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Abstract
The electrostatic interpretation of zeros of Jacobi polynomials, due to Stieltjes and
Schur, enables us to obtain the complete asymptotic expansion as n → ∞ of the
minimal logarithmic potential energy of n point charges restricted to move in the
interval [−1, 1] in the presence of an external field generated by endpoint charges. By
the same methods, we determine the complete asymptotic expansion as N → ∞ of
the logarithmic energy

∑
j �=k log(1/|x j − xk |) of Fekete points, which, by definition,

maximize the product of allmutual distances
∏

j �=k |x j−xk |of N points in [−1, 1]. The
results for other compact intervals differ only in the quadratic and linear term of the
asymptotics. Explicit formulas and their asymptotics follow from the discriminant,
leading coefficient, and special values at ±1 of Jacobi polynomials. For all these
quantities we derive complete Poincaré-type asymptotics.
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Constructive Approximation

1 Introduction and Statement of Results

Point sets characterized by means of minimizing a suitably defined potential energy
function have applications in a surprising number of problems in various fields of
science and engineering ranging from physics over chemistry to geodesy and math-
ematics. Specifically, we point to the sphere-packing or densest packing problem [1,
2], universal optimality [3], point processes [4, 5], invariance principles (with con-
nections to discrepancy theory and numerical integration) [6], Smale’s 7th Problem
[7, 8], gases and normalized energy and crystallisation [9–15], point distributions in
more general spaces [16–18], and connections to combinatorics and number theory
[19] For a general overview, we refer the reader to the surveys [20–22] and the book
[23].

A fundamental question concerns the asymptotic expansion of the minimal energy
as the number of points tend to infinity. In general, at best only one or two terms are
known; cf. [24–30] in case of the sphere and [31, 32] for curves. A notable exception
are the minimal energy asymptotics for the unit circle for a whole class of energy
functionals for which equally spaced points are optimal configurations. In these cases
the energy formula can be written in a form that provides a complete asymptotic
expansion in terms of powers of the number of points (see [33–35]): for s ∈ (−2,∞)

with s �= 0, 1, 3, 5, . . . and for every p = 1, 2, 3, . . . , one has for the optimal Riesz
s-energy the asymptotic expansion

Es(N ) = Ws N
2 + 2ζ(s)

(2π)s
N 1+s +

p∑

n=1

αn(s)
2ζ(s − 2n)

(2π)s
N 1+s−2n + Os,p(N

−1+s−2p)

as N → ∞, where the constant Ws is explicitly known, ζ(s) is the classical Riemann
zeta function, and the explicitly computable coefficients αn(s), n ≥ 0, satisfy the
generating function relation

(
sin π z

π z

)−s

=
∞∑

n=0

αn(s) z
2n, |z| < 1, s ∈ C.

The logarithmic energy of N equally spaced points, which provide minimizing con-
figurations, simply is

E0(N ) = −N log N .

We remark that for general curves much less is known. We refer to [31, 32]. In the
following we shall utilize the fact that zeros of classical orthogonal polynomials can
be characterized asminimizing configurations of certain potential energy functions for
logarithmic point interactions. This approach enables us to derive complete asymptotic
expansions.

Let A be an infinite compact subset of the complex plane C. A configuration of N
points ζ1, . . . , ζN ∈ A, N ≥ 2, that maximizes the product of all mutual distances∏

j �=k |z j − zk | among N -point systems z1, . . . , zN ∈ A is called an N-th system of
Fekete points of A. The maximum
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�N (A) := max
z1,...,zN∈A

N∏

j=1

N∏

k=1
j �=k

∣
∣z j − zk

∣
∣ (1.1)

is the N -th discriminant of A. A fundamental potential-theoretic result for the trans-
finite diameter or logarithmic capacity cap A of A is

cap A = lim
N→∞ [�N (A)]1/[N (N−1)] .

Fekete points, by definition, are points that maximize the Vandermonde determinant
that appears in the polynomial Lagrange interpolation formula. It was Fekete [36]
who investigated the connection between polynomial interpolation and the discrete
logarithmic energy problem, which for given N consists of finding those N -point
configurations with minimal discrete logarithmic energy

E0(z1, . . . , zN ) :=
N∑

j=1

N∑

k=1
j �=k

log
1

∣
∣z j − zk

∣
∣
, z1, . . . , zN ∈ A. (1.2)

We define the logarithmic N -point energy of A to be

E0(A; N ) := inf {E0(z1, . . . , zN ) : z1, . . . , zN ∈ A} = − log�N (A). (1.3)

Onemain goal of this paper is to derive the complete asymptotic expansion ofE0(A; N )

as N → ∞ when A is the interval [−1, 1]; see Theorem 1.4. Indeed, regarding line-
segments, it suffices to consider the interval [−1, 1], since the N -th discriminant
of the rotated, dilated, and translated set A′ = a + ηeiφ A is given by �N (A′) =
ηN (N−1)�N (A) and, therefore, E0(A′; N ) − E0(A; N ) = −(log η)N (N − 1).

