
Beyond the Edges of Kernel Control-Flow Hijacking Protection
with HEK-CFI

Lukas Maar
Graz University of Technology

Austria

Pascal Nasahl
Graz University of Technology

Austria

Stefan Mangard
Graz University of Technology

Austria

ABSTRACT
Over the past decade, vulnerabilities in the Linux kernel have more
than doubled, allowing control-flow hijacking attacks that com-
promise the entire system. To thwart these attacks, Control-Flow
Integrity (CFI) has emerged as state-of-the-art. However, existing
kernel CFI schemes are still limited in providing protection against
these attacks, e.g., during system events and for return addresses.

In this paper, we introduce Hardware-Enforced Kernel Control-
Flow Integrity (HEK-CFI), a novel approach that protects control-
flow-related data during system events, as well as function pointers
and return addresses, effectively mitigating control-flow hijacking
attacks. HEK-CFI leverages Intel CET, specifically write-protected
pages used by its shadow stack design, along with signature-based
CFI to safeguard this data. To demonstrate its effectiveness, we
implement a proof-of-concept and perform a case study on the
Linux kernel v5.18. In our case study, HEK-CFI eliminates all ille-
gal backward-edge targets and reduces forward-edge targets by
more than 50% compared to all existing kernel CFI schemes. We
evaluate our proof-of-concept on real hardware and observe a per-
formance overhead of 12.3 % for micro benchmarks and 1.85 % for
macro benchmarks. In summary, HEK-CFI is the first solution to
provide protection for both system events and return addresses.
HEK-CFI also generically reduces forward control-flow targets and
the performance overhead compared to existing solutions.

CCS CONCEPTS
• Security and privacy→ Operating systems security.

KEYWORDS
Kernel Control-Data Integrity, Kernel Control-Flow Integrity

ACM Reference Format:
Lukas Maar, Pascal Nasahl, and Stefan Mangard. 2024. Beyond the Edges
of Kernel Control-Flow Hijacking Protection with HEK-CFI. In ACM Asia
Conference on Computer and Communications Security (ASIA CCS ’24), July
1–5, 2024, Singapore, Singapore. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3634737.3661135

1 INTRODUCTION
Over the past decade, the number of vulnerabilities in the Linux
kernel has increased dramatically, from 114 CVEs in 2012 to 318
in 2022, according to the NIST NVD. These vulnerabilities can be

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0482-6/24/07.
https://doi.org/10.1145/3634737.3661135

devastating, allowing to hijack the control flow to gain arbitrary
code execution and compromise the entire system.

Despite efforts by processor vendors [12, 19, 47] and kernel de-
velopers [20, 32, 33] to mitigate these attacks, adversaries continued
to devise more sophisticated code reuse attacks [5, 7, 10, 28]. For
instance, Return Oriented Programming (ROP) [7] redirects the con-
trol flow to a chain of gadgets, each ending with ret. To counter
control-flow hijacking attacks, Control-Flow Integrity (CFI) [1] has
emerged as a state-of-the-art mitigation by restricting the control
flow to an approximated Control-Flow Graph (CFG).

Kernel CFI-based mitigations face two critical challenges in
providing security. First, kernel programs must handle system
events [6], i.e., context switches, interrupts, exceptions, and syscalls.
During these events, the current thread state (which refers to the set
of registers that store its run-time information) is stored in memory,
ensuring that it can be restored when the thread resumes execution.
If these stored states are not fully protected on any of these events,
an adversary can corrupt them to hijack the control flow when
the state is restored, as described in prior research [16, 23] and
exploited by security researchers at Google Project Zero (cf. CVE-
2022-42703) [56]. Second, it is difficult to establish an accurate
representation of the CFG for kernel programs due to their large
size. Coarse approximations leave the system vulnerable to by-
pass attacks. This is particularly critical for the backward edges, as
static determination leaves the system vulnerable to Control-Flow
Bending (CFB) [9], re-enabling control-flow hijacking attacks.

Existing kernel CFI-based mitigations [3, 16, 18, 22, 23, 41, 48,
62, 63, 68] are still limited in addressing these challenges as they do
not provide sufficient protection for both the thread state during
all system events and backward edges, i.e., return addresses. For
example, defenses based on ARM’s Pointer Authentication (PA),
e.g., PAL [62] and Camouflage [18], inadequately protect the stored
thread state, allowing attackers to tamper with it and hijack the
control flow. Other approaches, e.g., KCoFI [16] and Fine-CFI [41],
statically determine backward edges, which makes their systems
vulnerable to CFB, bypassing the applied mitigation. Additionally,
the Code Pointer Integrity (CPI) [37] solution combined with the
user-space memory isolation scheme CETIS [66] safeguards code
pointers and return addresses. However, this combination cannot
address the first challenge because it is not designed for kernel-level
system events that require special thread state handling. Conse-
quently, it cannot protect the kernel during these critical events.

In summary, existing kernel CFI schemes and CPI combined
with CETIS have limitations in providing protection for the kernel
during system events and for return addresses. As a consequence,
adversaries can exploit these limitations to bypass the applied CFI
scheme, thereby re-enabling control-flow hijacking attacks.

In this paper, we introduce Hardware-Enforced Kernel Control-
Flow Integrity (HEK-CFI) to fill the gap in protecting against kernel

https://doi.org/10.1145/3634737.3661135
https://doi.org/10.1145/3634737.3661135
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3634737.3661135

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Lukas Maar, Pascal Nasahl, and Stefan Mangard

control-flow hijacking attacks. HEK-CFI consists of three key mech-
anisms. First, HEK-CFI ensures kernel control-data integrity by
retrofittingwrite-protected pages from Intel CET SHadow StacK (SHSTK)
for the supervisor. It does this by providing write-protected local and
global safe areas within the kernel, where control data is securely
stored. In particular, our write-protected local safe area extends well
beyond the original purpose of Intel CET SHSTK. While SHSTK
protects backward edges, our approach safeguards any local control
data, such as during low-level environments like system events.
Second, HEK-CFI utilizes our control-data integrity scheme to pro-
tect the thread state during all system events, including protection
for the SHSTK state. This prevents attackers with memory write
capabilities from tampering with the thread and SHSTK state. With
these two mechanisms, we are the first to provide comprehensive
protection for both system events and return addresses. Third, HEK-
CFI combines our control-data integrity with signature-based CFI
to protect forward control-flow edges, particularly control data, e.g.,
function pointers. Signature-based CFI efficiently protects function
pointers with rare signatures, while control-data integrity fully
safeguards any control data, albeit with a potentially higher perfor-
mance overhead. To balance this trade-off, HEK-CFI automatically
selects the optimal scheme for each control data

While HEK-CFI’s true contributions rely on efficient control data
(including thread state) protection, it demonstrates its practical use
with the third mechanism to protect forward edges as well.

We are the first to implement the Intel CET SHSTK for the super-
visor in the Linux kernel. This allows us to implement a HEK-CFI
proof-of-concept, realized as a compiler-assisted software frame-
work consisting of a Linux kernel extension, a code analyzer [24],
and an LLVM pass [38]. Our framework automatically hardens the
Linux kernel using a user-configurable CFI precision level as input.
To demonstrate its effectiveness, we perform a case study where we
eliminate all illegal backward edges and reducing forward control-
flow edge targets by 99.98% [16], 93.3% [3, 46], 76.4% [23], and
50.4 % [41] compared to existing kernel CFI schemes.

We evaluate HEK-CFI’s security, demonstrating strong security
guarantees against control-flow hijacking attacks.We run our proof-
of-concept on Ubuntu 22.04.1 LTS on a recent Intel Alder Lake
processor supporting Intel CET SHSTK. We observe a performance
overhead of 12.3±1.5% for the LMbench [45] micro benchmarks. For
macro benchmarks, the performance overhead is 1.85 ± 1.02% for
Phoronix Test Suite [49] and 0.17 ± 0.23% for SPEC CPU 2017 [15].
In summary, HEK-CFI is the first solution to provide protection
for both system events and return addresses. It also generically
reduces forward control-flow targets and performance overhead
compared to existing CFI schemes. As a result, HEK-CFI improves
kernel security to protect against control-flow hijacking attacks.

The main contributions of this work are:
(1) Kernel control-data integrity: We provide kernel control-

data integrity, including a secure approach to protect system
events and return addresses, establishing ourselves as the
first kernel solution to safeguard both.

(2) HEK-CFI: We introduce HEK-CFI, a novel design that com-
bines our kernel control-data integrity with signature-based
CFI, ensuring robust protection for control-flow-related data.

(3) POC: We are the first to implement Intel CET SHSTK for
the supervisor privilege level in the Linux kernel, allowing

us to implement a HEK-CFI proof-of-concept as a compiler-
assisted framework, both of which we provide open-source.

(4) Case study: We perform a case study to demonstrate the
effectiveness of HEK-CFI in protecting forward and back-
ward edges, as well as system events. We show that HEK-CFI
provides enhanced efficacy compared to existing solutions.

(5) Evaluation: We evaluate HEK-CFI’s security and perfor-
mance, showing strong security guarantees with an over-
head of 12.3 % and 1.85 % for micro and macro benchmarks.

Outline. Section 2 provides background. In Section 3, we present a
systematization of existing works. Section 4 introduces HEK-CFI.
In Section 5, we implement our proof-of-concept, while Section 6
conducts a case study. Section 7 shows the strong security guaran-
tees. In Section 8, we evaluate the performance overhead. Section 9
discusses related work. Lastly, Section 10 concludes our work.

2 BACKGROUND
This section provides background on control-flow hijacking attacks.
At its core, a control-flow hijacking attack comprises two stages.
First, an attacker exploits a vulnerability to obtain a Control-Flow
Hijacking Primitive (CFHP) [64] allowing them to deviate from the
legal Control-Flow Graph (CFG), e.g., memory safety vulnerabil-
ity to overwrite a function pointer. Second, the attacker utilizes
the CFHP to redirect the control flow to an attacker-controlled
instruction sequence performing attacker-controlled execution.

CFI. Control-Flow Integrity (CFI) [1] has been established as
a state-of-the-art mitigation against these attacks by restricting
the control flow to the CFG. However, since complete CFI induces
prohibitive runtime overhead, existing CFI schemes restrict the con-
trol flow to an approximated CFG. This approximation is achieved
through variousmethods, including static determination (e.g., signature-
based [21]) or dynamic techniques (e.g., ARM’s Pointer Authentica-
tion (PA) [42] or by ensuring integrity of code pointers [37]).

Intel CET. Intel’s Control-flowEnforcement Technology (CET) [29]
is a recent hardware extension aiming to mitigate scenarios of hi-
jacking attacks. CET consists of the Indirect-Branch Target (IBT)
and a SHadow STacK (SHSTK) feature, where CET supports a user
and supervisor SHSTK. The IBT feature introduced the endbr in-
struction as a landing pad for indirect branches. When the control
flow of an indirect branch is redirected to any other instruction, the
hardware raises a control-protection exception. In CET, a shadow
stack protects the return path from beingmaliciously corrupted [58].
On a function call, the hardware pushes the return address onto
both the data and the shadow stack. On a function return, both ad-
dresses are compared, and a mismatch causes a control-protection
exception. Additionally, the hardware pushes sensitive registers
(i.e., rip, cs, and ssp) to the supervisor shadow stack on excep-
tions and interrupts, which are validated on an iret instruction. To
protect the shadow stack from attackers, it is write-protected using
the dedicated page permissions setting dirty and non-writable.

CETIS. CETIS [66] is a user space intra-process memory isola-
tion scheme that uses Intel CET SHSTK’s write-protected shadow
pages to create a global safe area. This safe area ensures that ad-
versaries cannot tamper with code pointers. By providing write
protection for such data, CETIS enhances the efficiency and practi-
cality of Code Pointer Integrity (CPI) [37] on x86_64 systems.

Beyond the Edges of Kernel Control-Flow Hijacking Protection with HEK-CFI ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

3 THREAT MODEL AND SYSTEMATIZATION
In this section, we first present the threat model and then explore
the variety of attack vectors used to obtain a CFHP in the Linux
kernel. Additionally, we demonstrate that existing CFI-basedmitiga-
tions do not fully prevent these CFHPs from violating control-flow
restrictions, allowing them to bypass the applied defenses. To illus-
trate these limitations, we provide example exploits in Appendix 12
and an end-to-end attack exploiting CVE-2019-2215 in Appendix 13.

3.1 Threat Model
We assume that an attacker can arbitrarily execute code in user
space. Moreover, the kernel contains a vulnerability that can be
exploited to obtain an arbitrary memory read-and-write primitive.
This primitive is accessible through the user space without violating
the kernel’s control-flow integrity. We assume that kernel defense
mechanisms are enabled, i.e., the WˆX [19], SMEP, SMAP [12], and
page-table protection [17, 52]. With these mitigations enabled, ker-
nel sections cannot be both writable and executable, the kernel
cannot execute or access user space memory, and page tables can-
not be manipulated. Our threat model aligns with the threat model
of existing kernel CFI-based mitigations [18, 23, 41, 62].

Attack goal. We assume that the primary goal of an attacker is
corrupting kernel control-flow-related data discussed in Section 3.2
to hijack the kernel’s control-flow.

Out of scope. Data-oriented attacks are another class of at-
tacks that need to be addressed. This work focuses on mitigating
control-flow hijacking attacks, while other orthogonal defenses [43,
51, 61] are necessary to address data-oriented attacks. While we
acknowledge the existence of side-channel [8, 26, 69], microarchi-
tectural [27, 34], and software fault injection [14, 54] attacks, as
well as malicious operating systems, these are out of the scope.

3.2 Attack Vectors
In the Linux kernel, various control-flow-related data (we refer as
control data) can be exploited to obtain a CFHP.

Function pointers. Function pointers in writable sections are a
well-known security concern [13]. The Linux kernel frequently uses
function pointers for various tasks, e.g., calling device functions.

