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Abstract 

Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) simulations have become a 
valuable tool in industry and academia. In the context of combustion systems, CFD-DEM simulations 
are mainly relevant as tools for basic research, e.g., to understand phenomena such as segregation or 
other effects due to incomplete (particle) mixing. Typically, such simulations face the following 
challenges: (i) modelling of complex-shaped and deformable/shrinking particles, (ii) considering 
(cohesive) particle interaction forces that might change during the combustion process, or (iii) predicting 
(radiative) energy transfer rates that are sensitive to a large number of parameters that are almost 
impossible to measure directly. All these challenges have in common that a large number of predictions 
(or decisions) have to be made in a short time, and that these predictions depend on a large number of 
inputs (“features”) in a non-trivial way. Machine Learning (ML)-based algorithms are promising 
candidates to tackle these challenges. 
In our present contribution we highlight three concrete examples of how ML-empowered CFD-DEM 
simulations can be realized: (i) ML for closure construction in the field of particle-particle radiative energy 
transfer [1], (ii) ML-empowered drag force modeling [2], as well as (iii) ML-aided calibration workflows 
for advanced parameter identification in the context of granular flow and bulk heat conductivity prediction 
using CFD-DEM. We will conclude our talk with an application study of a problematic reactive granular 
material encountered in industrial NiMH battery recycling. 

 
Introduction 

CFD-DEM simulations in the field of industrial combustion processes are intrinsically multi-physics 
applications. In the following we briefly highlight three areas which are the most essential to understand 
for our current contribution. 

 
(1) Energy transfer and reactions – the need for CFD-DEM  
As summarized in the review article by Mahiques et al. [3], relevant application cases in the field of 

combustion processes are characterized by complex particles shapes, a dynamic (i.e., conversion-
dependent) particle size distribution, and a resulting complex particle flow behavior. The environment 
experienced by an individual particle determines its properties, resulting into challenges for Eulerian 
methods. The (classical) strength of the CFD-DEM approach lies in applications with comparably large 
particles, since there is hope that individual particles can be described. This matches with applications 
for thermally thick particles, for which particle tracking is essential and intra-particle gradients (e.g., of 
the temperature) must be resolved. In this field, the calibration of single-particle models is state of the 
art. Remaining challenges are the modeling of conductive heat transfer and radiation phenomena, as 
well as the prediction of particle flow related issues (e.g., bridging & arching, or segregation). Last, 
simulation time is a key issue, with particle flow prediction being a dominating sink of computing 
resources. Limited simulation time also motivated our previous work on accelerated view factor 
calculations [1], which used machine learning to make fast and precise predictions. 

However, there is no fundamental need to track individual particles in CFD-DEM: parcel-based 
approaches [4] can be used, in which not all particles are followed by the DEM. An example would be 
the combination of a parcel-based DEM with a “representative particle” approach (e.g., as followed by 
Wurzenberger et al. [5]). Especially for such a parcel-based DEM one needs to find suitable particle 
parameters to be able to make realistic predictions. Next, we review how such a calibration can be done. 

 
(2) Momentum transport within the particle phase - Calibration of DEM parameters 
The basic idea of calibration is to account for effects that cannot be directly measured (e.g., particle 

roughness, cohesion forces, deformation of individual particles), or would require excessive calculation 
resources (e.g., a wide particle size or shape distribution). In the field of calibration, one has to separate 



between (i) “free flowing” (i.e., cohesionless) particles [6], and (ii) cohesive particles [7][8]. Also, it is of 
importance for which flow situation the DEM model should be calibrated (e.g., slow versus fast flows [9], 
or low versus high stress applications [10]). There has been a strong increase of publications related to 
calibration of DEM parameters in recent years. This is caused by (i) the maturity of simulation tools, and 
(ii) the semi-automated processing of experimental data that is nowadays often collected with 
inexpensive cameras. Last but not least, advances in (machine) learning algorithms have made 
calibration tools more reliable and efficient. Also, our current contribution is motivated by these 
advances, and we have included our most recent results from an application study in the field of battery 
recycling. 