Let q > 0 and p > 0 be numbers representing charges at the left endpoint and
right endpoint, respectively, of the interval [−1, 1]. The problem of finding n points
x (n)
1 , . . . , x (n)

n , the locations of unit point charges, in the interior of [−1, 1] such that
the expression

Tn(x1, . . . , xn) :=
n∏

i=1

(1 − xi )
p

∏

j<k

∣
∣x j − xk

∣
∣

n∏

�=1

(1 + x�)
q (1.4)

is maximized, or equivalently, log(1/Tn) is minimized over all n-point systems
x1, . . . , xn in [−1, 1], is a classical problem that owes its solution to Stieltjes [37,
38] (also see Schur [39]). In analogy to the N -th discriminant of a compact set A we
may define the n-th (p, q)-discriminant of [−1, 1] as

�
(p,q)
n ([−1, 1]) := max

x1,...,xn∈[−1,1] (Tn(x1, . . . , xn))
2 .
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Thequantity log(1/T 2
n ) can be interpreted as the potential energy of the point charges at

x1, . . . , xn in an external field exerted by the charge p at x = 1 and the charge q at x =
−1, where the ’points’ interact according to a logarithmic potential. We shall call such
minimal potential energy points ellipticFekete points in order to distinguish them from
the Fekete points defined previously. Stieltjes showed that the points x (n)

1 , · · · , x (n)
n

of minimal potential energy are, in fact, the zeros of the Jacobi polynomial P(α,β)
n ,

where α = 2p − 1 and β = 2q − 1. A more modern approach is to have external
fields in form of appropriate weight functions instead of constraints. (See, e.g., [40]
for a discussion of this model.) We also refer the interested reader to the survey article
[41].

Stieltjes’ ingenious observation that the zeros of classical orthogonal polynomials
have an electrostatic interpretation in terms of logarithmic potential enables us to find,
for every n ≥ 2, the explicit elliptic Fekete n-point configuration for the discrete
logarithmic energy problem associated with the given family of orthogonal polyno-
mials. Moreover, since the target functions of the respective maximum problems are
closely related to the discriminants of the classical polynomials, the asymptotic expan-
sion of the potential energy of elliptic Fekete n-point configurations as n → ∞ can
be obtained. Our goal is to derive the complete asymptotic expansion of the poten-
tial energy of elliptic Fekete n-point configurations associated with the external field
problem induced by classical orthogonal polynomials.

We remark that the approach used here can be also applied to point systems in
[0,∞) and R with suitable constraints on the centroid or inertia of the point system
which leads to the study of zeros of Laguerre and Hermite polynomials, respectively.
A generalization are so-called Menke systems for the real line studied in [42]; see
also [43, 44]. Such systems consist of two interlaced sets of points which can be
characterized as zeros or extrema of classical orthogonal polynomials. The asymptotic
analysis of the associated discriminants is technically much more involved and we
leave the presentation of these results to follow up papers.

Outline of the paper: In the remaining part of the introduction we present the
asymptotic expansions for elliptic Fekete points in the interval [−1, 1] and compare
the results with the expansion for Fekete points. In Sect. 2, we gather asymptotic results
for the discriminant of the Jacobi polynomial. The proofs of themain asymptotic results
are presented in Sect. 3. The Appendix collects technical results that are frequently
used in the asymptotic analysis.

Relevant computations with the help of Mathematica can be found in [45].

1.1 Preliminaries

Our asymptotic expansions are of Poincaré-type and we adapt the notion of writing
them as infinite series (even if an infinite series does not converge). We make use of
the usual computational rules. The coefficients of the asymptotic expansions will be
given in terms of the Riemann zeta function ζ(s) and the Hurwitz zeta function ζ(s, a)

and their (partial) derivatives with respect to s evaluated at negative integers s. The
well-known relation

123



Constructive Approximation

ζ(−m, a) = −Bm+1(a)

m + 1
, m ∈ N0,

enables us to use instead Bernoulli polynomials Bm and the Bernoulli numbers Bm .
The Glaisher-Kinkelin constant (see [46, p. 135])1 is defined by

A := lim
n→∞

1122 · · · nn
nn(n+1)/2+1/12e−n2/4

= 1.28242712 . . . . (1.5)

and appears in our computations by means of the well-known relation ζ ′(−1) =
1/12− log A. The polygamma function is defined as the logarithmic derivative of the
gamma function 
; cf. [47, 6.4.1]:

ψ(n)(z) := dn+1

dzn+1 log
(z), n = 1, 2, 3, . . . .