Operation table pointers. To reduce the attack surface of
overwriting function pointers, the Linux kernel stores multiple
function pointers in operation tables mapped as read-only [13].
However, since the operation table pointers are stored in writable
sections, an attacker can tamper with the table pointers instead
of function pointers [18, 53, 57]. For instance, each inode ob-
ject has an operation table pointer i_op pointing to a read-only
inode_operations struct containing function pointers for inode
interaction. The attacker can obtain a CFHP by overwriting the
table’s pointer with a previously crafted inode_operations table.

Return addresses. Another way to redirect the control flow is
by manipulating the return address stored on the stack. On function
return, the kernel interprets the tampered return address as the
execution path for the resumption.

Thread state. The thread state refers to the set of registers that
store the runtime information about its thread, e.g., rip and rsp on
x86_64, pc and sp on arm64, as well as general-purpose registers.
During system events [6], i.e., context switch, interrupt, exception,

Execution

④

Interrupt/
Exception

②

①

③
Attack Attack

⑤⑥

Figure 1: Interrupt or excep-
tion disrupts execution.

th
re
ad

st
at
e
0

th
re
ad

st
at
e
1

Memory

❶ ❹
Context
Switch

❷ ❸

❺
Attack

Figure 2: A context switch
from thread 0 to thread 1.

and syscall, the current thread state is stored in memory, ensuring
that it can be restored later when the thread resumes execution.
This allows the kernel to switch between threads and handle event
requests. Since these memory locations are writable, an attacker
can manipulate them. If the state is restored from the tampered
memory, the thread continues execution based on the tampered
state, hijacking the kernel’s control flow.

Figure 1 shows the system events interrupt and exception, which
disrupt the thread’s execution and store its state in memory ①. Con-
sequently, the kernel’s control flow is legally redirected to handle
the invoked request ②. The thread state is restored upon comple-
tion ③ to continue its execution ④. By tampering with the stored
state, an attacker can perform two attack scenarios. First, they ma-
nipulate stored registers, e.g., rip for x86_64 and pc for arm64,
which are interpreted by the return, i.e., iret for x86_64 and eret
for arm64, as the continuing execution ⑤. Second, they tamper with
register values later used to redirect the control flow ⑥, e.g., rax if
the execution performs call *rax. We provide motivational ex-
ploits in Appendix 12.1. In addition, security researchers at Google
Project Zero [56] have exploited CVE-2022-42703 to obtain an un-
controlled arbitrary write, allowing them to corrupt thread state
on interrupts and thus hijack control flow.

Another state-changing event is the context switch, where we
refer to the Linux kernel design of a context switch: When a thread
performs a context switch, it calls into the scheduler to select a
new thread to run next, switches the memory descriptor, jumps to
the switch_to function, and performs a cleanup of the previous
thread. The switch_to function stores the current thread state in
memory and then loads the stored state from the next thread. Fig-
ure 2 illustrates the storing and restoring of the state on a context
switch ❶-❹. Since the state is stored in writable sections, e.g., the
thread’s stack frame, an attacker can manipulate it, and gain control
of the registers when the state is restored. Taking control of these
registers results in hijacking the control flow ❺. For instance, by
tampering with callee-saved registers that store a function pointer,
the attacker hijacks the control flow on the indirect branch instruc-
tion to its tampered register value. We provide motivational exploits
in Appendix 12.2 and an end-to-end exploit in Appendix 13.

3.3 Systematization of Existing Works
We investigate the limitations of existing kernel CFI-based miti-
gations [3, 16, 18, 23, 41, 46, 62, 68] in protecting against kernel

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Lukas Maar, Pascal Nasahl, and Stefan Mangard

Table 1: Systematization of existing kernel mitigations.

Mitigations Attack Vector

Th
re
ad

st
at
e

Re
tu
rn

ad
dr
es
se
s

O
pe
ra
tio

n
ta
bl
e
po

in
te
rs

Fu
nc
tio

n
po

in
te
rs

Ge et al. [23]
kCFI [3]
Fine-CFI [41]
PATTER [68]
Camouflage [18]
PAL [62]
FineIBT [46]
KCoFI [16]
Intel CET SHSTK [29]
CPI [37] + CETIS [66]
HEK-CFI

Protection Insufficient protection
Implicit protection Implicit insufficient protection

Does not protect but can be extended.

control-flow hijacking attacks, where we refer to Section 9 for de-
tailed information. We include Intel CET SHSTK [29] and CPI [37]
combined with CETIS [66] to highlight their limitations in pro-
tecting specific attack vectors. To illustrate our findings, we use a
classification scheme in Table 1. Mitigations marked with provide
protection for the attack vector, while those marked with pro-
vide no protection or can be bypassed by attacks we present in the
following. For mitigations that implicitly protect the attack vector
or implicitly protect it insufficiently, we use or , respectively.

Thread state. Various kernel mitigations either do not (i.e.,
Camouflage [18], FineIBT [46], kCFI [3], and PATTER [68]) or in-
adequately (i.e., PAL [62], Fine-CFI [41], and the proposal from Ge
et al. [23]) protect the stored thread state. As a result, attack scenar-
ios, such as❺ from Figure 2, and⑤ and⑥ from Figure 1, can redirect
the control flow and, thereby, bypass control-flow restrictions (see
Appendices 12.1 and 12.2 for exploitation examples).

Intel CET SHSTK for supervisor [29] also fails to adequately
protect the thread state, as they do not mitigate attack scenarios ⑥

and ❺ from Figure 1 and Figure 2. Moreover, since the shadow stack
pointer is part of the thread state, Intel CET SHSTK can be compro-
mised using ❺ as well. CPI [37] combined with CETIS [66] suffers
from a similar issue, as it lacks a low-level protection primitive, like
protected local storage, to safeguard the thread state.

Return addresses. Kernel mitigations (i.e., kCFI [3], KCoFI [16],
Fine-CFI [41], and the proposal from Ge et al. [23]) that solely rely
on static analysis to protect backward control-flow edges leave the
system vulnerable to the notorious Control-Flow Bending (CFB) [9]
attack. CFB involves exploiting dispatcher functions to corrupt
the return address using malicious arguments, bypassing the ap-
plied CFI protection. As emphasized by Carlini et al. [9] a shadow
stack is necessary to fully protect return addresses and mitigate
CFB. Besides shadow stack, Lilijestrand et al. [42] emphasized that
ARM’s Pointer Authentication (PA) [4] could also enhance protec-
tion against CFB attacks with dynamic runtime information, such
as the current stack pointer, to validate return addresses.

Operation table pointers. Since PA-based kernel mitigations
(i.e., PAL [62] and PATTER [68]) do not protect operation table

Compile-time

Protection
Selector (cf. 4.3.3)

Kernel
Instrumentation
(cf. 4.3.1, 4.3.2)

Li
nu

x
ke
rn
el

Pr
ot
ec
te
d
Li
nu

x
ke
rn
el

User policy Kernel code

Control-data pointers

Global safe area
(cf. 4.1.2)

Local safe area
(cf. 4.1.1)

Thread
(cf. 4.2)

Reference to
Write-protected

Writable

H
EK

-C
FI

m
em

or
y
la
yo

ut

Execution-time

Figure 3: HEK-CFI instruments the kernel to perform run-
time validation checks ensuring protection for control data.

pointers they are susceptible to pointer-to-pointer attacks, where
an attacker corrupts operation table pointers instead of function
pointers. However, their design can be extended to also protect
operation table pointers. Mitigations that provide static control-flow
integrity (markedwith or in Table 1) implicitly protect operation
table pointers on indirect branches. Hence, if the function pointers
are protected, the operation table pointers are also protected.

Function pointers. Mitigations that provide coarse-grained
(i.e., KCoFI [16]) or signature-based (i.e., Fine-CFI [22] and kCFI [3])
protection for forward control-flow edges offer weak security guar-
antees. The large set of targets matching the function signature in
the kernel space enables privilege escalation while not violating
the over-approximated CFG, as demonstrated in Appendix 12.3.
Moreover, Camouflage [18] only protects a selected set of function
pointers, leaving unprotected vulnerable for privilege escalation.

Summary. Existing kernel mitigations exhibit limitations in
providing protection for control data, particularly the thread state
during system events and return addresses. As a consequence, at-
tackers can exploit these limitations to bypass the applied CFI-based
countermeasure. This results in a gap in kernel security.

4 DESIGN
We introduceHardware-Enforced Kernel Control-Flow Integrity (HEK-
CFI) which consists of three key mechanisms. Figure 3 depicts a
high-level overview. First, HEK-CFI provides kernel control-data
integrity (see Section 4.1) by retrofitting write-protected pages
from Intel CET SHSTK for the supervisor. This retrofitting enables
write-protected local and global safe areas within the kernel where
control data is securely stored. Notably, these safe areas extend well
beyond the original purpose of Intel CET SHSTK. Second, HEK-CFI
utilizes our control-data integrity to protect the thread state (see
Section 4.2) during all state-changing system events, i.e., interrupt,
exception, syscall, and context switch, as well as protect the SHSTK
state. This allows HEK-CFI to mitigate our motivational exploit
examples and Google Project Zero’s thread state exploit [56]. With
these two key mechanisms, we are the first to provide comprehen-
sive protection for both system events and return addresses. Third,
HEK-CFI combines our control-data integrity with signature-based

Beyond the Edges of Kernel Control-Flow Hijacking Protection with HEK-CFI ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

CFI to protect (see Section 4.3) forward control-flow edges, par-
ticularly control data, i.e., function pointers and operation table
pointers. While signature CFI efficiently protects function pointers
with rare signatures, control-data integrity offers full protection for
any control data, albeit at a potentially higher performance over-
head. To optimize the trade-off, it automatically selects the optimal
scheme for each control data based on a user policy as input.

While the real contribution of HEK-CFI lies in the efficient pro-
tection of control data (including thread state), the third mechanism
demonstrates the practicality of protecting forward edges as well.

4.1 Kernel Control-Data Integrity
Its main concept is to store control data (outlined in Section 3.2)
in a hardware-enforced write-protected safe area, preventing any
malicious tampering attempt. To access the control data legally,
the safe area needs to be designed differently depending on the
context, such as local or global. For this reason, HEK-CFI includes
a per-thread local and a global safe area storing and protecting the
local and global control data, respectively.

Write protection. Our control-data integrity scheme relies on
the security of the write-protected safe areas. To achieve this protec-
tion, all safe area pages are marked as shadow pages, retrofitting the
approach followed by CETIS [66] to the kernel. This enforces Intel
CET SHSTK to write-protect them. To legally write to the safe areas,
HEK-CFI utilizes the wrssq instruction introduced by Intel CET,
which permits writes to shadow pages. If a memory write operation
to a shadow page is propagated by a non-shadow stack instruction,
e.g., movq, it causes a control-protection exception raised by Intel
CET. There is also no wrssq-gadget allowing an attacker to illegally
write to shadow pages as we later discuss in Section 7. To conclude,
with this approach, it not possible to illegally manipulate control
data stored in the safe areas using the arbitrary write primitive.

4.1.1 Local Safe Area. HEK-CFI introduces a local safe area for
each thread in kernel space. The local safe area consists of a shadow
stack via Intel CET and a Protected Thread Local Storage (PTLS), as
illustrated in Figure 4. Intel’s hardware feature CET SHSTK utilizes
the shadow stack to implicitly push and pop specific control data
onto the shadow stack, as explained in Section 2. However, since
Intel CET does not provide explicit push or pop operations [30],
HEK-CFI introduces the software-based approach PTLS, which is
an efficient and secure local storage. The PTLS is located at the bot-
tom of the local safe area and provides ptls_push and ptls_pop
routines corresponding to a safe push and pop operation. Hence,
PTLS provides strong protection for locally accessible control data.

Listing 1 illustrates the ptls struct (PTLS) and the associated
initializing, pushing, and poping routines. At its core, all of these
routines use the macros rd_ptls (Line 7) and wr_ptls (Line 5) to
obtain the ptls struct’s location and to write to the underlying
shadow page memory of the ptls struct, respectively. The macro
rd_ptls does so by performing a logical AND operation of the read
shadow stack pointer (Line 8) with (LSA_SZ-1), where rdsspq
reads the current shadow stack pointer, and LSA_SZ represents
the local safe area size. The macro wr_ptls executes the wrssq
instruction to write an 8 byte word to the top of the ptls. The
ptls_init routine initializes the ptls struct by obtaining its cur-
rent location with rd_ptls. Then, ptls_init sets the top of stack

1 struct ptls {
2 u64 tos; /* top of stack */
3 u64 data[]; /* data array */
4 };
5 #define wr_ptls(tos, d) \
6 asm("wrssq %0,(%1)"::"r"(d),"r"(tos))
7 #define rd_ptls(ptls) \
8 asm("rdsspq %0\n" \
9 "andq $~(LSA_SZ-1),%0":"=r"(ptls))
10

11 void ptls_init(void) {
12 struct ptls *ptls;
13 rd_ptls(ptls);
14 wr_ptls(&ptls->tos, (u64)ptls->data);
15 }
16 void ptls_push(u64 data) {
17 struct ptls *ptls;
18 rd_ptls(ptls);
19 wr_ptls(ptls->tos, data);
20 wr_ptls(&ptls->tos, ptls->tos+8);
21 }
22 u64 ptls_pop(void) {
23 struct ptls *ptls;
24 rd_ptls(ptls);
25 wr_ptls(&ptls->tos, ptls->tos-8);
26 return *ptls->tos;
27 }

Listing 1: PTLS’s provided routines.