 
(3) Momentum transfer between the phases - drag modification 
Moderately dense gas-particle system involving particles in the range of 50 to 1000 µm in diameter 

(typical for fluidized bed applications) spontaneously form cluster when flowing [11]. An approach to 
quantify the effect of cluster are so-called “filtered” drag models, which are also relevant for CFD-DEM 
models [12]. The methodology of filtered drag model development has long suffered from the 
interpretation of the filtered data, and tedious manual fitting of closure relations. Recently, machine 
learning has also been applied to this field of research [2,13], greatly accelerating research and 
increasing the models’ fidelity. For example, it is now possible to create an anisotropic drag correction 
model within hours of machine learning time, which would have taken several weeks if parameterized 
by hand. 

 
Goals 
The goal of our current overview paper is two-fold: 

(1) We summarize machine learning strategies, as well as highlight tools for machine learning 
that we have previously used, and which are relevant for CFD-DEM simulations in the field 
of combustion. We will focus on the view factor example in our present study here. 

(2) Show an application of ML-based calibration to model poorly flowing material as typical for 
the energy sector. Specifically, we document results of a material encountered in NiMH 
battery recycling. Here our focus is on the calibration of a DEM-based model for flowability 
prediction. We also give a short preview on how to parameterize the DEM-based model such 
that it is useful for heat conduction predictions. 

 

Overview of Learning Strategies & Learning Tools used 
In what follows we focus on so-called “supervised” learning strategies (see Zhu et al. [14] for an 

excellent review of the field). The goal when following such a strategy is to learn correlations from an 
existing data set (i.e., a plurality of data points consisting of multiple markers or “features” that 
characterize one or more “targets”). An example is to use the relative position data (and other 
information about the local packing) in a particle packing to estimate view factors between two particles 
[1]. Certainly, unsupervised strategies (e.g., clustering via a k-Means approach) can be used in advance 
in situations in which markers to be used are not known a priori. As this was not the case for our 
applications, we will not further detail such an unsupervised learning strategy. Certainly, unsupervised 
learning can be a powerful tool for dimensionality reduction, translating into a reduction of the input 
complexity for supervised learning. 

In some fields of research (e.g., clustered gas-particle suspensions) experimental data is not 
available, or not available in enough detail. Hence, one must rely on simulated data for learning. In such 
a situation it is important to carefully verify and validate the simulator, and subsequently select a suitable 
simulation setup is. Figure 1 illustrates this need: specifically, we here summarize our strategy for the 
development of closures in our previous work on drag and view factors. Here the “x-physics simulator” 
indicates any multiphysics simulator used on top of a CFD and/or DEM simulation (e.g., a ray tracing 
simulator to determine view factors). When adopting such a strategy, it is important that (i) closures 
should be formulated in dimensionless form (otherwise machine learning tools will normalize data in a 
possibly inappropriate way), and that (ii) closures are designed to automatically respect limiting cases 
(e.g., no clustering corrections for the drag in the dilute and dense limit). For learning from data when 
following strategy I illustrated in Figure 1, we used the open-source Keras® tool that runs on a 
Tensorflow core. We access this tool via a Python interface. Furthermore, the resulting neural networks 
can be easily combined with an existing C++-codebase (e.g., via 
https://github.com/pplonski/keras2cpp/). Another popular choice would be PyTorch (https://pytorch.org), 
or scikit-learn (https://scikit-learn.org). 

 

https://github.com/pplonski/keras2cpp/
https://pytorch.org/
https://scikit-learn.org/


 
Figure 1. Learning strategy I: learning from (filtered) simulated data via a grey-box approach. 