UsingLiouville’s fractional integration anddifferentiationoperator, one can also define
polygamma functions of negative order (called “negapolygammas” in [48]) as (see
[49])

ψ(−n)(z) := 1

(n − 2)!
∫ z

0
(z − t)n−2 log
(t) dt, Re z > 0, n = 1, 2, 3, . . . .

Since

ψ(−2)(x) =
∫ x

0
log
(t) dt = (1 − x) x

2
+ x

2
log 2π − ζ ′(−1) + ∂

∂s
ζ(s, x)

∣
∣
∣
∣
s=−1

,

(1.6)
we rewrite ζ ′(−1, x) := ∂

∂s ζ(s, x)
∣
∣
s=−1 in terms of ψ(−2)(x).

1.2 Elliptic Fekete Points in the Interval [−1, 1]

Regarding the external field problem associated with relation (1.4), we are interested
in the asymptotic expansion of the minimum value of the potential energy

L([−1, 1], q, p; x1, . . . , xn) := 2 log
1

Tn(x1, . . . , xn)
, x1, . . . , xn ∈ [−1, 1],

(1.7)
as n → ∞. An n-point configuration {x (n)

1 , . . . , x (n)
n } minimizing (1.7), or equiv-

alently, maximizing (1.4) over all n-point configurations in [−1, 1] is called an
elliptic (p, q)-Fekete n-point configuration in [−1, 1] associated with the external
field implied by (1.4). We remark that taking twice of log(1/Tn) as the potential
energy is consistent with the physicist’s point of view that the potential energy con-
tained in the electrostatic field of N charges q1, . . . , qN at positions z1, . . . , zN in

1 The established symbol for the Glaisher-Kinkelin constant is A which we also use for a generic compact
set. The use of the symbol A should be clear from the context.
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the plane, up to some constant factor arising from the used unit system, is given by∑
j �=k q jqk log(1/|z j − zk |); see, e.g., Jackson [50].

Theorem 1.1 Let p > 0 and q > 0. The potential energy of elliptic (p, q)-Fekete n-
point configurations in the interval [−1, 1]has thePoincaré-typeasymptotic expansion

L([−1, 1], q, p; n) = (log 2) n2 − n log n + 2 (log 2) (p + q − 1) n

− 2

((

p − 1

4

)2

+
(

q − 1

4

)2
)

log n

+ C1(p, q) +
∞∑

m=1

(−1)m−1

m (m + 1)
Hm(p, q) n−m,

where

C1(p, q) := 2

(

(p + q − 1)2 − 11

24

)

log 2 − (p + q) logπ − 3 log A

+ ψ(−2)(2p) + ψ(−2)(2q),

Hm(p, q) := ζ(−m − 1) + ζ(−m − 1, 2p) + ζ(−m − 1, 2q)

+ (
1 − 2−m)

ζ(−m − 1, 2p + 2q − 1).

Remark The potential energy of elliptic (p, q)-Fekete n-point configurations on the
interval [−1, 1] is invariant under translation (and rotation) of the line-segment [−1, 1]
in the complex plane. From (1.4) it can be seen that for a scaling constant η > 0 there
holds

L(η[−1, 1], p, q; n) = L([−1, 1], p, q; n) − (log η) n2 − (log η) (2p + 2q − 1) n.

Thus, only the n2-termand n-term are sensitive to a rescaling of the underlying interval.

Remark The n-th (p, q)-discriminant of the interval [−1, 1] is given by (cf. Proof of
Theorem 1.1)

�
(p,q)
n ([−1, 1]) = 2n(n+2p+2q−1)

∏n
k=1 k

k (k + 2p − 1)k+2p−1 (k + 2q − 1)k+2q−1

∏2(n−1)
k=n−1 (k + 2p + 2q)k+2p+2q

from which follows an explicit formula for L([−1, 1], q, p; n). An explicit formula
in terms of quantities related to Jacobi polynomials is given in (3.1).