Shadow
stack

re
t,

ir
et

ca
ll

,i
nt

Local safe area

PTLS

pt
ls

_p
us

h

pt
ls

_p
op

Figure 4: Memory
layout of the local
safe area for each
thread, where Intel
CET SHSTK implic-
itly resides on the
top and PTLS on
the bottom.

index1
control_data1:

&c
on

tr
ol

_d
at

a1
da

ta
1

safe_area[index1]:
control_data1 == control_data1?
access data1

cor_index
cor_control_data:

&c
on

tr
ol

_d
at

a2
da

ta
2

safe_area[cor_index]:
cor_control_data == control_data2?

exploit_detection()
sa

fe
_a

re
a

Reference to
Write-protected

Writable

Figure 5: Two accesses from a control data stored on the
global safe_area. HEK-CFI validates that the address of the
accessed control data matches the stored address referenced
by the index. Since the validation of control_data1 succeeds,
data1 access is granted. Contrary, the validation of the cor-
rupted cor_control_data fails, detecting an exploit attempt.

member variable ptls->tos to the &ptls->data[], indicating
that the ptls is empty and is ready for the first push operation.
The other two routines, ptls_push and ptls_pop, perform push
and pop operations to or from the ptls, respectively.

4.1.2 Global Safe Area. HEK-CFI presents a global safe area for
control data that are accessible in a global context. These globally
accessible control data store an index referencing the global safe
area where the actual data is stored. We design our global safe area
as a one-to-one mapping, meaning that each globally accessible
control data has its own safe storage within the global safe area.

HEK-CFI provides allocation and deallocation routines to allocate
and deallocate a global safe storage for the control data. To mitigate
forgery attempts, we uniquely bind the control data to its safe

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Lukas Maar, Pascal Nasahl, and Stefan Mangard

storage by storing its address along with the actual protected data
within the safe storage on allocation. On deallocation, we unbind
the control data with the safe storage and mark the safe storage
as free. Figure 5 exemplifies a globally accessible control data with
control_data1, storing an index1 index that references the safe
storage (safe_area[index1]) within the global safe area. This
storage comprises the control data address &control_data1 and
the actual protected data data1.

HEK-CFI provides read and write routines to access the global
protected data. It ensures protection against malicious access by
verifying the control data’s integrity before the access. This verifica-
tion involves checking whether the accessed control data’s address
matches the stored address of the referenced safe storage. Access
is granted on match; otherwise, it is considered an exploitation
attempt. We illustrate both cases in Figure 5, where the validation
check for the valid control data control_data1 succeeds, while it
fails for the corrupted control data cor_control_data.

4.2 Thread State Protection
Compared to user space programs, the kernel processes synchro-
nous (i.e., exceptions and syscalls) and asynchronous (i.e., inter-
rupts) system events which store the thread state in memory and
handles invoked execution request (see Sections 4.2.1 and 4.2.2).
Furthermore, at each context switch (see Section 4.2.3), the kernel
stores the thread state in memory while restoring the state of the
next thread to execute. By not fully protecting the stored state, an
attacker can perform attack scenarios described in Section 3.2, as
demonstrated in the examples given in Appendix 12 and the end-to-
end attack exploiting CVE-2019-2215 in Appendix 13. To mitigate
these scenarios, HEK-CFI uses our kernel control-data integrity to
effectively protect the stored thread state. More precisely, HEK-CFI
protects the thread state for interrupts, syscalls, and exceptions
by storing it within the local safe area and for the context switch
within both the global and local safe area.

4.2.1 Interrupt and exception. The hardware pushes ss, rsp, rflags,
cs, and rip to the current stack or value specified in the Interrupt
Stack Table (IST) on kernel entrance and re-entrance. We refer to
the current stack and the value specified in the IST as data stack.
The kernel then pushes the general-purpose registers (except rsp)
to the data stack. With Intel CET SHSTK enabled, the hardware
pushes cs, rip, and ssp to the shadow stack atomically to the data
stack push. On iret instructions, the hardware validates that cs
and rip are equal to the ones stored on the shadow stack, where a
mismatch causes a control-protection exception.

Protecting cs and rip is insufficient to ensure protection as an
attacker may tamper general-purpose registers stored on the data
stack, illustrated in attack scenario ⑥ in Figure 1. To mitigate this,
HEK-CFI stores the register values within the PTLS on interrupt
and exception entrances before pushing them to the data stack.
On interrupt and exception exits, the registers are popped from
the data stack and then compared with those stored in the PTLS.
HEK-CFI interprets a mismatch as an exploitation attempt.

To mitigate potential TOCTTOU attacks, HEK-CFI never stores
the registers to unprotected memory during state storing (① in
Figure 1). HEK-CFI protects all register values, as shown in List-
ings 2 and 3. On the request entrance routine rq_entry, HEK-CFI

1 rq_entry:
2 /* safe store r15 */
3 wrssq r15, R15(gs)
4 /* r15 = ptls->tos */
5 rdsspq r15
6 andq $~(LSA_SZ-1), r15
7 movq r15, (r15)
8 /* store all regs to ptls */
9 wrssq r14, R14(r15)
10 wrssq r13, R13(r15)
11 ...
12 wrssq rdi, RDI(r15)
13 /* store r15 to ptls */
14 wrssq r14, R14(gs)
15 movq r15, r14
16 movq R15(gs), r15
17 wrssq r15, R15(r14)
18 movq R14(gs), r14

Listing 2: Safe stores all
registers to the current ptls.

1 rq_exit:
2 /* safe store r15 */
3 wrssq r15, R15(gs)
4 /* r15 = ptls->tos */
5 rdsspq r15
6 andq $~(LSA_SZ-1), r15
7 movq r15, (r15)
8 /* validate all regs */
9 cmpq r14, R14(r15)
10 jne .fault
11 ...
12 cmpq rdi, RDI(r15)
13 jne .fault
14 /* validate r15 */
15 movq r14, R14(gs)
16 movq r15, r14
17 movq R15(gs), r15
18 cmpq r15, R15(r14)
19 jne .fault
20 movq R14(gs), r14

Listing 3: Validates
all registers to be equal to
the stored ones on the ptls.

first temporarily stores r15 to a per-CPU storage (Line 3), also
write-protected with Intel CET SHSTK. Temporarily storing r15
is essential because HEK-CFI requires one register for the upcom-
ing execution. HEK-CFI then interprets the bottom of the current
local safe area as ptls (Lines 5-6) and loads ptls->tos to r15
in Line 7. Between Lines 9-12 all registers are stored to the ptls.
Lastly, HEK-CFI protects register r15 (Lines 14-18).

On request exit rq_exit, HEK-CFI performs a validation pro-
cess that requires r15 for the upcoming execution. Between Lines
9-13, HEK-CFI compares all registers with the protected register
values stored within the ptls, jumping to .fault on a validation
failure. We relax the constraints on interrupts and exceptions from
user space: We guarantee to return to the exact location in user
space but do not protect general-purpose registers. Hence, we ap-
ply rq_entry/rq_exit only if the thread was disrupted during
kernel-space execution. Crucially, our relaxation is stricter than
comparable CFI-based mitigations [23, 41, 62].

4.2.2 Fast syscall. The syscall instruction invokes a fast syscall
to request kernel-space execution with supervisor privileges. The
hardware saves the current rip to rcx and rflags to r11 on this
instruction. Next, it loads the rip from MSR_IA32_LSTAR, indi-
cating the syscall entry location. On entry, the kernel software
stores both register values, rcx and r11, on the data stack, while
on completion, it restores both values and executes sysret. This
instruction returns to user space by loading rip from rcx, rflags
from r11, and user cs and ss from MSR_IA32_STAR.

To protect rcx and r11 from being tampered with, HEK-CFI also
stores both values within our provided PTLS, on kernel entrance.
During kernel execution, when these user registers are legally mod-
ified, HEK-CFI also modifies the protected one. On completion,
HEK-CFI validates that rcx and r11 have not been tampered with.

In rare cases, the Linux kernel returns from a fast syscall to user
space with iret instead sysret. HEK-CFI stores, for these cases,
the USER_CS and rcx which represents cs and rip, to the shadow

Beyond the Edges of Kernel Control-Flow Hijacking Protection with HEK-CFI ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

stack. On iret Intel CET SHSTK compares both, cs and rip, from
the data and shadow stack, where a mismatch raises an exception.
Crucially, HEK-CFI never trusts any value stored in unprotected
memory, as USER_CS is a constant and rcx was protected within
PTLS. Since an attacker cannot corrupt either register, HEK-CFI
protects the fast syscall event from being exploited.

4.2.3 Context switch. When a thread performs a context switch, it
calls into the scheduler that selects a new thread to run next. Since
the Linux kernel does not have a dedicated scheduler, the current
thread switches the memory descriptor (including cr3) with the
new descriptor and jumps to switch_to. This function stores the
current and restores the next stack pointer, callee-saved registers,
fs/gs registers (if required), and additional non-general-purpose
registers, e.g., for debugging. Storing and restoring the instruction
pointer is not needed as it was implicitly stored on the stack when
the context switch function was called and is restored on return.

HEK-CFI also mitigates the attack scenario outlined ❺ from
Figure 2 by protecting the shadow stack pointer with control-data
integrity within the global safe area. Hence, the attacker cannot
forge the shadow stack pointer. Since the control data of the data
stack must match the control data on the shadow stack on every
ret and iret, and the shadow stack pointer’s integrity is ensured,
corrupting the data stack pointer cannot be exploited.

In addition to the shadow stack pointer, HEK-CFI protects callee-
saved registers as well as fs and gswithin our PTLS upon a context
switch event. HEK-CFI does not require explicit protection for
instruction pointers on a context switch because Intel CET SHSTK
implicitly protects the stored instruction pointer as a return address.

4.3 Control-Flow Integrity
In this section, we explain how HEK-CFI combines kernel control-
data integrity with function signature CFI to protect the thread
state, return addresses, and control data pointers, i.e., operation ta-
ble and function pointers. Function signature CFI (see Section 4.3.2)
provides efficient protection for function pointers with rare signa-
tures. In contrast, control-data integrity (see Section 4.3.1) offers
full protection for any control data, albeit with a potentially higher
performance overhead. To optimize the trade-off, we present the
control-data protection selector (see Section 4.3.3), which automat-
ically selects what to protect with signature CFI and what with
control-data integrity based on a user policy as input. This way, we
achieve strong security without compromising performance.

4.3.1 Safe Area Usage. To protect control data pointers with the
kernel control-data integrity approach, HEK-CFI instruments the
kernel as follows: When control data pointers are generated, HEK-
CFI allocates a safe storage and binds it to the control data. On
control data destruction, the corresponding safe storage is unbound
and deallocated. Depending on the context of the control data (i.e.,
global or local), HEK-CFI utilizes either the global or local safe area
as safe storage. For the global safe area, HEK-CFI uses the provided
allocation and deallocation routines directly. For the local safe area,
HEK-CFI pushes a local safe storage to the PTLS, consisting of
the actual protected data and the address of the local control data
pointer, to uniquely bind the local safe storage to the control data.
On deallocation, HEK-CFI pops the local safe storage from the PTLS.

When accessing control data pointers, HEK-CFI validateswhether
the index stored in the control data has been tampered with. For the
global safe area, HEK-CFI uses the provided read and write routines
directly, as shown in Figure 5. For the local safe area, HEK-CFI uses
read and write routines similar to the global ones, but they reference
the PTLS. We illustrate the instrumentation in Appendix 14.

Since HEK-CFI uses a one-to-one mapping to bind the control
data pointers to the safe storage uniquely, functions such as memcpy
may cause false positive exploitation attempts, as the copied stored
index mismatches with its referenced address. To prevent false pos-
itives, we provide an instrumentation routine performing realloc.
We carefully designed this routine to only copy the control data
if the old safe storage is validated. Since the old safe storage was
validated, this routine cannot be used to forge a safe storage.

4.3.2 Function-Signature Control-Flow Integrity. HEK-CFI provides
control-flow transfer restriction with a function signature granular-
ity by applying FineIBT [22] to the kernel. FineIBT leverages Intel
IBT for coarse-grained control-flow integrity and builds a software-
based control-flow restriction with function signature granularity
on top of it. It stores the hash of a function pointer’s signature into
a register before redirection and validates the hash on function
entry. A hash mismatch is interpreted as an exploitation attempt.

4.3.3 Control-Data Protection Selector. How much performance
overhead is acceptable and how much is prohibitive depends on the
use case. For high-security context, i.e., protecting all control data
with control-data integrity, an elevated performance overhead may
be acceptable. On the other hand, high-efficiency systems hardly
accept any performance overhead. Since we envision HEK-CFI
being suitable for all use cases, we provide a user policy that allows
to choose the desired CFI precision level and, hence, overhead.

To accomplish this, our control-data protection selector analyzes
the Linux kernel to identify control data pointers, i.e., function
and operation table pointers, that require protection with control-
data integrity based on the user policy. Dynamically allocated and
global control data pointers are stored in the global safe area (see
Section 4.1.2), while local control data pointers are stored in the
PTLS (see Section 4.1.1). Regardless of the user policy, protection
for the thread state and return addresses is always enabled.

User policy. The user policy comprises the number of permit-
ted control-flow targets with function signature granularity. Our
selector analyzes the Linux kernel and determines the number of
possible control-flow targets matching the signature for each con-
trol data pointer. For function pointers, if the determined number
exceeds the permitted control-flow targets, the selector annotates
to protect the pointer with control-data integrity. For operation
table pointers, the selector annotates to protect the pointer if one
of its containing function pointers exceeds the permitted targets.

5 IMPLEMENTATION
In this section, we present the proof-of-concept implementation
of HEK-CFI. We extend the Linux kernel and implement an LLVM
pass [38] for instrumentation and the control-data protection selec-
tor using CodeQL [24] and Python. Our selector and instrumenta-
tion work automatically based on a user policy.

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Lukas Maar, Pascal Nasahl, and Stefan Mangard

token|bsy
cs
rip

ssp+0x18

ssp+0x18

ssp+0x10

ssp+0x8

ssp

Figure 6: Required shadow stack layout for a valid iret.

5.1 Linux Kernel
We first enhance the Linux kernel to support all instrumentation
routines. Next, we integrate write protection for the safe areas en-
forced with CET SHSTK. Lastly, we provide thread state protection.