 
In the field of DEM-based simulators for (dense) particle flow, the available experimental data set is 

typically scarce (i.e., a few hundred datapoints at most). Also, typical machine learning models (e.g., 
neural nets) are not used: in contrast the parameters in a mechanistic model need to be predicted. Thus, 
the structure of the model to be trained is relatively rigid (i.e., the closure is typically fixed, e.g., for the 
normal contact force the stiffness needs to be determined). This different scenario leads to an entirely 
different learning strategy as shown in Figure 2: these learning strategies are referred to as “calibration”, 
since only a handful parameters (at most) need to be determined. Two classes of calibration strategies 
exist: (i) in response surface-based methods only DEM models & parameters covered by a pre-
computed response surface can be calibrated. This method is relatively rigid (i.e., the update of 
simulation model will result in the need for the entire re-evaluation of the response surface). The 
advantage is that DEM simulations run only once for a combination of parameters. After these simulation 
runs a learning tool (index A) is used to create the response surface (in the simplest case this tool uses 
linear interpolation in the precomputed dataset). Consequently, during the calibration step no DEM 
simulations are needed, and hence this step is fast. The intersection of the generated response surfaces 
for multiple setups to match experimental data is handled by a second learning tool (index B; this tool is 
preferably implemented in the same software as learning tool A). Note that in this strategy a black box 
model needs to be involved, and hence care has to be taken to ensure that extrapolations are handled 
in a meaningful way. (ii) a more flexible methodology (i.e., direct calibration) that does not require any 
black box model is illustrated in Figure 2b: any DEM model can be used that is available in the 
simulation, and a small amount of DEM simulations must be run for each calibration job. The learning 
tool is here reduced to an optimization algorithm - which is the heart of this calibration workflow - and 
attempts to minimize a loss function. In case multiple targets need to be matched, experimental datasets 
can be used for calibration in a sequential way. Alternatively, a loss function is constructed by 
considering multiple targets. In our case study on NiMH recyclate processing we use the strategy shown 
in Figure 2b. As software we have chosen the tool Aspherix© Calibration. 

 

  
   

Figure 2. Learning strategy II: response surface-based calibration of closure parameters (a, left), as 
well as direct calibration of closure parameters (b, right) for (CFD)-DEM simulators. 

 



We note in passing that combining the ideas of the “response surface” method and sequential 
calibration of parameters is possible: a recent example for such an approach is the study of Carr et at. 
[8]. 

 
 

Results 
 
Radiative Energy Transfer between particles – View Factor Predictions 
 
For this application we here highlight the use of neural networks (NNs) as illustrated in Figure 3: 

these networks are conceptually simple learning models, a relatively small amount of data needs to be 
saved, and they have shown to represent our data in an excellent way. Note, so-called random forest 
regressors may perform better (better prediction, faster training) compared to NNs for some applications 
[1]. 

 

 

 
Figure 3. Typical layout of a neural network used for the prediction of view factors (data from 

Tausendschön [15] for particle-wall interactions, visualization with Netron [16]). 
 
While training and validation were already published elsewhere [1,15,17], we here highlight some 

interesting predictions for view factors in dense mono-disperse granular packings. Specifically, we here 
test whether the trained model respects limiting cases, and makes robust predictions even when forced 
to extrapolate. Results for such a check are shown in Figure 4: specifically, we extrapolate outside of 
the calibration data range for the particle concentration (i.e., the particle volume fraction range for 
calibration was 𝜙𝑝,𝑐𝑎𝑙𝑖𝑏 = [0.199, 0.554], while we here use 𝜙𝑝 = [0.1,0.60], see Figure 4). Also, we make 

an extreme abuse of the resulting neural network by assuming a large number of shadowing particles 
nbip even at small separation distances |xij|. As can be seen in Figure 4, we do respect the limiting case 

for contacting particles (indicated as dash-dotted line at a view factor of ij = 0.0762) very closely if there 
are no shadowing particles (i.e., nbip = 0). The extreme abuse with nbip=30 (dashed lines) yields still 
reasonable results, however, is already -34% off the limiting case. Fortunately, if we use a reasonable 
number of shadowing particles nbip,reas (we assume that an integer number of particles fills the gap 
between the two particles once it is large enough; see the thin lines in Figure 4 which indicate sudden 
jumps at |xij|/r = [4, 6, 8] due to this “gap filling”), the neural network predicts correct view factors that 
are in between the extrema, again leading to a close match with the limiting case.  

