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Abstract: Conceptualizing sophisticated measurement set-ups as well as testing and evaluation
procedures for laboratory experiments on anisotropic rocks requires a basic understanding of the
potential specimen behavior. The focus of the present work was therefore to investigate the influence
of different transversely isotropic parameters and their ratios on the elastic behavior of cylindrical
rock samples in uniaxial compression tests. Parameter sets corresponding to soft anisotropic rocks
were chosen based on naturally observed ranges for the five elastic transversely isotropic constants.
Analytical results for the radial and vertical strain distributions around the sample circumference
and a comparison with finite element simulations are presented. Further, the effect of interface
friction between samples and loading platens was analyzed within the numerical models. The
results suggest that radial strains around cylindrical anisotropic samples are rarely uniform except
for specific combinations of parameters and isotropy plane inclinations. The effect of interface friction
was found to have a clear influence on the developing elastic stress and strain distributions for
samples with inclined isotropy planes. Nevertheless, no significant influence of frictional boundary
conditions on the back-calibrated values of the elastic parameters could be identified, suggesting
that friction-reducing measures in uniaxial compression tests on transversely isotropic samples with
predominantly linear behavior are not required.

Keywords: transversely isotropic rock; uniaxial compression; anisotropic deformation; elastic
constants; Poisson’s ratio; Young’s modulus

1. Introduction

Due to the formation history of rocks, they are usually associated with an anisotropic
mechanical behavior. Pure isotropy is only encountered to a limited extent in natural rock
formations [1], which is why the consideration of direction-dependent physical properties is
all the more important in order to make realistic engineering predictions for the given task.

Anisotropy is encountered at various scales in rock engineering, from the scale of the
entire rock mass down to the scale of the intact rock [2]. Intact rock anisotropy, also referred
to as inherent anisotropy [3], is associated with the formation history of most sedimentary
and metamorphic rocks resulting in preferential planes of cleavage, lamination, bedding,
foliation or schistosity [4,5].

Paying attention to inherently anisotropic rock behavior is particularly relevant in
petroleum and geothermal engineering for the assessment of the material’s fracability
and the prediction of wellbore stability along with deformations and stresses around
boreholes [6]. Inherent elastic anisotropy is also an important factor to be considered for
the interpretation of stress measurements, e.g., overcoring experiments [7,8], and other in
situ tests in underground engineering, such as pressuremeter tests [9]. Consequently, a
thorough determination of the intact rock’s anisotropic character with respect to its physical
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properties is vital. This especially holds for the evaluation of the material’s orientation-
dependent deformability.

Commonly, a transversely isotropic material model is adopted for the description of
the elastic deformability of laminated or foliated rocks with clear visibility of the plane
orientations (class B rocks) [10]. Thereby, a plane of isotropy is assumed to be present in
the direction of the rocks’ planar fabrics with an axis of symmetry normal to them. Five
independent parameters are required to fully describe a transversely isotropic solid [11]:
E and E′, describing the Young’s moduli parallel and normal to the plane of isotropy; the
Poisson’s ratios ν and ν′, characterizing lateral strain in the plane of isotropy resulting
from a normal strain applied within this plane and normal to it; and the transverse shear
modulus G′ associated with the shear modulus normal to the plane of isotropy. The shear
modulus G within the isotropy plane is not an independent parameter, for which the
relationship of G = E/[2(1 + ν)] is given.

The determination of the elastic constants is based on the conduction of various
static and dynamic laboratory tests. For most applications in geomechanics, however,
the static constants, resulting from the corresponding testing methods, are more suit-
able [12]. The standard procedure for the determination of the static constants represents
the conduction of at least three uniaxial compressive strength (UCS) tests in directions
normal, parallel and inclined to the planes of isotropy combined with oriented lateral
strain measurements [10]. Cho et al. [13] suggested the use of a least-squares approxima-
tion scheme in case more than the required minimum number of strain measurements are
included in the assessment of the five elastic constants. Alejano et al. [14] established a
procedure for the consideration of a large number of tests for the evaluation of the elastic
constants of a transversely isotropic slate relying on the solution of a non-linear optimiza-
tion problem. Lately, Winkler et al. [15] developed an evaluation technique for the five
elastic constants based on averaged circumferential strain measurements on cylindrical
specimens in UCS tests. This was performed to increase test practicality and to reduce the
influence of errors due to deviations in otherwise required oriented strain measurements
from the ideal measuring directions. Improvements to the standard testing scheme, associ-
ated with the conduction of multiple tests, have been made over time, mainly to reduce the
required number of tests and thus the influence of sample heterogeneity, or to account for
the material’s stress-dependency. Nejati et al. [16] and Shen and Playter [12] list some of
the most important developments in this regard and discuss the associated benefits and
deficiencies. Yim et al. [17] proposed an iterative procedure to determine the five elastic
constants by conducting uniaxial compression and Brazilian tests using specimens from
a single-orientation core. More recently, strip load tests on single cylindrical test speci-
mens with arbitrary isotropy plane inclinations have been used to determine the full set
of transversely isotropic constants without the need to assume approximate relationships
between individual parameters or to use special test apparatuses [18,19]. While the strip
load test method thus overcomes the limitations of previous methods for determining
the transversely isotropic constants on single-core samples, its practicality may still be
limited by the computationally expensive strain inversion method involved [18] or the
lack of availability of a trained artificial neural network (ANN) [19]. Despite ongoing
developments with regard to calibration methods to derive transversely isotropic constants
from tests on single samples, the most frequently used method remains the one involving
measurement results from compression tests performed on multiple samples with different
core angles [20–22].

Besides the adopted laboratory test schemes, the determination of accurate elastic
constants is also influenced by the choice over suitable strain measurement techniques. In
general, local strain measurements should preferably be used over global arrangements,
such as cap-to-cap LVDT measurements. This is due to the influence of end-effects near
the sample–platen contacts on the global measurements arising from surface friction [23].
To mitigate the influence of interface friction, Togashi et al. [24] proposed the use of a
ball-bearing plate in between the sample’s top surface and the loading platen within triaxial
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tests on anisotropic rocks. However, the need for such a measure could not be confirmed
by the study of Dambly et al. [25], who carried out uniaxial compression tests on granitic
rocks with a specific degree of anisotropy.

The majority of studies in the literature dealing with the determination of the trans-
versely isotropic elastic material constants involving uniaxial compression tests on cylin-
drical samples do not report the use of friction-reduction measures at the sample–platen
contacts [13,14,20,21,26]. Nevertheless, the elastic parameters are calibrated by confronting
the strain measurements containing the influence of end-effects with analytical strain equa-
tions derived from an ideal consideration. This introduces errors of uncertain magnitude
into the determined elastic parameters compared to the true unaffected material constants
of an assumed transversely isotropic elastic solid. In the current literature, it remains
inadequately addressed to what extent the developing strain distributions around samples
with different isotropy plane inclinations and the ascertainable material parameters are
influenced by end-effects in combination with different inherent elastic constants. Uncer-
tainty also exists as to whether friction-reducing measures are essential or dispensable in
addition to local strain measurements in UCS tests on transversely isotropic rocks with
varying elastic constants.