In the symmetric external field case p = q we have the following result.
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Corollary 1.2 Let p > 0. The potential energy of elliptic (p, p)-Fekete n-point con-
figurations in the interval [−1, 1] has the Poincaré-type asymptotic expansion

L([−1, 1], p, p; n) = (log 2) n2 − n log n + 2 (log 2) (2p − 1) n

− 4

(

p − 1

4

)2

log n + C1(p)

+
∞∑

m=1

(−1)m−1

m (m + 1)
Hm(p) n−m,

where

C1(p) := 2

(

(2p − 1)2 − 11

24

)

log 2 − 2p logπ − 3 log A + 2ψ(−2)(2p),

Hm(p) := ζ(−m − 1) + 2ζ(−m − 1, 2p) + (
1 − 2−m)

ζ(−m − 1, 4p − 1).

The asymptotic expansion of the logarithmic energy of elliptic (p, q)-Fekete n-
point configurations in [−1, 1] is given next.

Theorem 1.3 Let p > 0 and q > 0. The logarithmic energy of elliptic (p, q)-Fekete
n-point configurations ωn in [−1, 1] has the Poincaré-type asymptotic expansion

E0(ωn) = (log 2) n2 − n log n − 2 (log 2) n + 2

(

p2 + q2 − 1

8

)

log n + C ′
1(p, q)

+
∞∑

m=1

(−1)m−1

m
H′

m(p, q) n−m

as n → ∞, where

C ′
1(p, q) := − 2

(

(p + q)2 − 13

24

)

log 2 − 3 log A − 2p log
(2p)

+ ψ(−2)(2p) − 2q log
(2q) + ψ(−2)(2q),

H′
m(p, q) := ζ(−m − 1) + ζ(−m − 1, 2p) + ζ(−m − 1, 2q) + (

1 − 2−m
)
ζ(−m − 1, 2p + 2q − 1)

m + 1

− 2pζ(−m, 2p) − 2qζ(−m, 2q) − 2
(
1 − 2−m)

(p + q) ζ(−m, 2p + 2q − 1).

Remark Note that the asymptotic expansions of the potential and the logarithmic
energy of elliptic (p, q)-Fekete n-point configurations ωn in [−1, 1] coincide in the
first two leading terms if p + q �= 2 and coincide in the first three leading terms if
p + q = 2.

In the case p = q = 1, maximizing relation (1.4) for n-point configurations in the
interval [−1, 1] is equivalent with maximizing the product of all mutual distances of
N = n + 2 points in [−1, 1]:
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n+1∏

j=0

n+1∏

k=0
j �=k

|x j − xk |, −1 ≤ x0, x1, . . . , xn, xn+1 ≤ 1. (1.8)

(Indeed, if an endpoint of the interval [−1, 1] is not in a configuration ωN , then the
product of all mutual distances between points can be increased by rescaling the points
inωN .) Hence, the elliptic (1, 1)-Fekete n-point configuration in [−1, 1] together with
the endpoints ±1 is also a Fekete N -point configuration ω∗

N on the interval [−1, 1]
with N = n + 2 points. From the electrostatic interpretation of the zeros of classical
orthogonal polynomials (cf. Theorem 2.2 and remark after that theorem), we have that
ω∗
N is the set of all extremal points (including endpoint extremas) of the Legendre

polynomial Pn+1 = PN−1.

Theorem 1.4 The logarithmic N-point energy of the interval [−1, 1] has the Poincaré-
type asymptotic expansion

E0([−1, 1]; N ) = (log 2) N 2 − N log N − 2 (log 2) N − 1

4
log N + 13 log 2

12
− 3 log A

+
∞∑

m=1

1

m(m + 1)

(

1 − 2−m + 4
(
1 − 2−(m+2)

) Bm+2

m + 2

)

N−m

as N → ∞. Here, A denotes the Glaisher-Kinkelin constant given in (1.5).

Remark The N -th discriminant of the interval [−1, 1] defined in (1.1) can be written
as (cf. Proof of Theorem 1.4)

�N ([−1, 1]) = 2N (N−1)NN

∏N−1
k=1 k3k

∏2(N−1)
k=N−1 k

k

and via (1.3) we get an explicit formula for E0([−1, 1]; N ). An explicit formula in
terms of quantities related to Jacobi polynomials is given in (3.3).

1.3 Fekete Points in the Interval [−2, 2]

This case has been treated analytically in [51]. More generally, Pommerenke obtained
that for a convex compact planar set A of transfinite diameter (logarithmic capacity)
cap A, the N -th discriminant of A sastisfies

NN (cap A)N (N−1) ≤ �N (A) ≤ 22(N−1)NN (cap A)N (N−1) .