Kernel instrumentation. We implement thread-safe functions
for all kernel instrumentation routines described in Sections 4.1.1,
4.1.2 and 4.3.1, except for the read-access routines, as our com-
piler extension directly inserts an instruction sequence for the
read-access routines, as we explain in Section 5.3. Moreover, we im-
plement a routine that handles all fault scenarios of HEK-CFI, where
our proof-of-concept detects and prevents exploitation attempts.

Protection through shadow stack. At the time of writing,
there was no Linux kernel patch for the supervisor shadow stack1.
Therefore, we integrate shadow stack as follows: Intel CET SHSTK
supports per-thread supervisor and per-CPU IST shadow stacks.
The supervisor shadow stack is used with most executions, while
the IST shadow stack is used when the system requires the IST
stack. To enable shadow stack usage, we first set the per-CPU IST
shadow stacks (MSR_INT_SSP_TAB) to a table of shadow stacks
and the supervisor shadow stack (MSR_PL3_SSP) to the per-thread
shadow stack page. We then set bit X86_CR4_CET in the cr4, and
CET_SHSTK_EN | CET_WRSS_EN in the MSR_S_CET. Next, we pre-
pare all shadowpages for the setssbsy instruction accordingly [31],
which sets the shadow stack pointer register to the value speci-
fied in the MSR_PL0_SSP. The setssbsy instruction requires the
shadow stack to be not busy, while it marks the stack as busy. The
busy flag is stored in the memory location MSR_PL0_SSP points to.

To mark a page as a shadow stack, its permissions must be dirty
and non-writable. If a page is marked as shadow stack, only shadow
stack write instructions, e.g., wrssq, are permitted to write this
page. Otherwise, Intel CET raises a control-protection exception on
a write operation propagated from a non-shadow stack instruction,
e.g., movq. Moreover, if a shadow stack instruction writes to a non-
shadow page, Intel CET also raises a control-protection exception.

Our proof-of-concept enables the shadow stack during kernel
initializations before SMP is enabled, and only the init_task runs.
Hence, the shadow stack is only set for the init_task. Enabling the
shadow stackmust occur in the early stage of kernel initialization, as
our control-data integrity scheme relies on its security mechanism.

We extend the user thread creation routine to allocate one shadow
stack page, mark its permission to dirty and non-writable, initial-
ize the PTLS, and prepare the shadow stack for the iret to start
execution in user space. Figure 6 depicts the required shadow stack
layout to perform a valid iret [30], where ssp is the shadow stack
pointer, token is the supervisor token, and bsy is the busy flag in-
dicating whether the shadow stack is in use. On iret, the hardware
validates that rip and cs are equal between data and shadow stack.

1Xen hypervisor v4.15-unstable [11] has integrated Intel CET SHSTK for supervisor,
but it significantly varies from the Linux kernel integration.

If they are equal, the hardware sets the rip and cs accordingly. It
then sets the shadow stack pointer to ssp+0x18 and resets the bsy
flag on the user space transition. We also extend the kernel thread
creation, which closely assembles the user thread creation.

Since each thread has its shadow stack, the shadow stack pointer
has to be stored and restored on every context switch. Hence, we im-
plement the context switch in assembly as described in Section 4.2.3.
When restoring the next shadow stack pointer, we store a non-busy
token temporarily in the next shadow stack, which is used to switch
the shadow stack. The switch occurs with the setssbsy instruction.
Afterward, we reverse the temporary storing of the token.

Protection through IBT. Weuse the inofficial FineIBT patch [22,
46] for the control-flow restriction with signature granularity.

Interrupts and exceptions. We implement a safe storing rou-
tine for all general-purpose registers on interrupt and exception
entries, as illustrated in Listing 2. Crucially, rq_entry is executed
before the Linux kernel pushes the registers to the data stack via
PUSH_ALL_REGS. Since rq_entry requires the register r15 for the
upcoming execution, HEK-CFI temporarily stores it on a per-CPU
page in the per_cpu section. The per-CPU page’s permissions are
set as a shadow stack page. To support nested interrupts, HEK-CFI
increases the ptls->tos by sizeof(struct regs) after both
rq_entry and PUSH_ALL_REGS. We implement the validation rou-
tine rq_exit on interrupt and exception exits, shown in Listing 3.

Fast syscalls. Intel CET resets the supervisor shadow stack
pointer on a privilege level change from user to kernel space via a
fast syscall (i.e., syscall instruction) [31]. Hence, we extend the
kernel entrance for a fast syscall to set the shadow stack accordingly.
On rare occasions where the kernel returns via the iret instruction
instead of sysret to the user space, HEK-CFI prepares the shadow
stack to perform a valid iret, shown in Figure 6.

5.2 Control-Data Protection Selector
Our control-data protection selector has two main components:
A code analyzer and a parser. We use CodeQL [24] as our code
analyzer and a Python script as our parser. CodeQL compiles the
Linux kernel to create a database that stores essential meta infor-
mation. We run our CodeQL queries using the database to retrieve
relevant information for our mitigation. Then, our parser interprets
the query results based on the user policy and generates an output
file containing all the information for kernel instrumentation.

Code analyzer. Our CodeQL queries first find all control data
pointers, e.g., members within a struct or its containing struct or
standalone pointers. The queries then determine the number of
functions matching the function pointer’s signature or any within
an operation table. Each function pointer retrieves a score of match-
ing functions, while each operation table pointer retrieves the high-
est number of its containing function pointers. The queries also
determine all occurrences of control data pointers via allocation,
deallocation, global variable, or local variable.

Parser. Our parser inputs the query results and the user policy
(i.e., maximum permitted control-flow targets with signature gran-
ularity). It then filters out control data pointers with fewer targets
than the user policy allowed and saves the remaining pointers to
a file. This file represents all pointers protected with control-data
integrity. At this point, a user can modify the file if necessary.

Beyond the Edges of Kernel Control-Flow Hijacking Protection with HEK-CFI ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

5.3 Compiler Extension
Our compiler extension (LLVM pass) inserts validation checks into
the kernel, ensuring HEK-CFI’s functionality.

Control-data integrity. To ensure control-data integrity, the
LLVM pass first examines kernel code for operations such as al-
locations, deallocations, reallocation, reads, and writes of control
data pointers, annotated in the file generated by our control-data
protection selector. Subsequently, the pass modifies the code to
include instrumentation routine accessing the control data, where
Appendix 14 demonstrates the actual instrumentation. For alloca-
tion, deallocation, reallocation, and write access, the pass inserts
function calls provided by our kernel extension. The code is modi-
fied for read access to perform a performance-trimmed instruction
sequence executing the safe storage read-access. To protect global
variables, HEK-CFI identifies all protected global control data point-
ers, whether standalone or within structs, and allocates their safe
storage during the early stage of kernel initialization.

Similar to global variables in kernel code, global variables within
modules must also be initialized so that protected control data point-
ers reference a safe area. Hence, HEK-CFI identifies these global
variables and inserts initialization routines on module insertion.

Signature CFI. We utilize the inofficial FineIBT patch [46] in
our LLVM pass to ensure control-flow restriction with signature
granularity. This patch instruments the caller and callee sites in-
volved in each indirect forward-edge transfer.

6 CASE STUDY
This section demonstrates HEK-CFI’s effectiveness in reducing
forward control-flow targets. HEK-CFI achieves this by protecting
operation table pointers and function pointers with a common func-
tion signature from being overwritten through our kernel control-
data integrity scheme (see Section 4.1). Additionally, it restricts
the control-flow targets of function pointers with rare function
signatures at the granularity of signatures. By reducing the per-
mitted targets of control-data-integrity-protected pointers to 1 and
limiting signature-restricted pointers to the set of functions match-
ing the pointers’ signature, HEK-CFI effectively lowers the overall
average forward control-flow targets. This case study demonstrates
that HEK-CFI achieves a forward target reduction of more than
50% over comparable kernel CFI schemes [3, 16, 23, 41, 46] while
having a lower performance overhead than these schemes, as we
later evaluate in Section 8. Notably, HEK-CFI is also the first to
protect return addresses and thread states comprehensively.

In the following, we describe how we compute HEK-CFI’s tar-
get reduction with other kernel CFI schemes. We first discuss the
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 𝐴𝑙𝑙𝑜𝑤𝑒𝑑 (𝐴𝐼𝐴) metric, which allows us
to quantify CFI precision levels. We then determine the 𝐴𝐼𝐴 for
various CFI precision levels, including HEK-CFI. Finally, we demon-
strate that HEK-CFI outperforms the security guarantees of forward
control-flow target reduction compared to CFI schemes.

Quantify CFI precision level. Zhang et al. [70] proposed the
metric 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝐴𝐼𝑅) to evaluate the effective-
ness of CFI-based mitigations. However, for large binaries, e.g., the
Linux kernel, the 𝐴𝐼𝑅 may be misleading [9, 23] because in these
cases, an 𝐴𝐼𝑅 of more than 99 % stills permits 10 k of control-flow
targets for each indirect control-flow redirection. Subsequently,

Table 2: Function pointers protected with kernel control-data
integrity (see Section 4.1).

Total Within operation tables1 Plain2

Total 6487 3033 3454
Protected 1662 1235 427

Stored in 1read-only sections and 2writable sections.

Ge et al. [23] proposed 𝐴𝐼𝐴 as an improved evaluation metric to
quantify the effectiveness of CFI-based mitigations.

𝐴𝐼𝐴 =
1
𝑛

𝑛∑︁
𝑖=1

|𝑇𝑖 | (1)

Equation (1) shows the quantifier, where 𝑛 is the number of indirect
calls within the entire binary, and 𝑇 is the set of permitted control-
flow targets. We consider three cases for our CFI precision analysis:
Coarse-grained (reachable function granularity) and fine-grained
(function signature granularity) CFI policy, and our HEK-CFI.

Analysis. The setup of our case study is the Linux kernel v5.18
running with the configuration of Ubuntu 22.04.1 LTS. We perform
a manual analysis revealing that the entire kernel code, including
all modules, comprises 6487 function pointers (outlined in Table 2).
3454 of them are stored in writable sections and 3033 are stored
within read-only operation tables, whereas the kernel has 300 oper-
ation table pointers. We determine that the kernel comprises a total
of 140534 control-flow targets for coarse-grained CFI (without any
unaligned endbr64). Next, we obtain information for each indirect
call and the function pointer’s permitted targets with signature
granularity. Using these insides and Equation (1), we calculate a
coarse-grained 𝐴𝐼𝐴𝑐𝑔 of 140534 and a fine-grained 𝐴𝐼𝐴𝑓 𝑔 of 325.

Target reduction with HEK-CFI. We configure HEK-CFI via
user policy to enforce an𝐴𝐼𝐴ℎ𝑒𝑘−𝑐 𝑓 𝑖 that is lower than comparable
kernel CFI schemes [3, 16, 23, 41, 46]. To achieve this, a developed
tool (see Appendix 15) determines the user policy as 190 maximum
permitted control-flow targets. With this user policy, HEK-CFI’s
control-data protection selector automatically determines that out
of 3454 function pointers stored in writable sections, 427 exceed
the permitted control-flow targets of 190. Hence, HEK-CFI protects
these function pointers with control-data integrity, as outlined in Ta-
ble 2. Moreover, among the 300 operation table pointers, 88 contain
at least one function pointer exceeding 190 targets. Consequently,
HEK-CFI ensures the integrity of these 88 operation table pointers.
Since the operation tables referenced by the 88 protected pointers
are read-only, their containing 1235 function pointers are implicitly
protected from manipulation. Overall, our case study protects 1662
function pointers reducing their control-flow target to 1.

𝐴𝐼𝐴ℎ𝑒𝑘−𝑐 𝑓 𝑖 =
1
𝑛

©«
𝑝∑︁
𝑖=1

1 +
𝑛∑︁

𝑖=𝑝+1
|𝑇𝑖 |ª®¬ (2)

We adapt Equation (1) to Equation (2), where 𝑝 is the number of pro-
tected function pointers, i.e., 1662. We then compute 𝐴𝐼𝐴ℎ𝑒𝑘−𝑐 𝑓 𝑖 ,
resulting in 22 average permitted control-flow targets. To evalu-
ate HEK-CFI’s effectiveness, we compute the improvement over
coarse- and fine-grained CFI, showing a permitted target reduction
of 99.98 % over coarse- and 93.3 % over fine-grained CFI.

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Lukas Maar, Pascal Nasahl, and Stefan Mangard

Table 3: Permitted control-flow target reduction of HEK-CFI
over state-of-the-art mitigations.

AIA AIR HEK-CFI’s improvement1

- % %
KCoFI [16] 140534 - 99.98

FineIBT [46], kCFI [3] 325 - 93.3
Ge et al. [23] 92 - 76.4
Fine-CFI [41] -2 99.999740 50.4
HEK-CFI 22 99.999871 -
1 HEK-CFI’s control-flow target reduction over the other mitigation.

2 Not enough information provided to compute the AIA.

Comparison to existing CFI schemes. As described by Ge
et al. [23], directly comparing CFI precision metrics is inaccurate for
several reasons, such as varying kernels and kernel configurations.
Hence, for the following comparison, we relatively compare various
designs [3, 16, 23, 41, 46] as if their mitigation would have protected
our kernel binary, with the results shown in Table 3.

KCoFI provides coarse-grained CFI, resulting in an 𝐴𝐼𝐴𝐾𝐶𝑜𝐹𝐼 of
140534. Due to our 𝐴𝐼𝐴ℎ𝑒𝑘−𝑐 𝑓 𝑖 of 22, we reduce targets by 99.98 %.
In both fine-grained mitigations, FineIBT and kCFI, average per-
mitted targets (𝐴𝐼𝐴𝑓 𝑔) are 325, while our mitigation reduces these
targets by 93.3%. Ge et al. claimed that their proposal eliminates
71.8 % of signature-based CFI schemes. We assess the CFI precision
level of their proposal by reducing the𝐴𝐼𝐴𝑓 𝑔 by 71.8 %, resulting in
an 𝐴𝐼𝐴𝑔𝑒 of 92. With an 𝐴𝐼𝐴ℎ𝑒𝑘−𝑐 𝑓 𝑖 of 22, we improve by 76.4 %.