The present study aims to explore uncertainties through a theoretical perspective.
It focuses on the determination of developing elastic strains around the circumference
of cylindrical transversely isotropic rock specimens for the case of uniaxial compression
loading. The influence of single material parameter variations in connection with varying
anisotropy ratios E/E′, ν/ν′ and G/G′, within observable ranges for low to moderately
anisotropic rocks, is investigated. Analytical results are compared to the ones from nu-
merical computations. In addition, the effects of more realistic test boundary conditions,
which take into account sample–platen friction, are studied within numerical finite element
simulations. The assessment addresses the associated influences on the generated strain
distributions, as well as the results for the back-calibrated elastic constants. The originality
of the study lies in the detailed graphical analysis of the impact that various study pa-
rameters exert on the results through the use of comprehensible polar diagrams. Another
novel aspect is the identification of the influence of end-effects on the obtainable calibration
results of the transversely isotropic constants based on the observed elastic deformation
behavior of transversely isotropic rock specimens in numerical simulations of UCS tests.

In Section 2, the theoretical background to the analytical strain equations within the
cylindrical coordinate system is provided. Further, the decisions made regarding the
selection of suitable sets of elastic constants get justified and the approaches followed
with regard to numerical modeling and the investigation of specimen end-effects are
described. Section 3 presents and discusses the analytical and numerical results and
makes a comparison between both. In addition, the quantitative influences of sample–
platen contact friction on the calibration results are presented. A summary is provided in
Section 4. The conclusions are drawn in Section 5.

2. Materials and Methods
2.1. Analytical Strain Equations in Cylindrical Coordinate System

As a matter of convenience, the present study adopts the same analogy for the param-
eter and coordinate system designations as Nejati et al. [16] and Dambly et al. [25]. For a
transversely isotropic elastic solid, the stresses and strains are related via the generalized
Hooke’s law [11]. Referring to a local Cartesian x′y′z′ coordinate system, with the x′y′-
plane coinciding with the material’s isotropy plane orientation (see Figure 1), Hooke’s law
can be written as
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where ε′ and σ′ are the elastic strain and stress component vectors in Voigt notation and S′

is the 6 × 6 transversely isotropic compliance matrix.
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Figure 1. Transformation of the local Cartesian coordinate system x′y′z′ of a transversely isotropic
cylindrical sample into the global cylindrical coordinate system rθz in two steps using transformation
matrices Ωβ and Ωθ . The local x′-axis follows the inclination β of the isotropy planes within the
sample’s symmetry plane, which defines the direction θ = 0 (based on Dambly et al. [25]).

In order to derive the analytical equations for the elastic strain components around
transversely isotropic cylindrical samples subjected to uniaxial loading, two further coordi-
nate systems are introduced, i.e., the global Cartesian xyz-system and the global cylindrical
system rθz. The general loading configuration σ = [0, 0, σz, 0, 0, 0] within the test and mea-
surable normal strain components εr, εθ and εz around the cylinder are given within the
latter system. Hence, to apply Hooke’s law, the compliance matrix S′ in Equation (1) needs
to be transformed twice (using rotation matrices Ωβ and Ωθ as described in Nejati et al. [16]
and Dambly et al. [25]): first, from x′y′z′ to xyz, corresponding to a rotation around the
y-axis; second, from xyz to rθz. Carrying out the transformations and assuming that the
xz-plane is the sample’s plane of deformational symmetry (x =̂ θ = 0), the following
equations for the normal strains εr, εθ and εz in relation to the isotropy plane inclination β
in cylindrical coordinates are obtained [16,25]:

εr =
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Equations (2)–(4) are exclusively valid under the assumption of a uniform axial stress
state. This case is only satisfied for ideal test boundary conditions without interface friction
between the sample and loading platens. Figure 2 illustrates the orientation of the acting
normal strain components within the cylindrical coordinate system rθz .

zy

x,θ=0

rθ

εθ

εz

εr

εrεθ

εzσz

Figure 2. Local orientation of measurable normal strain components in the cylindrical coordinate
system rθz for uniaxial compression tests with frictionless boundary conditions. Strain component εθ

is oriented in tangential direction to the sample circumference, εr in radial direction (based on Dambly
et al. [25]).

2.2. Elastic Constants for Parametric Study

A parametric study carried out in the present paper aims at identifying the influ-
ence of individual material parameters on the developing elastic strains around trans-
versely isotropic cylinders subjected to uniaxial loading. The considered parameter sets
for the elastic constants were chosen based on commonly observed ranges and ratios for
weak/moderately anisotropic rocks.

Typical values for anisotropy ratios E/E′ and ν/ν′ of transversely isotropic rocks were
listed by Lama and Vutukuri [27]. Comprehensive studies on possible domains for these ra-
tios referring to various rock types were carried out by Amadei et al. [5] and Worotnicki [28],
their reviews largely relying on the parameter sets provided by Batugin and Nirenburg [29]
and Gerrard [30]. The analyzed data in these studies not only include elastic constants
from transversely isotropic rock samples but also orthotropic rock samples. In the latter
case, the investigated Young’s modulus ratio was taken as Emax/Emin, E1/E3, respectively,
for comparative purposes with the E/E′ ratio of rocks with rotational symmetry. Also, it
should be noted that, in the study of Worotnicki [28], not only were static elastic constants
analyzed but also dynamic constants.

2.2.1. Young’s Moduli and Ratio E/E′

For the parametric study, the Young’s modulus E′ in direction normal to the isotropy
planes was fixed with a value of 2000 MPa. This value can be considered to be arranged
at the lower end of the values for the stiffness of various rock types, as could be encoun-
tered for fine-grained soft sedimentary rocks [31]. Also, this low value was chosen in
agreement with the stiffness of artificial anisotropic samples that the authors are currently
experimenting with. Keeping E′ constant facilitates the investigation of the influence of
stiffness anisotropy (E/E′) on the qualitative strain distributions at consistent strain magni-
tudes. The Young’s modulus E was made dependent on E′ via the selected values for the
anisotropy ratio E/E′.