Let W (A) := − log(cap A) denote the logarithmic energy of A. Then it follows that
the logarithmic N -point energy of convex compact planar set A satisfies

(W (A) − log 4) N + log 4 ≤ E0(A; N ) −
(
W (A)N 2 − N log N

)
≤ W (A)N .
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Considering the star-shaped curves Sm = ⋃m
ν=1[0, 22/mζ ν] (ζ := e2π i/m) of transfinite

diameter 1 defined by the conformal mapping F(z) = z(1+ z−m)2/m , where m is the
number of star branches, he showed that �N (S2) ≥ 22(N−1)NN . Consequently, for
A = [−2, 2] = S2 these results imply

1

4
22N N N = 22(N−1)NN ≤ �N (S2) ≤ 22N N N .

In [52] the electrostatic equilibria of N discrete charges of size 1/N on a two-
dimensional conductor (domain) are studied. Also [52] is mostly concerned with
placement of charges, it provides an interpretation of the terms of the asymptotics
of the ground-state energy, which we will follow here. From Theorem 1.4 we have
that (note that cap[−2, 2] = 1 and therefore W ([−2, 2]) = 0)

E0([−2, 2]; N )

N 2 = W ([−2, 2]) (continuum correlation energy)

− log N

N
(self energy)

− log 2

N
(correlation energy)

− 1

4

log N

N 2

−
(
13 log 2

12
− 3 log A

)
1

N 2

+ · · · ,

where log A is the logarithm of the Glaisher-Kinkelin constant, see (1.5). In fact,
Theorem 1.4 gives the complete asymptotic expansion of E0([−1, 1]; N ) as N → ∞.
Note that only the N 2-term and (log N )-term are affected by a change of the transfinite
diameter; i.e., as N → ∞:

E0([a, b]; N ) = W ([a, b]) N 2 − N log N − (log 2 + W ([a, b])) N − 1

4
log N

+ 13 log 2

12
− 3 log A

+
∞∑

m=1

1

m(m + 1)

(

1 − 2−m + 4
(
1 − 2−(m+2)

) Bm+2

m + 2

)

N−m .

2 Asymptotics of the Discriminant of the Jacobi Polynomial

In the following, we use the Pochhammer symbol (rising factorial)

(a)0 := 1 and (a)k := a(1 + a) · · · (k − 1 + a) = 
(k + a)


(a)
for k ≥ 0.
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The expansion in terms of gamma functions is valid whenever the gamma function
ratio is defined.

For the proof of Theorem 1.1 we need an asymptotic expansion of the leading coef-
ficient, the values at ±1, and the discriminant of the Jacobi polynomial. We recall the
following facts. The Jacobi polynomials P(α,β)

n (x) (n ≥ 0, α, β > −1) are orthogo-
nal on the interval [−1, 1] with the weight function w(x) = (1 − x)α(1 + x)β and
normalized such that P(α,β)

n (1) = (1 + α)n/n!. Hence

P(α,β)
n (x) = λ(α,β)

n xn + · · · , λ(α,β)
n = 2−n

(
2n + α + β

n

)

.

We note further that P(α,β)
n (−x) = (−1)n P(β,α)

n (x). Therefore, P(α,β)
n (−1) =

(−1)n(1 + β)n/n!.
We prove the following Poincaré-type asymptotic results expressed in terms of the

zeta function and the Hurwitz zeta function.

Lemma 2.1 Let α > −1 and β > −1. Then

log λ(α,β)
n = (log 2) n − 1

2
log n + (α + β) log 2 − 1

2
logπ

+
∞∑

m=1

(−1)m−1

m

( (
1 − 2−m)

ζ(−m, α + β + 1) + ζ(−m)
)
n−m,

log P(α,β)
n (1) = α log n − log
(α + 1) +

∞∑

m=1

(−1)m

m

(
ζ(−m, α + 1) − ζ(−m)

)
n−m .

Proof Since

log λ(α,β)
n = −n log 2+ log
(2n+α+β +1)− log
(n+α+β +1)− log
(n+1),

application of (A.1) and simplification gives the first result.
For the second part we have

log P(α,β)
n (1) = − log
(α + 1) + log
(n + α + 1) − log
(n + 1)

and application of (A.1) yields the second part.
In either part we used ζ(−m, 1) = ζ(−m) for m ≥ 1. 
�
The connection between the energy optimization problem and the zeros of certain

Jacobi polynomials is established in the following theorem.Uniqueness of themaximal
configuration also follows from this fact.

Theorem 2.2 ([53, Thm. 6.7.1]) Let p > 0 and q > 0, and let {x1, . . . , xn} be a
system of real numbers in the interval [−1, 1] for which the expression (1.4) becomes
a maximum. Then x1, . . . , xn are the zeros of the Jacobi polynomial P

(α,β)
n (x), where

α = 2p − 1, β = 2q − 1.
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Remark In the particular case of p = q = 1, it follows from the well-known relations
(cf. [54, Ch. 18])

P(1,1)
n (x) = 2

n + 2
C(3/2)
n (x) = 2

n + 2

d Pn+1

dx
(x)

that the unique maximizing configuration for (1.4) in the interval [−1, 1] can be
characterized as the set of the zeros of the Jacobi polynomial P(1,1)

n , the zeros of the
Gegenbauer polynomial C(3/2)

n , or the extremas of the Legendre polynomial Pn+1.

