one-round LOCAL algorithm

that computes a q =m − k coloring on every inputm-colored graph with maximum degree Δ.

Proof. We may assume that m = k (Δ − k + 3) − 1, as an impossibility result for this choice
of m implies the same result for any m′ ≤ m. Assume for contradiction that there is a one-round
algorithmA that colors a graph with an input coloring withm colors with q =m−k output colors.
Call an input color ϕ sensitive if for any output color c ∈ [q] there is an input color ϕ ′ ∈ [m] such
that if a node v is input colored with ϕ and has a neighbor with input color ϕ ′, then node v does
not output c (regardless of the colors of other neighbors). In the rest of the proof, our notation
identifies nodes with their input color.

Claim 4.4. There are at least k sensitive input colors.

Proof. We introduce the following definition where c ∈ [m] is an output color. An input color
ϕ is called c-robust if for all input colors ϕ ′ � ϕ there is a set A of size at most Δ satisfying ϕ ′ ∈ A
and A ((ϕ,A)) = c . Let S =

⋃
c ∈[q]{ϕ ∈ [m] | ϕ is c-robust} be the set of input colors that are

c-robust for some c . Next, we upper bound the size of S by q. In particular, we show that each of
the sets in the union contains at most a single element. Assume for contradiction that ϕ and ϕ ′ are
two distinct input colors that are c-robust. By definition, there are sets Aϕ and Aϕ′ of size at most
Δ satisfying ϕ ′ ∈ Aϕ and ϕ ∈ Aϕ′ such that c = A ((ϕ,Aϕ )) = A ((ϕ ′,Aϕ′ )), a contradiction to
the correctness ofA as (ϕ,Aϕ ) and (ϕ ′,Aϕ′ ) can be neighborhoods of neighboring nodes in some
graph.

Let T = [m]\S and observe that |T | ≥ m − |S | ≥ k . For each ϕ ∈ T and for all c ∈ [q], ϕ is not
c-robust; that is, for all c there exists an input color ϕ ′ such that for all sets ϕ ′ ∈ A of size at most
Δ, A (ϕ,A) � c . Hence, each color in T is sensitive and the claim follows. �

Next, we construct a one-hop neighborhood that cannot be colored with one of the q output
colors and thus leads to a contradiction. LetT be a set of sensitive input colors of size k that exists
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due to Claim 4.4. Consider the partial neighborhoods Nx = (x ,T \{x }) with one node x ∈ T in
the center and the k − 1 other nodes in T \{x } as one-hop neighbors of x . This is a valid partial
neighborhood as |T \{x }| ≤ k − 2 ≤ Δ. We call a color c ∈ [q] a candidate color for Nx if there
exists a set of input colors B (of size ≤ Δ) satisfyingT \{x } ⊆ B ⊆ [m] such thatA ((x ,B)) = c; i.e.,
algorithm A outputs color c on the neighborhood (x ,B).

Claim 4.5. For x � x ′ ∈ T the sets of candidate colors of Nx and Nx ′ are disjoint.

Proof. Assume for contradiction that c ∈ [q] is a candidate color for Nx and Nx ′ , and let B ⊇
T \{x } and B′ ⊇ T \{x ′} be the respective sets such that c = A ((x ,B)) = A ((x ′,B)). As x ∈ B′

and x ′ ∈ B, the neighborhoods (x ,B) and (x ′,B′) can occur next to each other in a graph, a
contradiction to the correctness of A. �

By Claim 4.5 and by the pigeonhole principle, there exists one x∗ ∈ T for which Nx has at most
α candidate colors where

α =
⌊ q

|T |

⌋
=

⌊q
k

⌋
=

⌊m − k
k

⌋
=

⌊kΔ − k2 + 2k − 1

k

⌋
=

⌊k (Δ − k + 2) − 1

k

⌋
= (Δ − k + 2) − 1 = Δ − (k − 1).

Now, letC∗ ⊆ [q] be the set of candidate colors of Nx∗ . As x∗ is inT and all colors inT are sensitive,
for each c ∈ C∗ there exists some ϕc ∈ [m] such thatA does not output c for v whenever ϕc is the
input color of one of v’s neighbors. We conclude that the one-hop neighborhood Ñx∗ = (x∗, {ϕc |
c ∈ C∗} ∪ (T \{x })) cannot be colored byA, a contradiction. The choice of parameters is important.
The constructed neighborhood Ñx∗ is a feasible neighborhood as |{ϕc | c ∈ C∗} ∪ (T \{x }) | ≤
α + k − 1 = Δ. �

Lemma 4.3 implies a heuristic lower bound of Ω(Δ) to reduce a Δ2/2-coloring to a Δ2/5-coloring
(if you have ≤ Δ2/4 input colors you can remove at most Δ/2 colors per iteration). In contrast, the
algorithm from Corollary 1.2 (for a suitable choice of k) can reduce a Δ4-coloring to a Δ2/5 coloring
in O (1) rounds. Thus, the iterative application of tight bounds for one-round algorithms can be
beaten significantly by a simpleO (1)-round algorithm. This suggests that it is important to under-
stand constant-time algorithms to settle the complexity of distributed graph coloring problems.