For natural anisotropic rocks, the Young’s modulus E′ perpendicular to the planar
fabrics is usually smaller than the Young’s modulus E measured within the planes, with
minor exceptions [5,27,32]. Thus, the lower bound for the selected E/E′ ratio was chosen
with 1.0. Amadei et al. [5] found that the majority of values for this ratio lie in between
1.0 and 2.0 based on 98 investigated rocks, with only a single case reported with a value
larger than 3.0. From the frequency distributions shown in Figure 3, based on data collected
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by Worotnicki [28] and Lama and Vutukuri [27], it can likewise be concluded that most
of the rocks display low to moderate Young’s modulus anisotropy ratios E/E′ < 2.0.
Nevertheless, Worotnicki’s dataset (Figure 3a) is less balanced toward intermediate ratios,
with 80% of the samples having ratios less than 1.5. This can be explained by the high
amount of quartzofeldspathic and basic/lithic rocks included in the assessment usually
displaying the lowest degrees of modulus anisotropy. In the given context of the parametric
study, anisotropy ratios E/E′ of 1.0, 1.5 and 2.0 were selected.
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Ratio E/E′

0

10

20

30

40

50

60

70

N
um

b
er

of
ro

ck
s

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Ratio E/E′

2

4

6

8

10

N
um

b
er

of
ro

ck
s

(a) (b)

39 samples
> 200 samples

weak to moderate high

degree of anisotropy

weak to moderate high

degree of anisotropy

Figure 3. Frequency distribution of anisotropy ratios E/E′ for various rock types as (a) studied
by Worotnicki [28], including more than 200 samples in his study from 4 different lithological classes
of anisotropic rocks and (b) as listed by Lama and Vutukuri [27]. In both datasets, rocks displaying
exceptional values for anisotropy ratios greater than 3.5 were present, but were not considered in this
figure due to the study’s focus on weakly to moderately anisotropic rocks. The limit ratio sometimes
defined in literature to distinguish weakly to moderately and highly anisotropic rocks is 2.0 [16].

2.2.2. Poisson’s Ratios and Ratio ν/ν′

When considering a broad spectrum of rock types, typical values for Poisson’s ratios
range from numbers as low as 0.05 up to 0.4 [33]. However, certain quartz-rich sandstones
and siltstones with open microcracks and -pores may even display auxetic material be-
haviors with negative values for the Poisson’s ratios [34]. Values higher than 0.5 are also
documented in the literature for anisotropic rocks, especially for the transverse Poisson’s
ratios ν′ in highly anisotropic rocks [27]. Amadei et al. [5] reported the majority of values
for ν12(=̂ ν) of anisotropic rocks to fall in between 0.1 and 0.35, while ν13(=̂ ν∗) varies
to a larger extent from 0.1 to 0.7. The parameter ν∗, as used by Amadei et al. [5], is a
different representation of the transverse Poisson’s ratio ν′, both of which are related via
ν′/E′ = ν∗/E. As stated by Sayers [32] for shales, the Poisson’s ratio ν′ can be smaller,
larger or equal to the value of ν depending on existing inclusions of kerogen, microcracks
or pores with a low aspect ratio and parallel orientation to the bedding planes.

Despite the wide ranges of possible values for the anisotropy ratio ν/ν′, sometimes
simplified assumptions are made in rock mechanics, such as ν/ν′ = E/E′ [25]. A slightly
different relationship is provided by the three-parameter formulation of the transversely
isotropic stiffness matrix from Graham and Houlsby [35], requiring only three instead of
five parameters to be calibrated. In this case, the relationship between the single parameter
ratios is given by α = (E/E′)1/2 = ν/ν′ = G/G′.

For the herein conducted parameter study, the transverse Poisson’s ratio ν′ was
assumed to be constant with a value of 0.15. This was carried out to prevent excessively
low values for ν when made dependent on ν′ based on selected ratios ν/ν′. Considering
chosen ratios for E/E′ of 1.0, 1.5 and 2.0 and applying the above mentioned relationships,
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let the authors come up with chosen values for ν/ν′ of 0.5, 0.667, 1.0, 1.5 and 2.0. This
corresponds to assumed values for ν from 0.075 to 0.3.

2.2.3. Shear Modulus G′ and Saint-Venant Approximation

The shear modulus G′ is the most laborious parameter to determine from the five
independent elastic parameters of a transversely isotropic material [29]. The parameter
G′ may be determined directly in UCS tests on samples with inclined isotropy planes
from the conduction of strain measurements at 45◦ to the cylinder axis [10,25]. Besides the
direct determination, G′ may likewise be obtained from the solution of the system of stress–
strain equations arising from the transformed Hooke’s law [2,14,36]. This requires the
execution of multiple tests and measurements on commonly three samples with isotropy
plane inclinations of β = 0◦, β = 90◦ and β ̸= 0◦, 90◦.

Given the increased effort for the determination of the shear modulus G′, in many
practical applications, this parameter is approximated by G′

sv acc. to Equation (5).

G′ ≈ G′
sv =

EE′

E(1 + 2ν′) + E′ (5)

This relationship, in the literature often referred to as the Saint-Venant approximation
of the shear modulus, originates from the early studies of Saint-Venant [37] and is indicated
here in the form of Lekhnitskii [11]. Although this approximation is frequently described as
being purely empirical [2,38], it still relates to a theoretical background, as shown by Nejati
et al. [16]. Through rotating the compliance matrix S′, as well as stresses and strains from
the local coordinate system x′y′z′ by an angle β around the y-axis (see Figure 4), with the
y-axis oriented parallel to the isotropy plane’s strike direction, the apparent shear modulus
G′

β =̂ Gxz within the coordinate system xyz is related to the shear stress τxz and shear strain
γxz by τxz = G′

β γxz with

1
G′

β

=

(
1
E
+

1 + 2ν′

E′

)
︸ ︷︷ ︸

G′
sv
−1

sin2(2β) +
1

G′ cos2(2β). (6)

z′ x′
z

x
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τxz
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Figure 4. (a) Illustration of a quadratic cutout from a transversely isotropic solid oriented in the xyz
coordinate system and subjected to shear stress τxz. (b) Polar plot of G′

β/G′
sv dependent on polar

angle β and for varying values of the shear modulus G′ assumed with 80, 100 and 120 % of G′
sv equal

to unity (based on Nejati et al. [16]).

From Equation (6), it is obvious that, at angles β = 45◦+ i · 90◦, with i corresponding to any
integer number, the apparent shear modulus G′

β equals the value from the approximation G′
sv

due to the vanishing cosine term. This justifies the adoption of Equation (5) for simplification
purposes, with deviations in the true to the approximated value of the shear modulus often
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reported within a range smaller than 20% [16]. Emphasis should be given that this statement is
only valid for rocks with low to moderate degrees of anisotropy, i.e., E/E′ < 2.

For the parametric analytical study in this research, the shear modulus was taken
as G′

sv acc. to Equation (5). To further investigate the influence of varying values for this
elastic parameter on the developing strains, an additional value of G′

sv,Erat=2 computed at a
ratio E/E′ = 2.0 was additionally chosen for combinations with Young’s modulus ratios
smaller than 2. Numerical studies were conducted with values for the transverse shear
modulus G′ of 0.8·G′

sv, G′
sv and 1.2·G′

sv considering commonly observed deviations from
the approximated value G′

sv.

2.2.4. Parameter Sets and Stress Level

Table 1 lists all variation parameters as used for the analytical study on the developing
strain distributions around a cylinder subjected to uniaxial compression loading. Based on
these parameters, a total of 75 sets for the five elastic constants including varying values for
the isotropy plane inclination β were studied. Among the elastic parameters, only the values
for the Young’s modulus E′ and the Poisson’s ratio ν′ were fixed, with values of 2000 MPa
and 0.15, respectively. From the selected constants and ratios, the satisfaction of the well-
known thermodynamic constraints [5,39] for the elastic parameters of transversely isotropic
materials is guaranteed. All strain distributions presented in the results section (Section 3)
were computed for an assumed axial stress level σz of 10 MPa, whereby σz represents a linear
scaling factor for the strain magnitude not influencing the qualitative strain distributions.