Since Fine-CFI only provides 𝐴𝐼𝑅 as precision level, we compute
the 𝐴𝐼𝑅 for HEK-CFI and Fine-CFI for our kernel binary.

𝐴𝐼𝑅ℎ𝑒𝑘−𝑐 𝑓 𝑖 =
1
𝑛

𝑛∑︁
𝑖=1

(
1 − |𝑇𝑖 |

𝑆

)
(3)

𝐴𝐼𝑅𝑓 𝑖𝑛𝑒−𝑐 𝑓 𝑖 = 1 − |𝑇 |
𝑆 · 𝑛 (4)

We use Equation (3) [70] to compute HEK-CFI’s 𝐴𝐼𝑅ℎ𝑒𝑘−𝑐 𝑓 𝑖 and
their adapted Equation (4) [41] for Fine-CFI’s 𝐴𝐼𝑅𝑓 𝑖𝑛𝑒−𝑐 𝑓 𝑖 , where
𝑇 is the set of permitted control-flow targets, 𝑛 is the number
of indirect calls, and 𝑆 is the kernel binary size. The results are
99.999 871 % for𝐴𝐼𝑅ℎ𝑒𝑘−𝑐 𝑓 𝑖 and 99.999 74 % for𝐴𝐼𝑅𝑓 𝑖𝑛𝑒−𝑐 𝑓 𝑖 , show-
ing HEK-CFI’s permitted target reduction of 50.4 %.

PAL [62] provides too little information to perform a reasonable
comparison. Since we neither have any information about their𝐴𝐼𝐴
nor 𝐴𝐼𝑅, a direct comparison with our case study is not possible.

Manual efforts. In rare cases, LLVM’s frontend may not store
variable type information, which can cause our implemented LLVM
pass to miss control data pointer uses. We manually inserted vali-
dations into the kernel code to address these rare false negatives
(less than 0.3%). We emphasize that these false negatives come
from neither our design nor our implementation but rather from
the limitations of the LLVM frontend. Therefore, we still refer to
our framework as automated.

Even if the compiler missed inserting an instrumentation routine,
this would result in a fault as the control data contains an index
instead of the data. Similarly, if the protection selector failed to find a
control-data instance, the instrumentation routines would interpret
the control data as an index, resulting in a false exploit detection.
During our evaluation, we encountered no such scenarios except

for the false negatives caused by the LLVM frontend, which we
manually fixed. Even if false negatives were present, we anticipate
they could not be exploited, as they would result in a fault.

7 SECURITY DISCUSSION
Improvement over existing works. HEK-CFI improves security
over existing works, as outlined in Table 1. For instance, only KCoFI
provides comprehensive thread state protection among the kernel
CFI schemes. Thus, all schemes except KCoFI fail to mitigate all
of our motivational exploitation attacks presented in Appendix 12,
as well as the Google Project Zero’s thread state exploit (cf. CVE-
2022-42703) [56]. In contrast, HEK-CFI successfully mitigates them.
Although a combination of solutions such as KCoFI, Fine-CFI, and
Intel CET SHSTK could theoretically offer similar protections for
thread state and return addresses, HEK-CFI still improves forward
edge protection (see Table 3) with substantially lower performance
overhead. In particular, HEK-CFI reduces the CFI targets by over
50% (see Section 6) compared to the combined forward CFI pre-
cision of these mitigations, represented by Fine-CFI’s enhanced
precision. Due to the unavailability of these solutions for empirical
comparison, we estimate their combined overhead to be signifi-
cantly higher than that of HEK-CFI. Specifically, HEK-CFI’s perfor-
mance overhead for macro benchmarks is about 1.85 %, as we will
evaluate later in Section 8, whereas the individual overheads for
KCoFI and Fine-CFI are around 10 % each. Similarly, when compar-
ing HEK-CFI with a theoretical combination of KCoFI, Ge et al.’s
solution, and SHSTK, HEK-CFI reduces targets by more than 76 %,
representing the enhancement over Ge et al.’s solution. Like the
previous example, we expect the combined overhead of these solu-
tions to be significantly higher, with KCoFI and Ge et al.’s solutions
individually contributing overheads of 10 % and 2 %, respectively.

Attacking control-data integrity. An attacker attempts to
perform the following attack scenarios on kernel control-data in-
tegrity. Firstly, they overwrite the index stored in place of control
data with an index referencing other control data. When the control
data is accessed, HEK-CFI verifies that the control data’s address
matches the stored address in the safe storage. HEK-CFI interprets
a mismatch as an exploit attempt. Secondly, they overwrite the in-
dex to reference outside the safe area. HEK-CFI performs a bounds
check and, hence, detects the exploit attempt. Thirdly, they tamper
with the global or local safe areas directly. However, the safe area is
write-protected by Intel CET and any write access by non-shadow
stack operations results in a control-protection exception.

Confused deputy attack. A confused deputy attack [39] tricks
a high-privilege routine to perform a write operation to protected
data. Since only shadow stack instructions, i.e., wrssq, are permit-
ted for writing to shadow stack pages, we identify the following
high-privilege routines that may be targeted: Instrumentation rou-
tines for the safe areas, i.e., rq_* and ptls_*. However, these rou-
tines cannot be exploited for a deputy attack as they only write to
the safe area if the access was validated. Furthermore, these routines
only write to the current shadow stack or per-CPU storage. Since
an attacker can neither control the shadow stack pointer nor the
per-CPU storage is mapped, these routines can also not be used for
a deputy attack. Overall, HEK-CFI effectively mitigates the confused
deputy attack, preventing the existence of a wrssq-gadget.

Beyond the Edges of Kernel Control-Flow Hijacking Protection with HEK-CFI ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Le
ve
lD
B H

ot
Re
ad

Le
ve
lD
B F

ill
Sy
nc

Le
ve
lD
B O

ve
rw
rit
e

Le
ve
lD
B R

an
d F

ill

Le
ve
lD
B R

an
d R

ea
d

Le
ve
lD
B S

ee
k R

an
d

Le
ve
lD
B S

eq
u F

ill

Op
en
SS
L S

HA
51
2

Op
en
SS
L A

ES
-12

8

SQ
Lit
e 1

Th
rea

d

SQ
Lit
e 8

Th
rea

ds

Db
en
ch
1 C

lie
nt

Db
en
ch
6 C

lie
nt

Ap
ac
he

20
Re
q

Ap
ac
he

10
0 R

eq

Ap
ac
he

20
0 R

eq
NG

IN
X
20
Re
q

NG
IN
X
10
0 R

eq

NG
IN
X
20
0 R

eq

Sc
hb
en
ch
1 T

hr
ea
d

Sc
hb
en
ch
4 T

hr
ea
d

pm
be
nc
h R

ea
ds

pm
be
nc
h W

rit
es

pe
rf-
be
nc
h E

po
ll

pe
rf-
be
nc
h F

ut
ex

Re
dis

GE
T

Re
dis

SE
T

Re
dis

LP
OP

Re
dis

SA
DD

Re
dis

LP
US
H

PH
PB
en
ch

7-Z
ip
Co
mp

res
sio
n

60
0.p
erl
be
nc
h_
s

60
2.g
cc
_s

60
5.m

cf_
s

62
5.x
26
4_
s

63
1.d
ee
ps
jen

g_
s

64
1.l
ee
la_
s

0%

4%

8%

12%

0.
22

%
0.
07

% 4.
47

%
4.
1%

0.
09

%
1.
05

% 4.
91

%

0.
04

%
0.
02

%2.
2%

2.
98

%
0.
93

%
1.
26

%
8.
16

%
6.
13

%
4.
95

%
2.
68

%
2.
55

%
2.
64

%
0.
39

% 0.
73

%
0.
15

%
0.
75

%
2.
99

%
0.
75

%

0.
02

%
0.
33

% 1.
99

%
0.
49

%
0.
01

%
0.
75

%

0.
91

%

0.
02

%
0.
31

%
0.
05

%
0% 0.

63
%

0%

O
ve
rh
ea
d

Stress Tests Real-World Applications SPEC CPU 2017

Figure 7: Macro benchmark results.

Thread state. The Linux kernel processes system events that
store the thread state in memory, as illustrated in Figures 1 and 2.
Directly overwriting the state, e.g., rip or cs, on the data stack ⑤

will cause a control-protection exception on iret as Intel CET val-
idates that the rip on data and shadow stack is equal. Directly
tampering with pages marked as shadow stack also leads to a
control-protection exception. Moreover, an attacker may manipu-
late general-purpose registers ⑥ stored in memory. For instance,
the attacker overwrites a register stored on the data stack that will
be used for a control-flow transfer later during execution. How-
ever, HEK-CFI stores all general-purpose registers within the PTLS
and validates the registers to be equal on state restoration. Hence,
HEK-CFI detects the tampering attempt. In attack scenario ❺, an
attacker attempts to tamper with the thread state restored on a
context switch event. However, since HEK-CFI protects the stored
thread state within PTLS and the shadow stack state to the global
safe area, each corruption attempt is detected. By manipulating any
of these safe areas, Intel CET raises a control-protection exception
which HEK-CFI interprets as an exploitation attempt.

Architectural-defined control data. The Linux kernel has
various architectural-defined control data that may be targeted
for control-flow hijacking attacks. x86 CPUs contain Interrupt De-
scriptor Tables (IDT), Global Descriptor Tables (GDT), and Local
Descriptor Tables (LDT) storing security-critical system configura-
tions. The IDT stores sensitive information, such as interrupt entry
locations, CPU privilege level on interrupt entry, and used stack.
However, corrupting the IDT is not possible on recent Linux ver-
sions because the kernel maps it as read-only. Both descriptor tables,
GDT and LDT, store information about memory segmentations,
such as the code segment. The code segment determines the CPU
privilege level on interrupt (and exception) entry and exit, as well
as the base address used by indirect and direct control-flow trans-
fers [23]. By tampering with the descriptor tables, an attacker may
change data of segments, e.g., code segment. HEK-CFI maps the
GDT as a shadow stack page to prevent descriptor table corruption
and uses the wrssq instruction for write operations. The LDT could
be protected similarly to the GDT, with its address protected with
control-data integrity. However, in our proof-of-concept, we com-
piled the Linux kernel with CONFIG_MODIFY_LDT_SYSCALL reset,
not supporting LDT. This may affect compatibility with older user
applications, but we encountered no issues during the evaluation.

Control-Flow Bending. Control-Flow Bending (CFB) [9] is an
attack that exploits so-called dispatcher functions that corrupts

their own return address using malicious arguments. Even with a
fully-precise static CFI scheme [9], commonly used functions have
a large set of permitted backward edges that can be used for a CFB
attack. Thus, CFI-based mitigations that do not fully protect return
addresses can be bypassed by CFB attacks [23]. However, HEK-CFI
includes a shadow stack, which prevents dispatcher functions from
corrupting their return address and effectively mitigates CFB.

Pointer-to-pointer corruption. HEK-CFI is designed to pro-
tect control data from being corrupted. However, an attacker may
corrupt a non-control data pointer to a control data, e.g., the attacker
may corrupt a pointer within a list of inodes (list_head) to forge
an inode. Fortunately, our control-data integrity scheme provides
generic protection that can also be applied to protect non-control
data pointers. We acknowledge that identifying an appropriate set
of non-control data pointers to protect is a subject that requires
further research and is an area we plan to explore in future work.

Stack tampering. Xu et al. [67] recently presented their novel
WarpAttack attack targeting CFI schemes. They demonstrated that
compiler optimizations may introduce double-fetch vulnerabilities
when registers containing control data are spilled to the stack, mak-
ing them vulnerable to corruption attacks. Fortunately, HEK-CFI’s
PTLS can prevent against WarpAttack by storing these registers
within PTLS instead of pushing them to the stack. While WarpAt-
tack protection is possible, it is currently out of scope as extending
the compiler stage would require significant engineering effort.

8 PERFORMANCE EVALUATION
We evaluate our proof-of-concept’s runtime overhead by perform-
ing micro benchmarks with LMbench [45], and macro benchmarks
with Phoronix Test Suite [49] and SPEC CPU 2017 [15]. We observe
an overhead of 12.3 ± 1.5% for micro benchmarks, while macro
benchmarks from Phoronix and SPEC increase the overhead by
1.85 ± 1.02% and 0.17 ± 0.23%. We run our proof-of-concept on
Ubuntu 22.04.1 LTS on the Intel Alder Lake processor i7-12700k,
supporting Intel CET. We also evaluate the compile time, binary
size, and analyzer overhead in Appendix 16.

Micro benchmarks. We use LMbench to evaluate the latency
and bandwidth overhead. We consider the Linux kernel v5.18 base-
line and our proof-of-concept HEK-CFI enhanced one. We run each
benchmark 80 times and compute the geometric mean and standard
deviation. Table 4 illustrates the evaluation results for HEK-CFI,
with the geometric mean being 12.3 ± 1.5%.

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Lukas Maar, Pascal Nasahl, and Stefan Mangard

Phoronix Test Suite. We split our benchmarks from Phoronix
Test Suite into stress tests and real-world applications, as illustrated
in Figure 7. Among the stress tests are three database, two web-
server, one scheduler, one virtual paging, and one performance
tool benchmarks. Since the webserver and database benchmarks
use a lot of control-data pointers with common signatures, e.g.,
void (*)(struct sk_buff *) and void (*)(struct inode
*), these benchmarks elevate the overhead between 0.01 % to 8.16 %.
The Schbench benchmark illustrates that HEK-CFI has little im-
pact on scheduling performance as the caused overhead is between
0.39% to 0.73%. Among the real-world applications are one in-
memory database, and three user applications, having a perfor-
mance overhead between 0.01 % to 1.99 %. The computed geometric
mean of all Phoronix Test Suite macro benchmarks is 1.85 ± 1.02%.