 

 
 
 

Figure 4.  Predicted particle-particle view factors for a monodisperse packing for a dilute case (i.e., 
𝜙𝑝 = 0.1; black low opacity lines) and a dense case (𝜙𝑝 = 0.6, red lines; the black dash-dotted line is 

the reference result for contacting spheres located at |xij| = 2.r. Neural network from Tausendschön 
[15]. Left: log-scale on the y-axis, right: linear scales). 



 
DEM parameters for NiMH Battery Recyclate Modeling - Flow 

 
We now move on to the topic of parameter learning (or “calibration”) for DEM-based models. We 
start with the description of the experimental setup that is used in our lab to gather the necessary 
training and validation data. 
 
Experimental Details 
Experimental details are summarized here only in brief: a draw down test box (see Figure 6c) was 
constructed that allows us to realize various opening sizes between an upper and a lower box. 
The exact geometry was motivated by prior work [18]. For each opening size, a draw down test 
with the material (industrial NiMH recyclate material) was performed 6 times. The mass of the 
recyclate material in the lower box after each experiment was noted (equaling the “mass loss”), 
together with qualitative information for the experiment (i.e., arching occurring or not). 
Furthermore, image analysis techniques have been used to determine the shape of the bottom 
pile after each experiment (image processing was performed with Fiji [19] and Octave, 
https://octave.org/). For both results, i.e., the mass loss and the shape of the pile, data was 
averaged over individual realizations for subsequent analysis and calibration. 
 
Method and Model Details  
Machine learning (i.e., calibration of DEM parameters) was realized with the Aspherix® 
Calibration tool. Due to the nature of the material (recyclate consisting mainly of fluff with 
interspersed small particles with a typical size of 10 micros), we are forced to use a coarse-
grained DEM approach. Also, the plurality of fibre and particle shapes was entirely neglected, at 
the cost of not being able to simulate segregation phenomena. 
 
For all simulations, relatively standard contact model closures implemented in Aspherix® were 
used (model and implementation details widely match that of the open-source DEM simulator 
LIGGGHTS [20,21]). Specifically, this was a Hertz contact model with friction (and tangential 
overlap tracking). To account for the cohesivity of the particles, the SJKR model was used (this 
sub-model was also the target for calibration as discussed below). The rolling resistance of the 
particles was modelled using the modified elastic-plastic spring-dashpot model. Additionally, the 
keyword “limitForce” was used to prevent attractive non-cohesive forces between the particles 
and between particles and the walls (this is important since we used comparably strong damping 
of contacts as indicated by the small coefficient of restitution). All DEM input parameters needed 
for the use of the specified model are listed alongside their respective value in Table 1. 
 

Table 1. Fixed DEM parameters used in our calibration simulations. 

Parameter (P = Particle, W = Wall) Value Unit 

Young’s modulus 𝑌 [P, W] 1e8 [Pa] 

 Poisson ratio 𝜈 [P, W] 0.30 [-] 

Coefficient of restitution 𝑒 [PP, PW] 0.30 [-] 

Sliding friction coefficient 𝜇𝑝𝑝 [PP] 0.71 [-] 

Sliding friction coefficient 𝜇𝑝𝑤 [PW] 0.41 [-] 

Rolling friction coefficient 𝜇𝑟 [PP,PW] 0.80 [-] 

Density 𝜌𝑝 [P] 3400 [kg/m³] 

 
Calibration simulations were performed where the important parameter, i.e., the cohesion energy 

density 𝑘𝑠𝑗𝑘𝑟, was varied until the shape of the pile matched that of the respective experiment (this 

was realized with the learning algorithm implemented in Aspherix® Calibration). It is important to 
note here that all other DEM input parameters reported in Table 1 were preset with values mostly 
taken from [9]. The opening size of 250 mm was used for the calibration procedure as it was the 
smallest opening size used during the experiments. In all 6 experimental runs for the opening size 
of 250 mm, arching was observed. Also, it is important to note here that in all calibration cases, 
the particle-wall cohesion interactions have been set to zero (preliminary simulations with 
activated particle-wall cohesion yielded excessive sticking, which was not observed in the 
experiments). 
 

https://octave.org/


To validate the determined value of the cohesion energy density, the same value of the cohesion 
energy density was used for simulations of experiments with opening sizes of 320 mm and 400 
mm. For the opening size of 320 mm, arching occurred for 4 out of 6 experiments; for the opening 
size of 400 mm, arching never occurred and almost all of the recyclate material fell from the top 
box into the lower box. 
 