Table 1. Investigated parameters for analytical study.

Young’s Modulus E′ Poisson’s Ratio ν′ E/E′ ν/ν′ G′ β
(MPa) (-) (-) (-) (MPa) (◦)

2000 0.15 1.0, 1.5, 2.0 0.5, 0.667, 1.0, 1.5, 2.0 G′
sv, G′

sv,Erat=2 0, 45, 90

2.3. Numerical Studies

For the purpose of a graphical comparison with the analytical solutions for the strain
distributions around cylindrical samples and to quantitatively asses the influence of sample–
platen friction on the elastic strains, as well as on the back-calibrated elastic constants, nu-
merical UCS test simulations were performed using the finite element software PLAXIS 3D
CONNECT Edition V21 [40]. It was assumed that the samples undergo elastic deformations
only without the consideration of plasticity. Failure conditions were only validated at the
sample–platen interface where plastic deformations were permitted. This was performed
to analyze the influence of frictional end-effects on the developing strain distributions
around the cylinders at multiple horizontal cross sections acc. to Figure 5b. The platens
were modeled as separate volume elements as can be seen in Figure 5.

H75

H50

H25

Cross sections

z

y
x

β

Steel
(elastic)

Rock
(elastic)

Steel
(elastic)

Interface
(plastic)

Interface
(plastic) z

y
x

Prescribed 
displacements uz

Fixed Base

z′ x′
Boundary fixed

horizontally
Boundary fixed

horizontally

(a) (b) (c)

z

y
xl  = s

100 mm

50 mm

25 mm

25 mm

25 mm

25 mm

Figure 5. Illustration of the numerical model set-up for the uniaxial compressive strength (UCS)
test simulation displaying (a) the general dimensions and chosen materials for the single model
components, (b) the location and designation of horizontal cross sections used for the result eval-
uation and (c) the kinematic boundary conditions and the applied loading in terms of prescribed
displacements uz.
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2.3.1. Model Description

The samples were modeled with a diameter of 50 mm and a height of 100 mm as
shown in Figure 5a. The steel platen dimensions were taken into account as being 60 mm
in diameter and 20 mm in height. Interface elements were placed between the sample and
loading platens. Surfaces were located at 3 different positions along the sample volume at
heights of 25 mm (H25), 50 mm (H50) and 75 mm (H75). This was performed in order to
force mesh node positions at the intended cross sections, and thus to be able to evaluate
the deformations at these locations. Figure 5b provides a graphical representation of the
considered horizontal cross sections.

In addition, two surfaces were defined within the sample volume parallel to the yz-
and the xz-plane and passing through the sample axis. These surfaces helped in achieving
a higher mesh symmetry. In total, the mesh comprised 64,468 10-node tetrahedral elements
and a number of 100,649 element nodes.

The steel material was modeled as elastic with an isotropic stiffness. For the rock
material, the jointed rock (JR) model [40] was adopted. It considers elastic anisotropy by
the implementation of a transversely isotropic stiffness matrix and plastic anisotropy by
checking stresses against local Mohr–Coulomb failure criteria in implicit joint directions. In
this study, any required input of strength parameters was chosen as sufficiently high to
prevent yielding of the rock material. The interface on top and bottom of the sample was
modeled using a Mohr–Coulomb constitutive model with zero cohesion. Two values for the
friction angle of the interface were analyzed. The highest considered anisotropy ratio from
the analytical study of E/E′ = 2 was adopted for the rock samples within the numerical
simulations. This was performed in accordance with the highest expected influence of
sample–platen friction on the elastic strain distributions. Tables 2–4 provide an overview of
the selected material parameters for the numerical simulations.

Table 2. Material parameters for the rock sample.

Parameter Symbol Value(s) Unit

Young’s modulus E 4000 MPa
Poisson’s ratio ν 0.075, 0.1 *, 0.15, 0.225, 0.3 (-)

Young’s modulus E′ 2000 MPa
Poisson’s ratio ν′ 0.15 (-)
Shear modulus G′ 888 (0.8G′

sv), 1111 * (G′
sv), 1333 (1.2G′

sv) MPa
Plane inclination β 0, 45, 90 (°)

* Herein regarded as the “basis” parameter set.

Table 3. Material parameters for the steel platens.

Parameter Symbol Value Unit

Young’s modulus E 200,000 MPa
Poisson’s ratio ν 0.3 (-)

Table 4. Material parameters for the interface between rock specimen and steel platens.

Parameter Symbol Value(s) Unit

Young’s modulus E 20,000 MPa
Poisson’s ratio ν 0.3 (-)
Friction angle φ 0, 15 (°)

Cohesion c 0 MPa

With regard to the kinematic boundary conditions, all displacement components at
the bottom boundary of the model were fixed. Movement at the vertical model boundary
along the steel platens was only permitted in vertical direction and was locked in horizontal
direction. The applied boundary conditions are presented in Figure 5c.
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2.3.2. Load Application

The used finite element software is based on an implicit approach. Loading was
applied uniformly on top of the upper loading platen in terms of prescribed displacements.
In horizontal directions, the value of prescribed displacement was selected with zero. The
value in vertical direction uz, to be applied within the calculation phase, was determined
by an iterative algorithm that was implemented via the remote scripting interface in PLAXIS
3D [40]. This measure was necessary for yielding the desired axial sample stress of 10 MPa,
making the numerical results comparable to the analytical ones. A direct assumption for
the value of prescribed vertical displacements was not possible due to the difficulties in
assessing the influences of the interfaces together with the platen deformation.

The automated process for selecting the required value for the prescribed vertical
displacements uz included the determination of initial values using the following equation:

uz,init =
σz,req

Eβ
· ls, (7)

with σz,req equal to the considered axial stress level of 10 MPa, ls corresponding to the
sample height and Eβ chosen as E′ for β = 0◦ and E for β = 45◦ and 90◦.

After carrying out a first phase calculation, the structural forces in volume piles feature
in PLAXIS was invoked to extract the axial force distribution along the sample axis, as
shown in Figure 6a. The average axial stress σz,av was determined by dividing the average
axial force Nav by the sample cross section Across. From the averaged axial stress σz,av,
the value for the prescribed vertical displacement uz within a single loop was computed
by multiplying the current value uz,current by the factor σz,req/σz,av. Using this newly
determined value for uz, the iterative procedure was continued until convergence of σz,av
to σz,req = 10 MPa, judged based on a small maximum tolerance, was reached and the final
model results could be obtained. The whole iterative process is presented in a flow chart in
Figure 6b.

Nav

Across }
(a) (b)

z
y

x

Prescribed uz

Figure 6. (a) Normal force distribution within the cylindrical sample with cross sectional area Across

resulting from the applied loading in terms of prescribed displacement uz. (b) Flow chart diagram
describing the process of determining the value uz to yield the required axial stress state σz,req (in this
study, 10 MPa).