We observe an elevated standard deviation for benchmarks, par-
ticularly multi-threaded ones. However, since these are present in
both kernel binaries, the baseline and HEK-CFI-enhanced, they are
caused by the noisy kernel properties, e.g., interrupts.

SPEC CPU 2017. We perform various speed SPEC CPU 2017
macro benchmarks, as illustrated in Figure 7. The resulting over-
heads are with a geometric mean of 0.17 ± 0.23%, in line with the
results of the real-world applications from Phoronix Test Suite.

9 RELATEDWORK
FineIBT [22, 46] provides effective protection for function pointers
with rare function signatures, as they enforce control-flow integrity
with function signature granularity while having little impact on
the performance [22, 59]. However, FineIBT does not protect return
addresses. kCFI [3] protects forward-edge control-flow transfers
similarly to FineIBT, but instead of relying on Intel’s IBT hardware
feature, it uses Clang’s software solution. PATTER [68] uses ARM’s
Pointer Authentication (PA) [4] to sign and authenticate function
pointers and return addresses and, hence, protects against tamper-
ing of these two control data but does not protect operation table
pointers. Camouflage [18] protects selected function and opera-
tion table pointers, and return addresses, with ARM PA. All four
proposed mitigations [3, 18, 46, 68] do not protect the thread state.

KCoFI [16] is a coarse-grained CFI scheme with protection for
the thread state. For forward-edge control-flow transfers, they only
reduce the targets by 98.18%, and for backward transfers, KCoFI
enforces that a function return must land at one of the call sites that
could have called it. Moreover, KCoFI has a performance overhead of
above 10 % and 100 % for macro and micro benchmarks, respectively.

Ge et al. [23] proposed a method of retrofitting kernel software
to provide fine-grained CFI. They demonstrated that their FreeBSD
proof-of-concept reduces performance overhead and control-flow
targets compared to a function signature-based CFI scheme. Their
proof-of-concept implementation has a reasonable performance
overhead of around 2 % for macro benchmarks. To protect against at-
tack scenarios ⑤ and ⑥ from Figure 1, they disable preemption dur-
ing kernel space execution. The kernel may also raise a page fault
exception on common occasions, e.g., copy_from_user, which
they address by storing the rip to an unused debug register on
exception entry and validating on exit. However, as this debug reg-
ister is stored in writable memory on a context switch (and they do
not protect the thread state on a context switch ❺), an attacker can

corrupt the memory to gain control of the register on restoration.
Subsequently, the instruction pointer is set to the corrupted debug
register (⑤) on exception exit, hijacking the control flow.

Li et al. [41] proposed Fine-CFI that reduces the indirect control-
flow targets over previous CFI schemes [16, 23]. It induces the over-
head by about 10 % and 8 % for macro benchmarks from Phoronix
and SPEC, respectively. Moreover, Fine-CFI insufficiently protects
the thread state on an iret instruction as it only validates the
rip and cs. This leaves the stored state unprotected for attack
scenarios ⑥ and ❺ from Figures 1 and 2, respectively.

PAL [62] is a kernel CFI-based defense that uses ARM PA to pro-
tect function pointers and return addresses with 1 % to 5 % overhead
for macro benchmarks. However, their measured overheads must be
interpreted cautiously, as they fluctuate by up to 200 %, as reported
in their appendix. PAL does not protect operation table pointers and
insufficiently protects the thread state. On a preemption, the kernel
stores the registers in memory, and PAL computes a signature of all
registers, including a time-based nonce. Then, PAL stores the nonce
and signature in memory. After preemption, it verifies the registers
to ensure they have not been corrupted. We identify three security
concerns. First, it only validates the registers on preemption, not
on a context switch event. Second, PAL is susceptible to replay
attacks, where an attacker manipulates the nonce, signature, and
register values to match a previously authenticated version. Third,
storing the registers in memory before signing them makes PAL
vulnerable to TOCTTOU attacks, where an attacker corrupts the
stored register values before the signature is computed. Overall,
PAL is vulnerable to attack scenarios ⑤, ⑥, and ❺.

Carlini et al. [9] demonstrated that CFB can bypass CFI schemes
that determine the backward edges statically. Since these mitiga-
tions, except PATTER, Camouflage, and PAL, do so, their scheme is
vulnerable to CFB, re-enabling control-flow hijacking attacks.

While CFI is a powerful approach, there are other approaches [2,
25, 35, 36, 44, 50, 65] to prevent kernel control-flow hijacking attacks.
Although we donot discuss these, their existence highlights the
ongoing efforts to enhance kernel security.

10 CONCLUSION
In this paper, we introduced HEK-CFI, which provides hardware-
enforced protection for control data, effectively mitigating control-
flow hijacking attacks. Our HEK-CFI was established as the first
kernel CFI-based countermeasure to provide protection for both
thread state during system events and return addresses. At the
same time, it generically reduces the forward control-flow targets
and performance overhead compared to existing kernel mitigations.
Overall, HEK-CFI increases kernel security.

11 ACKNOWLEDGEMENTS
We thank the anonymous reviewers and shepard for their valuable
feedback. This project has received funding from the Austrian Re-
search Promotion Agency (FFG) via the SEIZE and AWARE project
(FFG grant number 888087 and 891092). Any opinions, findings, con-
clusions, or recommendations expressed in this paper are those of
the authors and do not necessarily reflect the views of the funding
parties.

Beyond the Edges of Kernel Control-Flow Hijacking Protection with HEK-CFI ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

REFERENCES
[1] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. Control-Flow

Integrity. In CCS.
[2] Muhammad Abubakar, Adil Ahmad, Pedro Fonseca, and Dongyan Xu. 2021.

SHARD: Fine-Grained Kernel Specialization with Context-Aware Hardening. In
USENIX Security Symposium.

[3] Android. 2022. Kernel Control Flow Integrity. https://source.android.com/docs/
security/test/kcfi

[4] ARM. 2022. Arm Architecture Reference Manual for A-profile architecture.
[5] Tyler K. Bletsch, Xuxian Jiang, Vincent W. Freeh, and Zhenkai Liang. 2011. Jump-

oriented programming: a new class of code-reuse attack. In AsiaCCS.
[6] Daniel P Bovet and Marco Cesati. 2005. Understanding the Linux Kernel. O’Reilly

Media, Inc.
[7] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. 2008. When

Good Instructions Go Bad: Generalizing Return-Oriented Programming to RISC.
In ACM Conference on Computer and Communications Security (CCS).

[8] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin Schwarzl, and
Daniel Gruss. 2020. KASLR: Break It, Fix It, Repeat. In AsiaCCS.

[9] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R
Gross. 2015. Control-Flow Bending: On the Effectiveness of Control-Flow In-
tegrity.. In USENIX Security.

[10] Nicholas Carlini and David A. Wagner. 2014. ROP is Still Dangerous: Breaking
Modern Defenses. In USENIX Security.

[11] Andrew Cooper. 2021. Xen CET Supervisor Shadow Stacks. https://xenbits.xen.
org/people/andrewcoop/Xen-CET-SS.pdf

[12] Jonathan Corbet. 2012. Supervisor mode access prevention. https://lwn.net/
Articles/517475/

[13] Jonathan Corbet. 2015. Kernel security: beyond bug fixing. https://lwn.net/
Articles/662219/

[14] Jonathan Corbet. 2016. Defending against Rowhammer in the kernel. https:
//lwn.net/Articles/704920/

[15] Standard Performance Evaluation Corporation. 2017. SPEC CPU 2017. https:
//www.spec.org/cpu2017/

[16] John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. KCoFI: Complete
Control-Flow Integrity for Commodity Operating System Kernels. In S&P.

[17] Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-Reza Sadeghi. 2017.
PT-Rand: Practical Mitigation of Data-only Attacks against Page Tables. In NDSS.

[18] Rémi Denis-Courmont, Hans Liljestrand, Carlos Chinea, and Jan-Erik Ekberg.
2020. Camouflage: Hardware-assisted CFI for the ARM Linux kernel. In DAC.

[19] Jake Edge. 2011. Extending the use of RO and NX. https://lwn.net/Articles/
422487/

[20] Jake Edge. 2013. Kernel address space layout randomization. https://lwn.net/
Articles/569635/

[21] Reza Mirzazade Farkhani, Saman Jafari, Sajjad Arshad, William Robertson, Engin
Kirda, and Hamed Okhravi. 2018. On the Effectiveness of Type-Based Control
Flow Integrity. In ACSAC.

[22] Alexander J. Gaidis, Joao Moreira, Ke Sun, Alyssa Milburn, Vaggelis Atlidakis,
and Vasileios P. Kemerlis. 2023. FineIBT: Fine-grain Control-flow Enforcement
with Indirect Branch Tracking. arXiv:2303.16353 (2023).

[23] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. 2016. Fine-
Grained Control-Flow Integrity for Kernel Software. In Euro S&P.

[24] GitHub. 2021. CodeQL. https://codeql.github.com/
[25] Spyridoula Gravani, Mohammad Hedayati, John Criswell, and Michael L. Scott.

2019. IskiOS: Lightweight Defense Against Kernel-Level Code-Reuse Attacks.
arXiv:1903.04654 (2019).

[26] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA.

[27] Daniel Gruss, Michael Schwarz, and Moritz Lipp. 2018. Meltdown: Basics, Details,
Consequences. In Black Hat USA.

[28] Ralf Hund, Thorsten Holz, and Felix C. Freiling. 2009. Return-Oriented Rootkits:
Bypassing Kernel Code Integrity Protection Mechanisms. In USENIX Security.

[29] Intel. 2016. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

[30] Intel. 2017. Control-flow Enforcement Technology Preview. Revision 2.0.
[31] Intel. 2019. Intel 64 and IA-32 Architectures Software Developer’s Manual,

Volume 4: Model-Specific Registers.
[32] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D Keromytis. 2014.

ret2dir: Rethinking kernel isolation. In USENIX Security.
[33] Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D. Keromytis. 2012.

kGuard: Lightweight Kernel Protection against Return-to-User Attacks. In
USENIX Security.

[34] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
S&P.

[35] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin
Rothberg, Andreas Ziegler, Wolfgang Schröder-Preikschat, Daniel Lohmann, and

Rüdiger Kapitza. 2013. Attack Surface Metrics and Automated Compile-Time OS
Kernel Tailoring. In NDSS.

[36] Anil Kurmus and Robby Zippel. 2014. A Tale of Two Kernels: Towards Ending
Kernel Hardening Wars with Split Kernel. In CCS.

[37] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R Sekar,
and Dawn Song. 2014. Code-Pointer Integrity. In OSDI.

[38] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In IEEE / ACM International
Symposium on Code Generation and Optimization – CGO.

[39] Hugo Lefeuvre, Vlad-Andrei Bădoiu, Yi Chien, Felipe Huici, Nathan Dautenhahn,
and Pierre Olivier. 2022. Assessing the Impact of Interface Vulnerabilities in
Compartmentalized Software. In NDSS.

[40] Guoren Li, Hang Zhang, Jinmeng Zhou, Wenbo Shen, Yulei Sui, and Zhiyun Qian.
2023. A Hybrid Alias Analysis and Its Application to Global Variable Protection
in the Linux Kernel. In USENIX Security.

[41] Jinku Li, Xiaomeng Tong, Fengwei Zhang, and Jianfeng Ma. 2018. Fine-CFI: Fine-
Grained Control-Flow Integrity for Operating System Kernels. IEEE Transactions
on Information Forensics and Security (2018).

[42] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez, Jan-Erik
Ekberg, and N. Asokan. 2019. PAC it up: Towards Pointer Integrity using ARM
Pointer Authentication. In USENIX.

[43] LukasMaar, Martin Schwarzl, Fabian Rauscher, Daniel Gruss, and StefanMangard.
2023. DOPE: DOmain Protection Enforcement with PKS. In ACSAC.

[44] DerrickMcKee, Yianni Giannaris, Carolina Ortega Perez, Howard Shrobe,Mathias
Payer, Hamed Okhravi, and Nathan Burow. 2022. Preventing Kernel Hacks with
HAKC. In NDSS.

[45] Larry McVoy and Carl Staelin. 1996. Lmbench: Portable Tools for Performance
Analysis. In USENIX ATC.

[46] Joao Moreira. 2022. Kernel FineIBT Support. https://lwn.net/Articles/891976/
[47] James Morse. 2015. arm64: kernel: Add support for Privileged Access Never.

https://lwn.net/Articles/651614/
[48] PaX Team. 2015. Rap: Rip rop.
[49] Phoronix. 2022. OpenBenchmarking. https://openbenchmarking.org
[50] Marios Pomonis, Theofilos Petsios, Angelos D Keromytis, Michalis Polychronakis,

and Vasileios P Kemerlis. 2017. kRˆ X: Comprehensive Kernel Protection against
Just-In-Time Code Reuse. In EuroSys.

[51] Sergej Proskurin, Marius Momeu, Seyedhamed Ghavamnia, Vasileios P. Kemerlis,
and Michalis Polychronakis. 2020. xMP: Selective Memory Protection for Kernel
and User Space. In S&P.

[52] Samsung Knox News. 2016. Real-time Kernel Protection (RKP). https://www.
samsungknox.com/de/blog/real-time-kernel-protection-rkp

[53] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Programming:
On the Difficulty of Preventing Code Reuse Attacks in C++ Applications. In S&P.

[54] Mark Seaborn. 2015. Exploiting the DRAM rowhammer bug to gain kernel
privileges. http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-
rowhammer-bug-to-gain.html

[55] INetCop Security. 2016. New Reliable Android Kernel Root Exploitation Tech-
niques. http://powerofcommunity.net/poc2016/x82.pdf

[56] Seth Jenkins. 2022. Exploiting CVE-2022-42703 - Bringing back the stack at-
tack. https://googleprojectzero.blogspot.com/2022/12/exploiting-CVE-2022-
42703-bringing-back-the-stack-attack.html

[57] Seth Jenkins. 2023. Analyzing a Modern In-the-wild Android Ex-
ploit. https://googleprojectzero.blogspot.com/2023/09/analyzing-modern-in-
wild-android-exploit.html

[58] Hovav Shacham. 2007. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In CCS.