To quantify the success of calibration, the relative difference 𝑚𝑟𝑒𝑙 defined by 𝑚𝑟𝑒𝑙 =
𝑎𝑏𝑠(𝑚𝑒𝑥𝑝−𝑚𝑠𝑖𝑚)

𝑚𝑒𝑥𝑝
 

was used. In this equation, 𝑚𝑒𝑥𝑝 and 𝑚𝑠𝑖𝑚 stand for the mass in the lower box after the 

experimental and simulation run, respectively. It is important to note here that for an accurate 
calculation of 𝑚𝑟𝑒𝑙, the density of the particles has to be varied each time a different cohesion 
energy density is used [22]. This is due to the fact that the cohesion energy density influences the 
particle volume fraction 𝜙𝑝, and consequently how many particles fit into the upper box.  

 
Preliminary Calibration Runs with Spheres 
For our first set of calibration runs we considered spherical particles since this is the most obvious 
choice (computational reasons, only one geometry parameter). In our case we considered 
monodisperse spherical particles with a diameter of 𝑑𝑝 = 8 [𝑚𝑚]. Calibration of the cohesion 

energy density with otherwise fixed interaction parameters was performed with the target being 
the (average over 6 realizations of each experimental setting) shape of the bottom pile (see Figure 
5 for an illustration of the target and its match with the simulation data). This shape was expressed 
as the average width-versus-height profile of the forming pile. We note in passing that this is an 
elegant choice, since it combines information about the angle of repose with a metric for the mass 
that has left the upper box. 

 
Figure 5. Illustration of the target matching strategy during learning of DEM parameters. 

 
The cohesion energy density was gradually increased in an attempt to replicate the arching 
behavior of the experiments for an opening size of 250 mm. Figure 6a shows the final state of the 
particles after they have settled when a cohesion energy density of 4.105 [J/m³] was used. Note 
that absolutely no arching did occur in contrast to the experiments as documented in the section 
“Result of Calibration and Validation with Tetrapods” below. Thus, the approach to use spheres 
was not successful as the simulation did not stay numerically stable for even larger cohesion 
energy densities for which we also could not observe arching at this opening size. We note in 
passing that our material is behaving considerably more cohesive than that used by Carr et al. [8] 
(they experimentally observed a non-arching case in a similar draw down box already for an 
opening width of 200 [mm], and were able to reproduce this with spheres). 
 

Result of Calibration and Validation with Tetrapods 
We subsequently used tetrapods which are four rigidly connected primary spheres with a diameter 
𝑑𝑝 = 8 [𝑚𝑚] arranged on a tetraeder-shaped skeleton. This skeleton was chosen to have a 

center-to-center distance of 2.5 ⋅ 𝑑𝑝, resulting into strongly interlocking particles (the skeleton was 

not participating in the contact detection, and hence was “invisible” to the primary spheres). The 
choice of tetrapods is motivated by the fact that they are the simplest non-spherical isotropic 



three-dimensional object we can form with multiple spheres. Again, the shape of the bottom pile 
was the target for calibration, and the experiment with an opening size of 250 mm has been used 
as the calibration setup. As can be seen, arching is correctly reproduced (see Figure 6b versus 
6c). At the same time the relative mass loss difference 𝑚𝑟𝑒𝑙 between the simulation and the 

average of the experiments was extremely small (𝑚𝑟𝑒𝑙,𝑐𝑎𝑙𝑖𝑏 =  0.62%). 

 

 
Figure 6. Illustration of the calibration procedure for an opening size of 250 mm using spheres (panel 
a; cohesion energy density ksjkr = 4.105 [J/m^3]) and tetrapods (panel b; cohesion energy density ksjkr = 
3.1.105 [J/m³]), as well as a representative experimental result (panel c). 