2.3.3. Numerical Strain Evaluation

The resulting distributions for the radial strains εr and vertical strains εz from the
numerical models were evaluated at the designated cross sections shown in Figure 5b.
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The vertical strains εz were computed for pairs of vertically aligned circumferential
mesh nodes at cross sections H25 and H75 (Pn,0(H25) and Pn,0(H75)) from the relative change
in vertical distance between these nodes. In total, 56 circumferential mesh nodes n were
present in each of the considered cross sections. Figure 7a shows the distribution of
these mesh nodes exemplary for cross section H75 besides the considered distances and
length changes for the determination of the vertical strains εz. Referring to this figure, εz,n,
corresponding to the vertical strain between a single pair of mesh nodes, can be calculated
acc. to Equation (8).

εz,n =
∆lz
lz,0

(8)

r0
rdef,n

sym.

y

x

undef.

def.

ΔxP,n

ΔyP,n Pn,0

Pn

M0

ΔxM

ΔyMM

θn

Cross section
H75

y

z
x

Cross section A

lz,0

H75

H50

H25

l -Δlz,0 z

z

y
x

(a) (b)

56 circumf. 
mesh nodes

Pn(H75)

Pn,0(H75)

Pn,0(H75)

Pn(H25)

Pn,0(H25)

Figure 7. Sketch describing the considered point locations and length changes for the determination of
the numerical circumferential distributions for (a) the vertical strain component εz evaluated between
a single node pair Pn(H75) − Pn(H25) (after Mutschler [41]) and (b) the radial strain component εr

evaluated for a single circumferential mesh node oriented at θn positioned at a single cross section.

The determination of the radial strains εr around the cylindrical sample was carried
out for each circumferential mesh node with orientation θn of each cross section individually.
The absolute value for the radial strain corresponding to a single node n computes as

εr,n =

∣∣∣∣ r0 − rde f ,n

r0

∣∣∣∣, (9)

where r0 equals the initial radius of the sample and rde f ,n is computed as the horizontal
distance between the deformed nth circumferential mesh node and the shifted center point
M of the individual cross section. Figure 7b displays the considered point displacements
used to derive the deformed distance rde f ,n for a cross sectional mesh node oriented at θn
and located at the sample circumference.

2.3.4. Back-Calibration of Elastic Constants

To quantify the potential influence of sample–platen friction on the measurable elastic
strain components and further on the calibration results for the transversely isotropic
parameters, a back-calibration of the secant values of the elastic constants as considered
within the numerical simulations was carried out at the specified stress level of 10 MPa.
Thereby, the simulated strain distribution curves at the central cross section H50 (Figure 5b),
the discrete strain values along the x- and y-axis, respectively, were regarded as the mea-
surements as usually received from actual tests. From a comparison of the numerical and
analytical strains computed for consistent parameter sets (Table 2), no visual differences in
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the strain distributions were encountered at the inspected central cross section for samples
with isotropy plane inclinations of β = 0° and 90°. Thus, the assumption is made that,
given that the standard evaluation procedure for the elastic constants from local strain
measurements is applied [10], which derives parameters E′ and ν′ exclusively from a test
on a sample with β = 0° and E and ν from a test on a sample with β = 90°, the respective
parameters remain unaffected by the influence of sample–platen friction. Consequently,
only the effects of interface friction on the back-calibrated transverse shear modulus G′

were investigated. This was performed by evaluating the numerical results for the radial
strain components εr in x-axis direction (θ = 0°/180°) and deriving the value for G′ from
Equation (2).

3. Results and Discussion

In the following, the resulting strain distributions around transversely isotropic cylin-
drical rock samples subjected to a uniaxial compressive stress of 10 MPa are presented.
In the first step, the analytical results, using parameter combinations as listed in Table 1,
are demonstrated. Subsequently, the numerical results for a rock sample with the “basis”
parameter set acc. to Table 2 are visually compared to the analytical solutions. Additionally,
the potential effects of sample–platen friction on UCS test calibration results are quantified
based on evaluating the differences between the back-calibrated values for the transverse
shear modulus G′ and the value as used in the numerical models. Elastic parameter sets
as listed in Table 2 are considered in this regard. As can be seen from Figure 8a,b, the
distributions for the radial and circumferential strains, εr and εθ , around a transversely
isotropic cylinder under uniaxial loading only differ in terms of a phase shift of the curves
by 90◦ with the otherwise same absolute values. Consequently, the authors only present the
radial and vertical strain distributions in the results section. All considered strain values
are plotted with their absolute values only, being well aware that axial sample strains result
in a shortening of the sample axis and that the lateral strains yield an extension of the
specimen for the herein considered values of the elastic parameters.

Figure 8. Analytical strain distributions plotted in a range of θ = 0◦ to 360◦ for a chosen parameter
set acc. to Table 1 with E/E′ = 1.0, a shear modulus of G′ = G′

sv,Erat=2 = 1111 MPa and a dip angle
β = 90◦ using various ratios ν/ν′: (a) radial strains εr and (b) circumferential strains εθ representing
a 90◦ phase shift of the radial strain curves.

3.1. Analytical Results

The analytical results for samples with horizontal isotropy planes (β = 0◦) are pre-
sented in Section 3.1.1. Sections 3.1.2 and 3.1.3 discuss the influences of single elastic
parameters on the developing radial strains εr and the vertical strains εz respectively, for
samples with inclined (β = 45◦) and vertical isotropy planes (β = 90◦).
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3.1.1. Samples with Horizontal Isotropy Planes

As a result of the chosen study parameters, with the elastic constants E′ and ν′ assumed
with fixed values, the resulting radial and vertical strains, εr and εz, for samples with an
isotropy plane inclination of β = 0◦ are not affected by the varied ratios E/E′ and ν/ν′.
Also, they remain unaffected by the shear modulus G′. For samples with horizontal
isotropy planes, the only elastic parameters contributing to the developing strains εr and εz
at orientation angle θ are E′ and ν′. Figure 9 presents the results for the strain distributions
associated with samples having an isotropy plane inclination of β = 0◦.

Figure 9. Analytical strain distributions for samples with isotropy plane inclination β = 0◦ plotted
in a range of θ = 0◦ to 360◦ for various ratios ν/ν′: (a) vertical strains εz and (b) radial strains εr.
Obviously, no dependency on ratios E/E′, ν/ν′ or the shear modulus G′ is given.

3.1.2. Influence of Elastic Parameters on Radial Strain Distributions

For plane inclinations different from β = 0◦, the resulting radial strain curves are
influenced by the ratios E/E′ and ν/ν′. Additionally, the shear modulus G′ influences the
cases with β = 45◦. Figure 10 displays the radial strain distributions in dependency of
ratios E/E′ and ν/ν′ for samples with plane inclinations β of 45◦ and 90◦. The curves are
depicted for a constant value of G′ selected as G′

sv,Erat=2 computed for a ratio E/E′ = 2
using Equation (5).