Proof of Theorem 1.6. The upper bound follows with Lemma 4.1. The lower bound states that
we cannot reduce k + 1 colors. It follows from Lemma 4.3 applied with k + 1 (instead of k). �

5 CONCLUSION

In the current article we have seen a simple algorithm for distributed graph coloring in which
each vertex locally computes a permutation of the output colors and then tries them in batches.
A trial is successful if there is no conflict; that is, no neighbor tries the same color in the same
round and no neighbor is already permanently colored with that color. Depending on the size
of the batches, this algorithm scales between Linial’s famous color reduction [50] and the locally
iterative algorithm by Barenboim et al. [14]. If nodes tolerate conflicts up to a certain threshold, the
same algorithm can be used to obtain the defective coloring algorithms of [16, 45] and [10, 16], as
well as obtaining a simpler algorithm (as compared to [9, 14]) to compute low outdegree colorings
aka arbdefective colorings. The latter are one of the two crucial ingredients in the state-of-the-art
(Δ+1)-coloring algorithm in [51]. The second ingredient is a two-round list version of Linial’s color
reduction, together with the observation that the degree bound can be replaced with a bound on
the outdegree. One can also see our algorithm as an extension of Linial’s algorithm, or the other
way around: in the setting where nodes can only try one color per round (k = 1), one wants to get
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colored with one out of O (Δ) output colors; this process is guaranteed to be successful in O (Δ)
rounds if vertices try colors in a suitable order. Now, if you want to try more than one color per
iteration, that is, you want to compress several rounds of the original algorithm into one iteration,
you need to also mark each trial with the round number in which you would have tried it in
the original algorithm, yielding an O (Δ2)-coloring if you want to execute all O (Δ) rounds in one
iteration. We find it astonishing that in hindsight many crucial results in this area can be related
to the algorithm that was presented in Linial’s seminal paper [50] roughly 30 years ago.

On the lower bound side his initial Ω(log∗ n) bound is still the state of the art. The only progress
is in terms of understanding one-round algorithms or weak variants of the LOCAL model [44]. Our
article showed that there is a large discrepancy between iterating the best one-round algorithm for
O (1) times and what can be achieved by a "smart" algorithm that uses O (1) rounds. This suggests
that we first need to understand constant-time algorithms, from both the upper and lower bound
side, before we can settle the complexity of the (Δ+1)-coloring problem. Another approach would
be to attack the coloring problem through lower bounds for ruling sets, as there is recent progress
for the latter. A large lower bound for a (2, r )-ruling set would imply a lower bound for graph
coloring via Lemma 3.2; however, it is unclear whether large enough lower bounds for ruling sets
exist.

We end with an additional observation. We purposely keep the observation informal as we
merely include it as an additional intuitive guide for the search of the right lower bound questions.
We believe that a formal statement would actually hinder the creativity in this process.

Observation 5.1 (Informal). Modulo a log Δ-factor the difficult part of the (Δ + 1)-coloring

problem is to reduce a (1 + ε )Δ coloring to a (Δ + 1)-coloring.

Proof sketch. Assume an algorithmA that reduces the number of colors from (1+ε )Δ to Δ+1.
Now, assume an input coloring with m � (1 + εΔ) colors is given. Then, one can chop [m] into
x ≈ m/((1 + ε ) (Δ + 1)) disjoint color spaces, each of size (1 + ε )Δ, and run A on each of them in
parallel, using a disjoint output color space for each application. This uses x · (Δ + 1) ≈m/(1 + ε )
output colors; i.e., we have reduced the number of colors by a constant factor (if ε is constant). Thus,
if we begin withm = O (Δ2) colors, we obtain a (Δ + 1)-coloring with a O (log1+ε Δ) multiplicative
overhead. �

If Δ is a large enough poly logn, then a randomized algorithm can very efficiently compute
(1 + ε )Δ-colorings [23, 41, 58].
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