[59] Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita. 2019. Security Analysis of
Processor Instruction Set Architecture for Enforcing Control-Flow Integrity. In
HASP.

[60] Di Shen. 2017. Defeating Samsung KNOX with Zero Privilege.
https://infocondb.org/con/black-hat/black-hat-usa-2017/defeating-samsung-
knox-with-zero-privilege

[61] Chengyu Song, Byoungyoung Lee, Kangjie Lu, William R. Harris, Taesoo Kim,
and Wenke Lee. 2016. Enforcing Kernel Security Invariants with Data Flow
Integrity. In NDSS.

[62] Yoo Sungbae, Park Jinbum, Kim Seolheui, Kim Yeji, and Kim Taesoo. 2022. In-
Kernel Control-Flow Integrity on Commodity OSes using ARM Pointer Authen-
tication. In USENIX Security.

[63] ZhiWang and Xuxian Jiang. 2010. HyperSafe: A Lightweight Approach to Provide
Lifetime Hypervisor Control-Flow Integrity. In S&P.

[64] Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou. 2019. KEPLER: Facilitating
Control-flow Hijacking Primitive Evaluation for Linux Kernel Vulnerabilities. In
USENIX Security.

[65] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui Gong, and Wei Zou. 2018.
FUZE: Towards Facilitating Exploit Generation for Kernel Use-After-Free Vul-
nerabilities. In USENIX Security.

https://source.android.com/docs/security/test/kcfi
https://source.android.com/docs/security/test/kcfi
https://xenbits.xen.org/people/andrewcoop/Xen-CET-SS.pdf
https://xenbits.xen.org/people/andrewcoop/Xen-CET-SS.pdf
https://lwn.net/Articles/517475/
https://lwn.net/Articles/517475/
https://lwn.net/Articles/662219/
https://lwn.net/Articles/662219/
https://lwn.net/Articles/704920/
https://lwn.net/Articles/704920/
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/
https://lwn.net/Articles/422487/
https://lwn.net/Articles/422487/
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
https://codeql.github.com/
https://lwn.net/Articles/891976/
https://lwn.net/Articles/651614/
https://openbenchmarking.org
https://www.samsungknox.com/de/blog/real-time-kernel-protection-rkp
https://www.samsungknox.com/de/blog/real-time-kernel-protection-rkp
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://powerofcommunity.net/poc2016/x82.pdf
https://googleprojectzero.blogspot.com/2022/12/exploiting-CVE-2022-42703-bringing-back-the-stack-attack.html
https://googleprojectzero.blogspot.com/2022/12/exploiting-CVE-2022-42703-bringing-back-the-stack-attack.html
https://googleprojectzero.blogspot.com/2023/09/analyzing-modern-in-wild-android-exploit.html
https://googleprojectzero.blogspot.com/2023/09/analyzing-modern-in-wild-android-exploit.html
https://infocondb.org/con/black-hat/black-hat-usa-2017/defeating-samsung-knox-with-zero-privilege
https://infocondb.org/con/black-hat/black-hat-usa-2017/defeating-samsung-knox-with-zero-privilege

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Lukas Maar, Pascal Nasahl, and Stefan Mangard

1 struct dev {
2 ...
3 void (*rel)(struct dev *);
4 ...
5 };
6 void dev_rel(struct dev *dev)
7 {
8 ...
9 dev->rel(dev);
10 ...
11 }

x86_641 dev_rel:
2 ...
3 /* load rel to rbx */
4 mov rbx, REL(rdi)
5 /* call dev->rel */
6 call *rbx
7 ...

interrupt

arm641 dev_rel:
2 ...
3 /* load rel to x1 */
4 ldr x20, [x0, REL]
5 /* call dev->rel */
6 blr x20
7 ...

exception

Figure 8: dev_rel performs an indirect branch (for x86_64
and arm64). If an interrupt/exception is triggered shortly be-
fore the branch, the register (rbx or x20) is stored to writable
memory. By overwriting this memory location, an attacker
can gain control over the register, resulting in a CFHP.

[66] Mengyao Xie, Chenggang Wu, Yinqian Zhang, Jiali Xu, Yuanming Lai, Yan Kang,
Wei Wang, and Zhe Wang. 2022. CETIS: Retrofitting Intel CET for Generic and
Efficient Intra-Process Memory Isolation. In CCS.

[67] Jianhao Xu, Luca Di Bartolomeo, Flavio Toffalini†, Bing Mao, and Mathias Payer.
2023. WarpAttack: Bypassing CFI through Compiler-Introduced Double-Fetches.
In S&P.

[68] Yutian Yang, Songbo Zhu, Wenbo Shen, Yajin Zhou, Jiadong Sun, and Kui Ren.
2019. ARM Pointer Authentication based Forward-Edge and Backward-Edge
Control Flow Integrity for Kernels. arXiv:1912.10666 (2019).

[69] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack. In USENIX Security.

[70] Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS Binaries. In
USENIX Security.

[71] Xiaochen Zou. 2022. CVE-2022-27666 Writeup. https://etenal.me/archives/1825

APPENDIX
12 MOTIVATIONAL EXPLOIT EXAMPLES
In this section, we demonstrate various attack scenarios where
an attacker obtains a Control-Flow Hijacking Primitive (CFHP),
allowing them to deviate from the legal Control-Flow Graph (CFG)
in an attacker-controlled manner. In the cases of Appendices 12.1
and 12.2, these CFHP scenarios also allow adversaries to bypass
the control-flow restrictions imposed by applied kernel CFI-based
countermeasures. As a result, attackers can redirect the control
flow to an attacker-controlled code location. Furthermore, in Ap-
pendix 12.3, we show that even being within the approximated
CFG with signature granularity is insufficient to mitigate this at-
tack, leaving the system vulnerable to compromise by adversaries.
Our approach, HEK-CFI, addresses these attack scenarios by pro-
tecting the thread state during all system events and control-data
pointers, i.e., function and operation table pointers.

12.1 Attacking Thread State on Exceptions and
Interrupts

Suppose an interrupt or exception request disrupts a thread. In
that case, the system stores the thread state, including general-
purpose registers that may hold control data, to a writable memory
location, e.g., thread stack frame. This allows the system to resume
the thread’s execution once the interrupt or exception handling is

1 ret_from_fork:
2 mov rax, rdi
3 call schedule_tail
4 test rbx, rbx
5 jne 1f
6 2:
7 mov rsp, rdi
8 call syscall_exit_to_user_mode
9 jmp __irqentry_text_end
10 1:
11 mov r12, rdi
12 call *rbx
13 jmp 2f

Listing 4: For x86_64.

1 ret_from_fork:
2 bl schedule_tail
3 cbz x19, 1f
4 mov x0, x20
5 blr x19
6 1:
7 get_current_task tsk
8 mov x0, sp
9 bl asm_exit_to_user_mode
10 b ret_to_User

Listing 5: For arm64.

Figure 9: Instruction sequence ret_from_fork that can be
exploited for a CFHP by tampering with the callee-saved
register, rbx for x86_64 and x19 for arm64.

completed. However, there is a security issue. If an attacker tampers
with the memory holding control data in the saved thread state,
they gain control over the control data when the system restores
the thread state. As a result, the attacker obtains a CFHP.

Figure 8 illustrates this attack scenario by pivoting the dev_rel
function (shown in C, x86_64 assembly, and arm64 assembly). This
functionmakes an indirect branch to the address stored in dev->rel.
To exploit dev_rel as a CFHP, an attacker can initiate an asyn-
chronous interrupt or exception, such as using the high-precision
hrtimer interface in the Linux kernel. This interrupt or exception
may happen right before the assembly code’s indirect branch in
Line 4.If the interrupt or exception occurs precisely at this point,
the attacker can manipulate the register rbx or x20 stored on the
stack frame. When the interrupt or exception handling finishes,
the execution continues with the manipulated register. Hence, the
indirect branch redirects the control flow to the value stored in the
tampered register, effectively hijacking the control flow.

In Figure 8, we exemplify this attack on the thread state dur-
ing the system events exception and interrupts with the function
dev_rel. This can be generalized for every function, performing an
indirect branch which can be disrupted by an exception, e.g., page
fault on copy_from/to_user, or interrupt, e.g., timer interrupt.

12.2 Attacking Thread State on Context Switch
Exploiting instruction sequence of ret_from_fork. In this

attack scenario, an attacker tampers with callee-saved registers
(part of the thread state) of a thread currently not running to obtain
a CFHP. In Figure 9, we illustrate the assembly instruction sequence,
which is executed as first instruction sequence for a just created pro-
cess using fork to return to the user space. For x86_64, the kernel
executes the ret_from_fork function as shown in Listing 4. If an
attacker tampers with the callee-saved registers between the fork
and execution of ret_from_fork, they gain control over rbx and
r12 (which will be rdi). Since rbx is not zero (Line 4), the indirect
call at Line 12 is made with the attacker-controlled registers. This
control over the indirect call is what allows the attacker to achieve
a CFHP. The function ret_from_fork for arm64 (see Listing 5)
closely resembles the one for x86_64. By corrupting the memory

https://etenal.me/archives/1825

Beyond the Edges of Kernel Control-Flow Hijacking Protection with HEK-CFI ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

1 void rq_qos_wait(...)
2 {
3 struct rq_qos_wait_data data = {
4 ...
5 .cb = acquire_inflight_cb,
6 };
7 ...
8 do {
9 /* break out of while loop */
10 if (data.got_token)
11 break;
12 /* perform indirect branch */
13 data.cb(...);
14 ...
15 /* perform context switch */
16 schedule();
17 } while (1);
18 }

Listing 6: Code pattern example that can be exploited for a
CFHP. An attacker tampers with the callee-saved register,
containing the function pointer data.cb (Line 5), during the
schedule function (Line 16) to have control over the indirect
branch (Line 13).

location, where x19 is stored, (i.e., taxk_struct) an attacker gains
control over it, which is then used for a CFHP in Line 5.

For a more detailed exploitation, we refer to Appendix 13, where
we exploit the CVE-2019-2215 to perform an end-to-end attack.

Exploiting generic code patterns. Another way to achieve
a CFHP is through code patterns that involve storing a function
pointer in a callee-saved register and then calling functions leading
to a context switch, such as schedule or mutex_lock. On the
context switch, the thread state including the callee-saved register
is stored in memory, and the thread is marked as not running.
Similar to the previous example, an attacker interferes with the
memory location where the callee-saved register is stored while
the thread is not running. This manipulation allows the attacker to
gain control over the function pointer, resulting in a CFHP when
the thread resumes execution to call the function pointer.

We illustrate in Listing 6 an example of such a code pattern. The
function rq_qos_wait loads a function pointer into a register in
Line 5 and uses it in an indirect branch in Line 13. In between, it
may perform a context switch in Line 16. Crucially, whether the
function uses a callee-saved register or not depends on the compiler.
For our observations, we compiled the Linux v5.18 with gcc version
10.2.1 for both x86_64 and arm64 architectures using the default
configuration of Ubuntu 22.04.1 LTS. In both cases, the kernel used
callee-saved registers to store the function pointer, resulting that
rq_qos_wait can be exploited to obtain a CFHP.

12.3 Attacking Signature-based CFI
CFI with signature granularity provides weak security guaran-
tees for the Linux kernel because the set of control-flow targets
matching the signature is too large. In Figure 10, we demonstrate
an example of how an attacker can bypass signature-granular
CFI. To explain, the attacker begins by opening a file where they

1 struct file_operations {
2 ...
3 ssize_t (*read_iter)
4 (struct kiocb *, struct iov_iter *);
5 ssize_t (*write_iter)
6 (struct kiocb *, struct iov_iter *);
7 ...
8 };
9 static ssize_t do_iter_readv_writev(
10 struct file *filp,
11 struct iov_iter *iter,
12 int type)
13 {
14 struct kiocb kiocb;
15 ssize_t ret;
16 ...
17 if (type == READ)
18 ret = filp->f_op->read_iter(&kio, iter);
19 else
20 ret = filp->f_op->write_iterd(&kio, iter);
21 ...
22 return ret;
23 }

1 ssize_t ext4_file_read_iter(
2 struct kiocb *iocb,
3 struct iov_iter *to)
4 {
5 /* perform read */
6 ...
7 }

1 ssize_t ext4_file_write_iter(
2 struct kiocb *iocb,
3 struct iov_iter *from)
4 {
5 /* perform write */
6 ...
7 }

initially assigned
corrupted

Figure 10: Exploitation to break signature-granular CFI.
By overwriting the function pointer read_iter with
ext4_file_write_iter an attacker enforce to call the write
function on a read request.

have read- but not write-permission, e.g., /etc/passwd. This ac-
tion causes the kernel to allocate a file object containing an op-
eration table pointer to a file_operations object. Within the
ext4 filesystem, its members read_iter and write_iter point to
functions ext4_file_read_iter and ext4_file_write_iter.
By performing a read or write operation to or from the opened
file, the kernel calls do_iter_readv_writev.Since both signa-
tures match, the attacker can overwrite read_iter member with
the address of ext4_file_write_iter and still resides in the
over-approximated CFG determined based on signatures. How-
ever, this manipulation causes a read operation to perform a write
operation. Consequently, the attacker calls the read syscall to
write content to the file where they do not have write-permissions,
e.g., /etc/passwd. This results in a persistent privilege escalation,
which CFI with signature granularity cannot prevent.

In fact, since the operation table file_operations in Figure 10
is mapped as read-only, an attacker cannot directly manipulate the
function pointer read_iter. However, they can forge an operation
table and tamper with the operation table pointer of the file object,
pointing to the forged operation table. In this way, they can bypass
the read-only mapping and perform this privilege escalation attack.