It can be seen that increasing ratios ν/ν′, corresponding to an increase in the Poisson’s
ratio ν, result in increased radial strains in the vicinity of the y-axis with vanishing influence
toward the x-axis. This statement holds independently of the investigated ratios E/E′ and
isotropy plane inclinations of β = 45◦ and 90◦. The radial strains on the x-axis, which
corresponds to the samples’ symmetry plane, remain unaffected by changing values of ν.

At constant ratio E/E′ with fixed values for the Young’s moduli and β = 45◦, the only
two parameters influencing the radial strains along the x-axis are Poisson’s ratio ν′ and the
transverse shear modulus G′.

For β = 90◦, the shear modulus G′ does not affect the resulting strains. The radial
strains along the x-axis are exclusively determined by the parameters ν′ and E′. As both
parameter values are fixed for the curves shown in Figure 10, the values for the radial
strains along the x-axis from curves with constant ratio E/E′ do not differ.

For cases with β = 45◦, increasing values for the Young’s modulus E for otherwise
constant elastic parameters leads to a reduction in the radial strains in the vicinity of the
y-axis. The strains along and close to the x-axis increase. For samples with an isotropy
plane inclination of β = 90◦, only the strains toward the y-axis direction are affected by
varying values for the Young’s modulus E.
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Figure 10. Distributions of radial strains εr for samples with dip angles β = 45◦ and 90◦, ratios E/E′

of 1.0, 1.5 and 2.0 and a constant shear modulus G′ = G′
sv,Erat=2 = 1111 MPa displayed within a

range of θ = 0◦ to 360◦ and plotted for various ratios ν/ν′.

It holds that, for samples with isotropy plane inclinations of β = 90◦, uniform radial
strain distributions are obtained in the case of equal ratios E/E′ and ν/ν′. For samples
with β = 45◦ and E/E′ = ν/ν′, the uniformity of radial strains is only guaranteed when,
additionally, the shear modulus is equal to G′

sv derived from the approximation provided
by Equation (5). In Figure 10, this is only the case for the curve with E/E′ = ν/ν′ = 2.0,
since all curves from this figure result from computations with a constant shear modulus
G′ = G′

sv,Erat=2 evaluated for a ratio E/E′ of 2.0. Under this assumption, for the shear
modulus G′, uniform radial strains at any other ratio E/E′ are only satisfied for specific
values K of the ratio ν/ν′ acc. to Equation (10). An example is given by the curve in
Figure 10 with E/E′ = 1.5, ν/ν′ = 0.667 and β = 45◦.
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K =
E(1 + 4ν′)− 2E′

4E′ν′
(10)

Equation (10) is derived from plugging in Equation (5), with E expressed as 2E′, into
Equation (2), assuming β with 45◦ and equalizing the terms that are multiplied by sin2θ
and cos2θ.

The influence of shear modulus G′ on the developing radial strains for cases with
E/E′ of 1 and 1.5 and angle β = 45◦ can be seen when comparing Figure 10 with Figure 11.
The curves in Figure 11 are depicted for a shear modulus selected as G′

sv acc. to Equation (5)
in dependency of E and the fixed values for E′ and ν′. From changing the values for the
shear modulus, the strains along the y-axis remain unchanged, while the strains in other
directions change with increasing rates toward the x-axis orientation. When selecting G′ as
G′

sv, the radial strains along the x-axis show no more dependency on the ratio E/E′. Thus,
the same values for the x-axis strains are received for all curves with different ratio E/E′

from Figure 11 and the curve with E/E′ = 2 and β = 45◦ from Figure 10. The absolute
value for the radial strains along the x-axis in these cases is given by εr,x = (ν′/E′) · σz.
This expression is derived from inserting G′ = G′

sv acc. to Equation (5) into Equation (2)
and simplifying the expression for considered angles of β = 45◦ and θ of 0◦ or 180◦.

Figure 11. Distributions of radial strains εr for samples with dip angles β = 45◦, ratios E/E′ of 1.0,
1.5 and a shear modulus G′ = G′

sv acc. to Equation (5) displayed within a range of θ = 0◦ to 360◦ and
plotted for various ratios ν/ν′.

3.1.3. Influence of Elastic Parameters on Vertical Strain Distributions

The analytical vertical strains as computed from Equation (4) are independent of the
orientation θ. For the investigated cases including various plane inclinations, the vertical
strains do not have a dependency on the ratio ν/ν′ since varying ratios only correspond
to a change in Poisson’s ratio ν. However, this parameter is not part of the vertical strain
equation. In contrast, the transverse Poisson’s ratio ν′, which actually affects the vertical
strains, remains unchanged for all considered parameter sets.

For samples with horizontal isotropy planes, i.e., β = 0◦, the vertical strains are
received from εz = (1/E′) · σz and are therefore only dependent on the elastic parameter
E′, which is fixed in this study. The resulting strain distribution for this case can be seen in
Figure 9a.

For isotropy plane inclinations of β = 90◦, the vertical strains can be computed from
εz = (1/E) · σz and are only influenced by the Young’s modulus E. Accordingly, only the
chosen ratios for E/E′ have an effect on the vertical strains for this plane inclination (see
Figure 12a).
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Figure 12. Distributions of vertical strains εz for samples with varying ratios E/E′ and (a) an isotropy
plane inclination of β = 90◦, without an influence of the shear modulus, (b) with β = 45◦ and a shear
modulus of G′ = G′

sv,Erat=2 = 1111 MPa and (c) with β = 45◦ and a shear modulus of G′ = G′
sv

depending on the ratio E/E′.

When the plane inclination β is equal to 45◦, the shear modulus G′ has an influence
on the developing vertical strains εz, which can be seen from Figure 12b,c. The curves
in Figure 12b are plotted using a constant value for the shear modulus G′ = G′

sv,Erat=2
computed at ratio E/E′ = 2.0. Inserting the expression for G′

sv, following Equation (5)
with E = 2E′, into Equation (4) results in a vertical strain value for samples with β = 45◦

of εz = [(2E′ + 5E)/(8EE′)] · σz. No direct dependency on the Poisson’s ratios ν and ν′

is given.
When the shear modulus G′ is chosen as G′

sv acc. to Equation (5) considering the
corresponding ratio E/E′ (see Figure 12c), the vertical strain value for samples with isotropy
plane inclination β = 45◦ computes as εz = [(E′ + E)/(2EE′)] · σz. Thus, differences in the
results from Figure 12b,c occur; however, this is only for the curves with E/E′ ̸= 2.0.

3.2. Numerical Results

The simulation results for the models with an interface friction angle of φ = 0◦ show
that the analytical solutions can be reproduced numerically regardless of the considered
cross sections acc. to Figure 5b. Differences to the analytical results for the strain distri-
butions can only be recognized with respect to the results from the models with a higher
interface friction angle of φ = 15◦.

3.2.1. Interface Plastic Points

From the selection of the corresponding interface friction angles with values of φ = 0◦

and 15◦, the desired two cases for the interface behavior are achieved:
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1. Full plastification of the interface for φ = 0◦, representative of the ideal case without
any end-effects on the loaded sample.