 
In order to validate the calibrated parameter set, we performed simulations with the tetrapods for two 
additional opening widths (see Figure 7), of course with identical DEM parameters as in the 
calibration case. Figures 7a1 and 7a2 show the results for a width of 320 [mm]. In 4 out of 6 
experiments for this width arching occurred, i.e., this width represents a semi-stable case and is 
hence extremely difficult to reproduce. Indeed, our simulations predict a marginally stable arching 
situation (see Figure 7a1) with a reasonable (but certainly not excellent) match of the relative mass 
loss difference of 𝑚𝑟𝑒𝑙 = 17.4% (based on experimental data in which arching occurred). For the 
case of an extremely large opening width (i.e., 400 [mm], see Figures 7b1 and 7b2), we correctly 
predict the (almost completely) empty upper box that was observed in the experiment (𝑚𝑟𝑒𝑙 = 3.3%). 
Interestingly, also the shape of the pile is reasonably predicted (all 5 other realizations of the 
experiment yielded similar shapes of the pile). 

 
Figure 7. Validation of the calibrated tetrapod-based DEM model for different opening widths. 

  
DEM parameters for NiMH Battery Recyclate Modeling - Heat Conduction 
Unfortunately, it is extremely difficult to obtain measurements of the heat conductivity of the recyclate 

material. Also, such measurements are only meaningful if a controlled compaction state can be realized 
– this is because of the softness of the recyclate material. Due to these experimental difficulties, a direct 
calibration of the thermal properties of the recyclate was not possible. Furthermore, limitations in our 
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(a) (b) (c) 

simulation 
w = 320 [mm] 

experiment 
w = 400 [mm] 

simulation 
w = 400 [mm] 
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(a1) (a2) (b1) (b2) 



calibration software prohibited us from using the tetrapods - hence spherical particles were used only in 
what follows. Thus, we use this chapter to outline the difference of the bulk conductivity between the 
case with calibrated cohesion parameters (i.e., the already introduced SJKR model) and the case with 
no cohesion.  

 
Setup and Postprocessing 

The case setup used in the present chapter is a box with periodic boundaries in the lateral direction, 
and a stress-controlled wall at the top (see Figure 8, left panel). Particles are made of the same material 
(same density, same interaction parameters) as for our flow prediction in the previous chapter. We 
consider the calibrated value for the cohesion energy of 3.1.105 [J/m³]. We use the standard particle-
particle and particle-wall heat conduction closure of Aspherix®, which assumes that heat conduction is 
proportional to the contact area between contacting particles.  
Initially, the box is filled under gravity to a certain height. Particles are subsequently compressed with 
the desired normal stress 𝜎𝑧𝑧. During this compression step, and the subsequent heating of the box, 
gravity is disabled, since it would only induce an unwanted stress gradient in the system. When the 
desired stress is reached, the heating phase of the box starts.  Note that the imposed normal stress is 

made dimensionless with the particle material’s Young’s modulus, i.e., 𝜎∗ = 𝜎𝑧𝑧/𝑌. Also, the cohesion 

parameter is made dimensionless in a similar way, i.e., 𝑘𝑠𝑗𝑘𝑟
∗ =

𝑘𝑠𝑗𝑘𝑟

𝑌
. 

At the top and at the bottom wall, two different temperatures are applied. For calculating the effective 
bed heat conductivity, the heat transfer through the walls is calculated from the simulation data. 
Furthermore, two boxes (a) and (b) (see the semi-transparent boxes in Figure 8, left panel) are initialized 
in which we track the average temperature of the particles that are located inside them. 
Each simulation is run until the steady state is reached (see Figure 8, right panel; note that we defined 
a dimensionless time t*, which is the ratio of the physical time and a thermal relaxation time scale of the 

bed given by  𝜏𝑟𝑒𝑙𝑎𝑥,𝑐𝑜𝑛𝑑 =
𝐿𝐵𝑒𝑑

2

𝑎𝐻,𝐵𝑒𝑑
. In this relation 𝐿𝐵𝑒𝑑 is the bed height, and 𝑎𝐻,𝐵𝑒𝑑  is the heat diffusivity 

in the particle bed). As depicted in Figure 8 (the right panel), the steady state is reached after 
approximately 1.2 dimensionless time units. The effective bed conductivity changes by two orders of 
magnitude before this state is reached due to transient effects. 