An explicit formula for the discriminant of P(α,β)
n (x) = λ

(α,β)
n (x − x1,n) · · · (x −

xn,n), defined by

D(α,β)
n :=

[
λ(α,β)
n

]2n−2 n∏

j=1

n∏

k=1
j<k

(
x j,n − xk,n

)2
, (2.1)

can be obtained without computing the zeros of Jacobi polynomials:

Theorem 2.3 ([53, Thm. 6.71]) Let α > −1 and β > −1. Then

D(α,β)
n = 2−n(n−1)

n∏

ν=1

νν−2n+2 (ν + α)ν−1 (ν + β)ν−1 (ν + n + α + β)n−ν .

The logarithm of the discriminant of the Jacobi polynomials admits the following
Poincaré-type asymptotic expansion. The Glaisher-Kinkelin constant A is given in
(1.5) and the negapolygamma function ψ(−2) is given in (1.6).

Lemma 2.4 Let α > −1 and β > −1. Then for every integer K ≥ 1, there holds

log D(α,β)
n = (log 2)n2 + (2 (α + β) log 2 − logπ) n + 1

2

(
5

2
− (α + 1)2

− (β + 1)2
)
log n + C(α, β)

+
∞∑

m=1

(−1)m−1

m
�m(α, β) n−m,

where

C(α, β) := − 1

8
− 1

2

(

α + β + 1

2

)2

+ 1

2

(
11

6
+ (α + β)2

)

log 2 + logπ + 3 log A

+ (α + 1) log
(α + 1) − ψ(−2)(α + 1) + (β + 1) log
(β + 1)

− ψ(−2)(β + 1),

�m(α, β) := − 2m + 1

m + 1
ζ(−m − 1) − 2ζ(−m)
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+ (α + 1) ζ(−m, α + 1) − ζ(−m − 1, α + 1)

m + 1

+ (β + 1) ζ(−m, β + 1) − ζ(−m − 1, β + 1)

m + 1

−
(
2 − 2−m

)
m + 1 − 2−m

m + 1
ζ(−m − 1, α + β + 1)

+ (α + β)
(
1 − 2−m)

ζ(−m, α + β + 1).

Proof First, we observe that differentiating the identity

n∑

k=m+1

(k + x + a)−s = ζ(s,m + x + a + 1) − ζ(s, n + x + a + 1), 0 ≤ m < n,

with respect to s and setting s = −1 gives the following formula (using ζ ′(−1, z) :=
∂
∂s ζ(s, z)|s=−1)

n∑

k=m+1

(k + x + a) log(k + x + a) = ζ ′(−1, n + x + a + 1) − ζ ′(−1,m + x + a + 1),

0 ≤ m < n. (2.2)

Hence

log D(α,β)
n = −n (n − 1) log 2 + An + Bn(α) + Bn(β) + Cn(α + β),

where for α > −1 and b > −2:

An :=
n∑

ν=1

(ν − 2n + 2) log ν = ζ ′(−1, n + 1) − ζ ′(−1) − 2 (n − 1) log
(n + 1),

Bn(α) :=
n∑

ν=1

(ν − 1) log(ν + α) = ζ ′(−1, n + α + 1) − ζ ′(−1, α + 1)

− (α + 1) log (α + 1)n,

Cn(b) :=
n∑

ν=1

(n − ν) log(ν + n + b) = (2n + b) log (n + b + 1)n

− ζ ′(−1, 2n + b + 1) + ζ ′(−1, n + b + 1).

The asymptotic forms follow from applying (A.1) and (A.2). Simplification is done
with the help of Mathematica.
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First, we get the Poincaré-type asymptotics

An = −3

2
n2 log n + 7

4
n2 + 3

2
n log n − (2 + log(2π)) n + 13

12
log n + log A

− 1

6
+ log(2π) +

∞∑

m=1

(−1)m

m

(

2ζ(−m) + 2m + 1

m + 1
ζ(−m − 1)

)

n−m,

where A is the Glaisher-Kinkelin constant. We used ζ ′(−1) = 1
12 − log A.