13 MOTIVATIONAL END-TO-END EXPLOIT
This section provides a motivational end-to-end attack that exploits
the CVE-2019-2215 vulnerability. The vulnerability allows an arbi-
trary read-and-write primitive that matches our threat model in
Section 3.1. This end-to-end attack shows the severity of not pro-
tecting the thread state, as this attack can bypass almost all kernel
CFI schemes (mitigations that do not protect the thread state, see
Table 1) including the one used by Android [3], i.e., kCFI. Therefore,

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Lukas Maar, Pascal Nasahl, and Stefan Mangard

1 void find_process(void)
2 {
3 size_t kernel_base = leak_kaslr();
4 printf("[*] looking for the process \"t1\"...\n");
5 size_t task = INIT_TASK_OFFSET + kernel_base;
6 size_t task_stack;
7 while (1) {
8 arb_read(task + TASKS_OFFSET, (size_t)&task);
9 task = task - TASKS_OFFSET;
10

11 char name[8] = {0};
12 arb_read(task + COMM_OFFSET, (size_t)name);
13 if (!strcmp((char *)name, "t1")) {
14 arb_read(task + STACK_OFFSET, (size_t)&task_stack);
15 printf("[+] we found the process at %lx stack %lx\n",

task, task_stack);
16 break;
17 }
18 }
19 }

Listing 7: Obtaining task_struct’s kernel address and the
kernel stack address of the process named "t1".

this attack can be used through Android kernel exploitation to per-
form control-flow hijacking attacks, which often relied on using the
arbitrary read-and-write primitive to tamper with global control
data pointers [40], e.g., ptmx_fops [55, 60] or modprobe_path [71].
The high-level exploitation strategy is a three-step plan as follows.

As the first step, we create a new process by calling fork, which
prompts the kernel to allocate a task_struct and an associated
kernel stack. The task_struct is allocated via the dedicated al-
location cache task_struct_cachep, while the kernel stack is
allocated via vmalloc, both of which reuse freed objects for fu-
ture allocations. We change the name of the just created process
to a unique one, i.e., "t1", and use our read primitive to obtain
the address of its task_struct. The way to do this is by leaking
init_task (Line 5 of Listing 7), which is the task_struct of the
initial, i.e., first, high-privilege process. Since the Linux kernel stores
all processes as a linked list (via the struct list_head tasks
member), we iterate through all processes at Line 8 and use the
arbitrary read to obtain the process’s names at Line 12. We check
whether its name (via the char comm[TASK_COMM_LEN] member)
is the same as the unique one at Line 13, we previously set to "t1".
If the stored name is the same, we leak the stored stack (via the
void *stack member variable) at Line 142.

As the second step, we kill the process named "t1" prompting
the kernel to free its task_struct and kernel stack. By creating
a new process via fork called "t2" shortly after we reclaim both
the previously leaked task_struct and kernel stack3. Immedi-
atly after this fork, we use our arbitrary write primitive to over-
write the stored callee-saved registers (as part of the thread state)
stored either on the kernel stack for x86_64 or the task_struct
for arm64 (denoted as THREAD_CPU_CXT). For x86_64 these are
rbp, rbx, and r12-15, while for arm64 x19-29 and x9. If process

2Leaking the kernel stack’s address is only necessary for x86_64 as arm64 stores the
callee-saved registers to its task_struct
3To bypass the free-list randomisation of the kernel heap allocator and reclaim the
leaked task_struct, we massage the dedicated allocator task_struct_cachep. For
the sake of simplicity, we assume that we successfully reclaim it.

1 __switch_to_asm:
2 // Save callee-saved regs
3 pushq rbp
4 pushq rbx
5 pushq r12
6 pushq r13
7 pushq r14
8 pushq r15
9

10 // switch stack
11 movq rsp, TASK_sp(rdi)
12 movq TASK_sp(rsi), rsp
13

14 // restore callee-saved regs
15 popq r15
16 popq r14
17 popq r13
18 popq r12
19 popq rbx
20 popq rbp
21

22 jmp __switch_to

Listing 8: For x86_64.

1 cpu_switch_to:
2 mov x10, #THREAD_CPU_CXT
3 add x8, x0, x10
4 mov x9, sp
5

6 // store callee-saved regs
7 stp x19, x20, [x8], #16
8 stp x21, x22, [x8], #16
9 stp x23, x24, [x8], #16
10 stp x25, x26, [x8], #16
11 stp x27, x28, [x8], #16
12 stp x29, x9, [x8], #16
13 str lr, [x8]
14 add x8, x1, x10
15

16 // restore callee-saved regs
17 ldp x19, x20, [x8], #16
18 ldp x21, x22, [x8], #16
19 ldp x23, x24, [x8], #16
20 ldp x25, x26, [x8], #16
21 ldp x27, x28, [x8], #16
22 ldp x29, x9, [x8], #16
23 ldr lr, [x8]
24

25 // restore stack pointer
26 mov sp, x9
27 msr sp_el0, x1
28 ret

Listing 9: For arm64.

Figure 11: Context switch assembly code of the Linux kernel.

"t2" is scheduled, it loads these manipulated register values from
the stack or task_struct as shown with __switch_to_asm in
Listing 8 and cpu_switch_to in Listing 9, respectively. Since it is
the first time scheduled, the Linux kernel prompts this process to
execute ret_from_fork shown in Figure 9. With control over the
register, we just created a CFHP with control over its arguments
(Lines 11 and 12 for x86_64 and Lines 4 and 5 for arm64), allowing
an adversary to perform a powerful control-flow hijacking attack.

As the third step, we perform a classical control-flow hijack-
ing attack such as executing an instruction sequence equivalent
to commit_creds(prepare_kernel_cred(0)) to escalate priv-
ileges. This powerful control-flow hijacking attack depends on a
race window, to tamper with the process’s ("t2") kernel stacks or
task_struct before it gets scheduled. However, this race window
is large and does not affect the practicality of this attack.

14 INSTRUMENTATION
This section demonstrates the instrumentation process of HEK-CFI,
where we illustrate how HEK-CFI ensures control-data integrity
for globally and locally accessible control data.

Globally accessible control data. Listing 10 depicts an alloca-
tion and deallocation of dev, and a read from and write to its mem-
ber variable void (*rel)(struct dev *). We assume that HEK-
CFI provides protection for the function pointer rel. Although this
example protects a function pointer, the same applies to protected
operation table pointers. For the instrumentation, we refer to the
function ss_alloc, ss_free, ss_rd, and ss_wr, to globally acces-
sible safe storage allocation, deallocation, read, and write.

Beyond the Edges of Kernel Control-Flow Hijacking Protection with HEK-CFI ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

1 struct dev {
2 /* protected fn pointer */
3 void (*rel)(struct dev *);
4 ...
5 };
6 void dev_rel(struct dev *);
7 void function(void) {
8 struct dev *dev;
9 dev = kmalloc();
10 ...
11 dev->rel = &dev_rel;
12 ...
13 if (dev->rel)
14 dev->rel(dev);
15 ...
16 kfree(dev);
17 }

Listing 10:
Original code of accessing a
struct dynamically allocated.

1 void function(void) {
2 struct dev *dev;
3 dev = kmalloc();
4 + ss_alloc(dev->rel);
5 ...
6 - dev->rel = &dev_rel;
7 + ss_wr(dev->rel, &dev_rel);
8 ...
9 - if (dev->rel)
10 - dev->rel(dev);
11 + reg = ss_rd(dev->rel);
12 + if (reg)
13 + reg(dev);
14 ...
15 + ss_free(dev->rel);
16 kfree(dev);
17 }

Listing 11: Instrumented
code of accessing a struct
dynamically allocated.

1 struct delayed_call {
2 /* protected fn pointer */
3 void (*fn)(void *);
4 void *arg;
5 };
6 void dc_fn(void *);
7 void function2(void) {
8 struct delayed_call dc;
9 ...
10 dc.fn = &dc_fn;
11 ...
12 dc.fn(dc.arg);
13 ...
14 }

Listing 12: Original code of a
local struct.

1 void function2(void) {
2 struct delayed_call dc;
3 + ptls_alloc(dc.fn);
4 ...
5 - dc.fn = &dc_fn;
6 + ptls_wr(dc.fn, &dc_fn);
7 ...
8 - dc.fn(dc.arg);
9 + reg = ptls_rd(dc.fn);
10 + reg(dc.arg);
11 ...
12 + ptls_free(dc.fn);
13 }

Listing 13: Instrumented
code of a local struct.

Listing 11 demonstrates how HEK-CFI protects the function
pointer rel when the struct it belongs to (dev) is dynamically
allocated. HEK-CFI inserts ss_alloc to allocate a safe storage for
rel shortly after dynamically allocating dev. HEK-CFI replaces the
write access to rel with ss_wr, which writes to the protected data
within the allocated safe storage. On read access, HEK-CFI replaces
the read with ss_rd, which reads the protected data from the safe
storage and stores it in the register reg. HEK-CFI inserts ss_free
shortly before freeing the dev to free the safe storage.

Locally accessible control data. Listing 12 demonstrates the
local variable delayed_call containing a function pointer void
(*fn) (void *) protected by HEK-CFI. For the instrumentation,
we refer to the functions ptls_alloc, ptls_free, ptls_rd, and
ptls_wr, to locally accessible safe storage allocation, deallocation,
read, and write, respectively. As illustrated in Listing 13, HEK-CFI
inserts ptls_alloc and ptls_free on function entry and exit.
Additionally, HEK-CFI replaces the write and read access to or from
the protected function pointer fn with ptls_wr and ptls_rd.

Table 4: Micro benchmark results.

Benchmarks Baseline Overhead in %

La
te
nc

y
in

µs

fcntl lock 1.51 18.9 ± 0.9
pagefault 0.17 18.3 ± 1.4
proc call 0.0027 −1.9 ± 3.3
proc fork 81.5 8.7 ± 1.9
proc fork+exec 90.5 8.9 ± 1.5
proc shell 359 7.6 ± 0.8
signal install 0.15 15.4 ± 1.9
signal catch 1.12 8.8 ± 0.3
signal fault 0.48 8.1 ± 1.0
syscall null 0.079 25.8 ± 0.3
syscall open+close 1.19 18.7 ± 2.3
syscall read 0.12 20.6 ± 1.6
syscall write 0.095 24.8 ± 3.9
syscall stat 0.44 9.4 ± 1.1
syscall fstat 0.15 18.2 ± 0.9

B
an

dw
id
th

in
M
B/

s

pipe 1 k 0.13 24.3 ± 4.2
pipe 128 k 3.74 20.8 ± 0.2
unix 1 k 337 11.2 ± 0.3
unix 128 k 82 11.3 ± 0.8
file rd 4 k o2c 2.69 15.4 ± 1.1
file rd 1M o2c 15 6.2 ± 0.7
file rd 4 k ip 7.71 13.6 ± 0.8
file rd 1M ip 16.2 7.5 ± 0.4
mmap rd o2c 4 k 1.34 10.3 ± 0.4
mmap rd o2c 1M 14.8 6.3 ± 0.5
mmap rd 4 k 43.7 0.1 ± 0.2
mmap rd 1M 41.6 1.4 ± 2.0
geo mean - 12.3 ± 1.5

15 DETERMINE IDEAL USER POLICY
We developed a tool that takes the average permitted control-flow
targets value, i.e., 𝐴𝐼𝐴ℎ𝑒𝑘−𝑐 𝑓 𝑖 illustrated in Equation (2), as input
and determines the user policy, i.e., maximum permitted forward
control-flow targets, as output. It does so by first finding the value
of 𝑝 , the number of permitted function pointers of Equation (2),
to match the given input. This value 𝑝 resides within the range
of 1 to 𝑛. After determining 𝑝 , the tool identifies the set |𝑇𝑖 | with
the largest number of permitted control-flow targets. This largest
number is the output value of the user policy.

16 DETAILED EVALUATION RESULTS
In this section, we illustrate the results of our micro benchmark
performance evaluation in Table 4, performed with LMbench [45].
Moreover, we evaluate the binary and compile-time overhead of
the Linux kernel enhanced with HEK-CFI. Lastly, we evaluate the
time taken by our code analyzer and parser.

Binary size and compile time overhead. Since HEK-CFI in-
serts validation checks to ensure its functionality, the inserted
checks increase both the binary size and the compile time. To il-
lustrate their increase, we compile an unmodified Linux kernel
v5.18 with clang version 15.0.0 as a baseline. We then compile our
modified Linux kernel with our LLVM pass and the user policy
described in our case study. The results are that the binary size and
compile-time increase by 0.97 % and 47.2 ± 1.6%, respectively.

Code analyzer and parser. Wemeasure the time taken to gen-
erate a database and query requests for CodeQL. Moreover, we
measure the required time for parsing the results from CodeQL to
output the file for our LLVM pass. We perform each measurement
eight times and calculate the geometric mean and standard devia-
tion, where the results are 2h53m39s±6s, 59m4s±6s, and 17.8s±0.4s
for database generation, database queries, and parser, respectively.

	Abstract
	1 Introduction
	2 Background
	3 Threat Model and Systematization
	3.1 Threat Model
	3.2 Attack Vectors
	3.3 Systematization of Existing Works

	4 Design
	4.1 Kernel Control-Data Integrity
	4.2 Thread State Protection
	4.3 Control-Flow Integrity

	5 Implementation
	5.1 Linux Kernel
	5.2 Control-Data Protection Selector
	5.3 Compiler Extension

	6 Case Study
	7 Security Discussion
	8 Performance Evaluation
	9 Related Work
	10 Conclusion
	11 Acknowledgements
	References
	12 Motivational Exploit Examples
	12.1 Attacking Thread State on Exceptions and Interrupts
	12.2 Attacking Thread State on Context Switch
	12.3 Attacking Signature-based CFI

	13 Motivational End-to-End Exploit
	14 Instrumentation
	15 Determine Ideal User Policy
	16 Detailed Evaluation Results