 

 
Figure 8. Snapshot of a heat conduction simulation (left panel), and typical transients of the measured 

effective heat conductivity for the case with cohesion with 𝒌𝒔𝒋𝒌𝒓
∗ = 𝟑. 𝟏 ∙ 𝟏𝟎−𝟑. 

 
Results 

We report the main result as a dimensionless heat conductivity 𝜆𝑒𝑓𝑓
∗ =

𝑄̇𝑆𝑖𝑚

𝑄̇𝑟𝑒𝑓
=

𝜆𝑒𝑓𝑓

𝜆𝑝
  (𝜆𝑝 is the particle 

material’s heat conductivity) which is probed by dividing the measured the heat flux thru the walls (and 
hence thru the domain) with the negative temperature gradient. When calculating the latter, we found 
that it is important to use the average particle temperatures in the boxes (a) and (b), and not the wall 
temperatures (the latter would induce a considerable error, since the bed-wall heat transfer resistance 
is relatively large compared to the bed-internal heat conduction resistance).  

 



Following Figure 9, we see that the effective heat conductivity varies considerably with the applied 
stresses onto the box. As expected, cohesion leads to a lower heat conductivity, since the particles form 
a structured network leading to a more porous bed at the same applied stress. We note in passing that 
also the particle volume fraction 𝜙𝑝 in the bed varies with the stress level (for the cohesionless system 

we observe small fluctuations around 𝜙𝑝 ≈ 0.53. In contrast, for the calibrated cohesive particles 𝜙𝑝 

increases from 0.490 to 0.529 for a dimensionless stress change from 1.10-5 to 5.10-3). It is hence 
important to consider both (i) calibrated mechanical DEM model parameters and (ii) the applied stress 
level when learning thermal DEM parameters from experimental data. 

 

 
Figure 9. Influence of the normalized stress on the effective heat conductivity of the non-cohesive 

(black crosses) and cohesive calibrated material (red circles). 

Summary 
Various machine learning strategies have been practiced in the field of CFD-DEM simulations 

relevant for combustion processes. Learning hereby typically means that closure parameters (e.g., view 
factors in radiation modeling, a correction to the drag force, or DEM parameters) are iteratively 
determined via a computer algorithm based on experimental data, or simulated reference data. The 
subsequent validation of the trained model is essential – otherwise machine learning might be seen as 
a “parameter tuning” exercise with limited generality. 

Which strategy for learning is most promising dependents on the application area, the complexity of 
the learning exercise (i.e., the number of markers that need to be used) and the amount of data to be 
handled. We have adopted a grey-box approach for view factor and drag modeling with good success: 
the trained models are robust enough against abuse and allow extrapolation.  

When moving into the field of DEM parameter learning or calibration, we found that tetrapods are a 
potentially good choice for strongly cohesive systems. Our tetrapods do not add significant 
computational overhead, as their primary spheres do not overlap (and hence there is no “volume loss” 
when applying the multi-sphere approach). From our study it is also clear that any calibration of thermal 
DEM parameters needs to (i) rely on a prior calibration of mechanical parameters (e.g., for cohesion) 
and (ii) must consider a whole range of particle stress levels. Which stress levels are relevant needs to 
be known prior to such calibration tasks – predicting the stress level might be another interesting 
machine learning exercise.  

As an outlook, we would like to mention that there is still a considerable amount of work going into 
the handling of data (for experimental, simulation, and calibration tasks). As a potential relief, we have 
recently invested in the development of a novel open-source workflow environment that will reduce this 
work at least for the calibration step (https://github.com/n-ghods/DEMvironment). Finally, the topic of 
heat conduction (and radiative transport) in cohesive granular materials - modelled with a coarse-
grained multi-sphere approach - needs more attention in the future. 
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