Furthermore,

Bn(α) = 1

2
n2 log n − 1

4
n2 − 1

2
n log n + (α + 1) n + 1

2

(
1

6
− (α + 1)2

)

log n

+ log A − ψ(−2)(α + 1) + (α + 1) log
(α + 1)

+
∞∑

m=1

(−1)m−1

m

(

(α + 1) ζ(−m, α + 1) − ζ(−m − 1, α + 1)

m + 1

)

n−m .

Here, we used the negapolygamma function defined in (1.6) to simplify the constant
term.

Furthermore,

Cn(b) = 1

2
n2 log n +

(

2 log 2 − 5

4

)

n2 − 1

2
n log n + (2 log 2 − 1) b n

+ 1

2

(

b2 − 1

6

)

log 2 − 1

2

(

b (b + 1) + 1

6

)

+
∞∑

m=1

(−1)m

m

(
2−2−m

1−2−m m + 1

m + 1
ζ(−m − 1, b + 1) − bζ(−m, b + 1)

)

(
1 − 2−m)

n−m .

Putting everything together, we arrive at the desired result. 
�

3 Proofs of Main Results

Proof of Theorem 1.1 By Theorem 2.2, the elliptic (p, q)-Fekete n-point configuration
in [−1, 1] is given by the zeros of the Jacobi polynomial P(α,β)

n for α = 2p − 1 and
β = 2q − 1. We set α = 2p − 1 and β = 2q − 1. Let x1,n, . . . , xn,n denote the n

zeros of P(α,β)
n . From (2.1) and Theorem 2.3 it follows that

Tn(x1,n, . . . , xn,n) =
[
P(α,β)
n (1)

]p

[
λ

(α,β)
n

]p

√

D(α,β)
n

[
λ

(α,β)
n

]n−1

[
(−1)n P(α,β)

n (−1)
]q

[
λ

(α,β)
n

]q
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and, therefore (recall, α = 2p − 1 and β = 2q − 1),

L([−1, 1], q, p; n) = 2 (n + p + q − 1) log λ(α,β)
n − log D(α,β)

n

− 2p log P(α,β)
n (1) − 2q log P(β,α)

n (1).
(3.1)

Utilizing Lemma 2.1 and Lemma 2.4, we get the desired result with the help of
Mathematica. 
�
Proof of Theorem 1.3 Recall that α = 2p − 1 and β = 2q − 1. From (2.1) we obtain

E0(x1,n, . . . , xn,n) = 2 (n − 1) log λ(α,β)
n − log D(α,β)

n . (3.2)

Utilizing Lemma 2.1 and Lemma 2.4, we get the desired result with the help of
Mathematica. 
�
Proof of Theorem 1.4 Suppose p > 0 and q > 0. Set α = 2p−1 and β = 2q −1. Let
ωn = {x1,n, . . . , xn,n} be an elliptic (p, q)-Fekete n-point configurations in [−1, 1].
Rewriting (1.2) and using Theorem 2.2, we get

E0(ωn ∪ {−1,+1}) = E0(ωn) + 2
n∑

k=1

log
1

∣
∣−1 − xk,n

∣
∣

+ 2
n∑

k=1

log
1

∣
∣1 − xk,n

∣
∣

+ 2 log
1

|−1 − 1|

= E0(ωn) − 2 log

∣
∣
∣
∣
∣

n∏

k=1

(−1 − xk,n
)
∣
∣
∣
∣
∣
− 2 log

∣
∣
∣
∣
∣

n∏

k=1

(
1 − xk,n

)
∣
∣
∣
∣
∣
− 2 log 2

= E0(ωn) − 2 log

∣
∣
∣
∣
∣

P(α,β)
n (−1)

λ
(α,β)
n

∣
∣
∣
∣
∣
− 2 log

∣
∣
∣
∣
∣

P(α,β)
n (1)

λ
(α,β)
n

∣
∣
∣
∣
∣
− 2 log 2

= 2 (n + 1) log λ(α,β)
n − log D(α,β)

n − 2 log P(β,α)
n (1)

− 2 log P(α,β)
n (1) − 2 log 2.

The substitution for E0(ωn) follows from (3.2).
For p = q = 1 and n = N − 2, we get

E0([−1, 1]; N ) = 2 (N − 1) log λ
(1,1)
N−2 − log D(1,1)

N−2 −4 log P(1,1)
N−2 (1)−2 log 2. (3.3)

The asymptotic expansions of Lemma 2.1 and Lemma 2.4 are not in terms of the new
asymptotic variable N . Instead, we combine the logarithmic terms into one logarithm
anduseTheorem2.3 and formulas forλ(1,1)

N−2 and P
(1,1)
N−2 (1) to arrive, after simplification,

at
E0([−1, 1]; N ) = E0(ωn ∪ {−1,+1}) = − log�N ([−1, 1]),

where

�N ([−1, 1]) = 2N (N−1)NN

(
N−1∏

k=1

k3k
) ⎛

⎝
2(N−1)∏

k=N−1

k−k

⎞

⎠ .
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Taking the negative logarithm again and using (2.2), we get

E0([−1, 1]; N ) = −N (N − 1) log 2 − N log N + 3ζ ′(−1, 1)

− 3ζ ′(−1, N ) − ζ ′(−1, N − 1) + ζ ′(−1, 2N − 1).