2. Partial to no plastification of the interface with φ = 15◦, representative of the realistic
case with influencing end-effects.

The obtained plastic points for models based on the “basis” parameter set (see Table 2)
with varying values of the interface friction angle φ and isotropy plane inclinations β are
depicted in Figure 13.

Figure 13. Exemplary numerical results for the plastic points at the interfaces between sample and
platens for various isotropy plane inclinations β and interface friction angles φ of 0◦ and 15◦.

3.2.2. Sample Deformations

Resulting from the assumed values for the elastic parameters of the rock material,
sample deformations, where an example is shown in Figure 14 for the “basis” parameter
set acc. to Table 2, occur due to the uniaxial compression loading of 10 MPa. Under non-
restrained conditions with φ = 0◦, the sample theoretically undergoes uniform vertical
displacements. The restraining effect of any interface friction at the sample–platen contact
results in the non-uniformity of the vertical sample displacements.

Figure 14. Exemplary numerical results for the deformed meshes of models with various isotropy
plane inclinations β and interface friction angles φ of 0◦ and 15◦ (scaling factor = 80).

From a theoretical point of view, axisymmetric conditions with regard to deformations
are only reached for samples with horizontal plane inclinations (β = 0◦). For any other
value of β, axisymmetry is not retained. However, planar symmetry in the deformations is
still acquired around the sample’s symmetry plane, which corresponds to the plane xz as
shown in Figure 1.

3.2.3. Vertical Stress Distributions

Figure 15 displays the simulation results for the axial stress distributions for models
with various isotropy plane inclinations β and interface friction angles φ considering the
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“basis” parameter set acc. to Table 2. It is apparent from this figure that stresses close to the
uniaxial state are only reached for the models with an interface friction angle of φ = 0◦. The
small divergences from the uniaxial stress state are mainly related to difficulties of the finite
element solution in approximating the solution at re-entrant corners of the domain [42].
At such locations, singularities arise. It is also noticeable that, as a result of the skewing
of the sample with β = 45◦, slightly asymmetric stress distributions within the depicted
planes arise.

Figure 15. Numerical results for the vertical stresses σz along the planes xz and yz for models with
various isotropy plane inclinations β and interface friction angles φ of 0◦ and 15◦.

Selecting an interface friction angle φ of 15◦ introduces forced stresses into the spec-
imens as the lateral movements at the top and bottom surfaces get restrained. Stress
concentrations are visible at the top and bottom edges of the samples as already observed
by Wei and Chau [43], who derived an analytical solution for stresses and displacements of
transversely isotropic elastic cylinders under compression with end-effects. The biggest
difference in comparison with the non-restrained cases (φ = 0◦) is recognizable for the
resulting xz-plane stresses from the model with β = 45◦. In this case, larger stress inhomo-
geneities, especially in the inner third of the sample, are more visible than in other models.
Ideally, however, homogeneous local stresses are desired in this region of the specimens,
since this is where the local axial and radial strain measurements are usually carried out.
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In general, planar symmetry of the developing stresses with respect to the plane
xz, which is the samples’ symmetry plane (see Figure 1), is visible. A different visual
observation can only be made for the model with φ = 0◦ and β = 45◦, although the stress
variability in this model is marginal and the cause is rather related to inaccuracies in the
finite element approximation.

3.2.4. Comparison of Numerical and Analytical Results

Figure 16 provides a comparison of the resulting strain distributions from the numeri-
cal models, considering the basis parameter set acc. to Table 2, with the analytical solution.
It is observed that, for the numerical models with an interface friction angle of φ = 0◦,
an almost perfect fit for the resulting radial (εr) and vertical (εz) strain distributions with
the analytical solution is achieved. This clearly demonstrates that the chosen approach
for inducing the required axial stress level of 10 MPa within the simulations is sufficient.
Also, the selected procedure for the determination of the axial and vertical strains from the
numerical models seem to provide reliable results.

Figure 16. Comparison of the numerical and analytical results for the radial and vertical strains, εr

and εz, evaluated at specific cross sections H# for various isotropy plane inclinations β and interface
friction angles φ.
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The boundary effects caused by friction between the sample and platens have a
negligible effect on the resulting strain distributions at the central cross section H50 for the
models with φ = 15◦ and isotropy plane inclinations β of 0◦ and 90◦. From the resulting
radial strains εr of the model with β = 45◦ and φ = 15◦, it is evident that the distributions
at cross sections H25 and H75, closer to the boundaries, take on asymmetric shapes. Values
from the curves associated with these two cross sections show the biggest divergence from
the analytical solution in the x-axis direction. At the sample’s central cross section H50,
symmetry in the radial strain curve is kept. Nevertheless, deviations from the analytical
solution are still visible and are largest again in the direction of the x-axis.

The specific direction for the occurrence of the largest deviation from the analytical
solution was confirmed along the x-axis for samples with β = 45◦ from further simulations
considering the extended parameter sets acc. to Table 2. This suggests that, for moder-
ately anisotropic rocks with E/E′ of ∼2, the transverse shear modulus G′ is the elastic
calibration parameter affected the most by interface friction when calibrated based on the
corresponding radial strain measure.

Regarding the distributions of vertical strains εz in Figure 16, it can be seen that the
influence of interface friction is only visible in terms of a slight non-uniformity in the
generated distribution for the sample with β = 45◦. However, as vertical strains are usually
evaluated as a single averaged value from multiple local measurements around the central
cross section, the small deviations can be considered negligible for practical purposes.

3.2.5. Influence of Interface Friction on Calibrated Elastic Parameters

Following the assumptions of Section 2.3.4 and the observations made in Section 3.2.4,
the influence of an arising friction at the interface between the sample and platens on the
generated strain distributions at the central cross section for samples with β = 0◦ and 90◦,
and thus on the calibration results for parameters E, E′, ν and ν′, is considered negligible.

Table 5 shows the analytical and numerical values for the radial strain components
εx in the x-direction as received at the central cross section for samples with β = 45◦,
considering an interface friction of φ = 15◦ and the corresponding elastic parameter sets.
Further, the back-calibrated values for the transverse shear modulus G′ from the numerical
solutions and the percentage differences between the analytically and numerically derived
strains εx, as well as the back-calibrated and applied values for G′, are listed.

Table 5. Comparison . of analytical and numerical values for radial strains in x-direction and influence
of interface friction on the numerical calibration results for G′.