Application of (A.2) and simplification gives the desired result. We used the following
identities (taking into account that Bernoulli numbers Bk with odd integers k ≥ 3
vanish):

(
1 − 2−m)

ζ(−m − 1, −1) + 3ζ(−m − 1, 0) = − (
1 − 2−m) Bm+2(−1)

m + 2
− 3

Bm+2

m + 2

= (−1)m−1
(

1 − 2−m + 4
(
1 − 2−(m+2)

) Bm+2

m + 2

)

.


�
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Appendix A. Basic Asymptotic Expansions

A.1. Gamma Function Asymptotics

We use the Poincaré-type asymptotics (cf., eg., [54, Eq. 5.11.8])

log
(x +a) = (x + a − 1/2) log x − x + 1

2
log(2π)−

∞∑

m=1

(−1)m−1

m
ζ(−m, a) x−m

(A.1)
as x → ∞ and a ∈ R fixed. Observe that

ζ(−m, a) = −Bm+1(a)

m + 1
, m ∈ N0.

A.2. The s-Derivative of the Hurwitz Zeta Function

We need the asymptotic expansion as n → ∞ of ∂
∂s ζ(s, n + a)|s=−1. Here, the

asymptotic variable is shifted by a fixed (positive) real number. In case of a = 0, see,
e.g., [54, §25.11(xii)]. In case of a > 0, cf. [55, 56].

123

http://creativecommons.org/licenses/by/4.0/


Constructive Approximation

The Mellin-Barnes integral approach gives

ζ(s, z + a) = z1−s

s − 1
+

K−1∑

k=0

(−s

k

)

ζ(−k, a) z−s−k + ρK (s, a, z)

valid in the sector | arg z| < π and such that Re s > −K and a > 0. The remainder
term takes the form

ρK (s, a, z) = 1

2π i

∫ γK+i∞

γK−i∞

(w + s)
(−w)


(s)
ζ(w + s, a) zw dw,

where γK satisfies −1 − Re s − K < γK < −Re s − K . Throughout the sector
| arg z| ≤ π − δ < π holds the estimate ρK (s, a, z) = O(|z|−Re s−K ) as z → ∞.

Partial differentiation with respect to s yields

ζ ′(s, z + a) := ∂

∂s
ζ(s, z + a) = − z1−s log z

s − 1
− z1−s

(s − 1)2

−
K−1∑

k=0

(−s

k

)

ζ(−k, a) z−s−k (log z + ψ(1 − s) − ψ(1 − s − k))

+ ρ′
K (s, a, z).

This formula is valid under the same assumptions as above. It is understood that

(−s

k

)
(
ψ(1 − s) − ψ(1 − s − k)

) = − (−1)k

k!
k−1∑

�=0

(s)k
s + �

= − (−1)k

k!
k−1∑

�=0

(s)�(s + 1 + �)k−1−�.

Throughout the sector | arg z| ≤ π − δ < π holds the estimate ρK (s, a, z) =
O(|z|−Re s−K log |z|) as z → ∞. In particular, after an index shift and for K ≥ 2,

ζ ′(−1, z + a) = 1

2
x2 log x − 1

4
x2 − ζ(0, a) x log x − ζ(−1, a) log x − ζ(−1, a)

+
K−1∑

k=1

(−1)k

k(k + 1)
ζ(−k − 1, a) x−k + O(x−K log x) as x → ∞.

(A.2)
A more detailed analysis shows that the log x factor in the remainder estimate can be
dropped. The remainder term takes the form

1

2π i

∫ γK+i∞

γK−i∞
1

(w − 1)w

π

sin(πw)
ζ(w − 1, a) xw dw,
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where −1 − K < γK < −K . Furthermore, the restriction a > 0 can be relaxed
to a > −1, a �= 0, by means of the identities ζ(s, a) = a−s + ζ(s, a + 1) (and
Bk+1(a + 1) = Bk+1(a) + (k + 1)ak if Bernoulli polynomials are used). In the case
a = 0 formula (A.2) reduces to the well known asymptotic expansion.
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