Elastic Parameter Sets Results

E′ ν′ E/E′ G′ ν/ν′ εx (Equation (2)) εx (Num.) G′

(Backcal.) ∆εx [%] ∆G′ [%]

2000 0.15 2

1333

2 3.75 ×10−4 4.23 ×10−4 1299.78 12.91 −2.51
1.5 3.75 ×10−4 4.26 ×10−4 1298.02 13.60 −2.64
1 3.75 ×10−4 4.29 ×10−4 1296.24 14.31 −2.77

0.667 3.75 ×10−4 4.30 ×10−4 1295.02 14.79 −2.86
0.5 3.75 ×10−4 4.31 ×10−4 1294.41 15.04 −2.91

1111

2 7.50 ×10−4 8.03 ×10−4 1085.36 7.12 −2.31
1.5 7.50 ×10−4 8.06 ×10−4 1084.20 7.45 −2.41
1 7.50 ×10−4 8.08 ×10−4 1083.02 7.78 −2.52

0.667 7.50 ×10−4 8.10 ×10−4 1082.22 8.01 −2.59
0.5 7.50 ×10−4 8.11 ×10−4 1081.81 8.13 −2.63

888

2 1.31 ×10−3 1.375 ×10−3 869.44 4.99 −2.18
1.5 1.31 ×10−3 1.378 ×10−3 868.66 5.19 −2.27
1 1.31 ×10−3 1.381 ×10−3 867.89 5.39 −2.35

0.667 1.31 ×10−3 1.382 ×10−3 867.37 5.52 −2.41
0.5 1.31 ×10−3 1.383 ×10−3 867.11 5.58 −2.44

The results indicate that, for moderately anisotropic rocks (E/E′∼2), the generated
elastic radial strains in the x-direction under realistic UCS test conditions, i.e., with friction
between samples and platens, are mainly influenced by the inherent transverse shear
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stiffness of the material and the degree of anisotropy of the Poisson’s ratios (ν/ν′). The
largest differences between analytical and numerical strains exist for samples with high
inherent shear moduli and low ratios ν/ν′. However, while the numerical strain values at a
load level of 10 MPa, associated with simulated friction at the sample–platen contact, show
deviations from the analytical solutions of up to 15.04 %, the effects on the back-calibrated
values for the shear moduli are only in the range of maximum ∼3%. This deviation can be
considered as practically irrelevant, and higher errors might be associated with material
heterogeneity and the natural variability between multiple samples.

4. Summary

The behavior of transversely isotropic rock specimens can be quite complex even
in seemingly simple loading scenarios such as uniaxial compression. In this paper, we
therefore investigated the influence of single transversely isotropic parameters on the
elastic strain distributions around cylindrical rock specimens using an analytical solution
to the problem of uniaxial compression. Basic parameter sets were derived from naturally
observed ranges for the elastic parameters of rocks with transversely isotropic behavior.
The results from finite element simulations, deploying a specific set of elastic constants,
were compared to the analytical reference. An iterative method for generating the desired
global uniaxial stress level in terms of applied prescribed displacements and a suitable
procedure for the strain evaluation were presented. Additionally, the effect of interface
friction between the sample and loading platens was studied in terms of the potential
effects on stress heterogeneity, resulting strain distributions and calibration values for the
elastic parameters.

5. Conclusions

Based on the conducted studies summarized in Section 4, the chosen representation
for the investigated strain curves in terms of polar diagrams for specimens with different
isotropy plane inclinations proved to be suitable for depicting the influences of different
elastic parameters. Confronting such curves, based on calibrated elastic parameters, with
the actual strain measurements can also be useful to identify inaccurate measurements
and outliers in practice. Non-uniform radial strain distributions are generally obtained for
transversely isotropic samples. Only for the case of horizontal planes of isotropy or specific
combinations of the elastic constants and ratios between them is strain uniformity reached.
From visual inspections of the generated strain distributions, it is evident that the gradients
of the strain curves for parameter sets resulting in concave shapes are highest in the vicinity
of strain measures along the x- and y-axis, as usually considered for the calibration of the
elastic constants. This underlines the significance of the precise positioning of strain gauges
and/or measurement extensometers to prevent substantial inaccuracies in the calibration
results for the elastic constants.

From the presented approaches for setting up the numerical models, defining the
boundary and loading conditions and carrying out the evaluation of strains, it was demon-
strated that the analytical results can be satisfactorily reproduced. A clear effect of interface
friction on the resulting axial stress distributions was detected, with the highest influence
given for samples with an isotropy plane inclination of β = 45◦. The resulting strains
at the central cross section showed almost no dependency on the considered interface
friction, except for the radial strains of the samples with β = 45◦. By evaluating the re-
sults of 15 numerical UCS test simulations on moderately anisotropic rock samples, i.e.,
E/E′∼2, with friction considered at the sample–platen contacts and varying values for the
transverse shear modulus G′ and ratio ν/ν′, it was found that both variation parameters
affect the resulting strains in the x-direction for samples with inclined planes. High values
for G′ in combination with low ratios ν/ν′ resulted in the maximum difference between
analytical and numerical values for the strain component ϵx of ∼15%. Despite this high
discrepancy, the value of the back-calibrated transverse shear modulus G′ only diverged by
∼3% from the value as used for the simulation. This range is considered too small to justify
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the requirement of friction-reducing measures, e.g., ball-bearing plates, within UCS tests
on moderately anisotropic rocks. Considering that, in physical UCS tests, plasticity and
complex micro-mechanical processes are also contributing to the developing sample strains,
specimen end-effects might not be the biggest contributing factor toward inaccuracies in
calibration results provided that the strain measurements are carried out locally.

The findings of the present research on the elastic behavior of transversely isotropic
cylindrical rock specimens under uniaxial compression can be summarized as follows:

• The majority of transversely isotropic rocks possess elastic parameters that fall within
observable standard domains.

• A polar representation of analytical strain distributions confronted with actual mea-
surement values can help in identifying bad measurement results.

• Slight deviations from the optimum strain measurement directions may result in large
errors in the measurements given that strain gradients are highest in close proximity
to these directions.

• Provided that local strain measurements are carried out, a practically relevant influence
of end-effects is only to be expected for generated radial strains around samples with
inclined isotropy planes.

• End-effects are found to be associated only with influences on the transverse shear
modulus G′ when employing the standard procedure for the calibration of the elastic
constants in terms of secant values. However, a maximum deviation of the back-
calibrated values for G′ of only ∼3% from the used values in the numerical simulations
was detected, associated with the case of the highest adopted value for G′ and the
lowest ratio ν/ν′. This small discrepancy existed despite a larger observed difference
of ∼15% between the analytical (without end-effects) and numerical (with end-effects)
results for the strain measure εx in the dip direction of samples with inclined isotropy
planes evaluated at a stress level of 10 MPa. Strain measure εx represents the strain
measure as used for the back-calibration of G′.

• For the numerical investigation of UCS test end-effects on the deformation behavior
of anisotropic rocks with a pronounced non-linear and plastic behavior, the adoption
of a linear elastic transversely isotropic material model, as considered in this study,
will be a limiting factor. In such cases, the utilization of more sophisticated material
models, capable of representing the mentioned material peculiarities, will be required.

Our theoretical study suggests that frictional end-effects at the sample–platen contact
within UCS tests on transversely isotropic specimens with a predominantly linear behavior
and low to moderate degrees of anisotropy do not substantially influence the calibration
results for the elastic parameters, in case strains are measured using local measuring
arrangements. From this point of view, the necessity of special friction-reducing measures
is not given. Validating laboratory experiments supporting this statement are currently
under preparation.
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