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Abstract

We present a novel fusion method that combines com-
plementary 3D and 2D imaging techniques. Consider a
Time-of-Flight sensor that acquires a dense depth map on
a wide depth range but with a comparably small resolu-
tion. Complementary, a stereo sensor generates a dispar-
ity map in high resolution but with occlusions and out-
liers. In our method, we fuse depth data, and optionally
also intensity data using a primal-dual optimization, with
an energy functional that is designed to compensate for
missing parts, filter strong outliers and reduce the acqui-
sition noise. The numerical algorithm is efficiently imple-
mented on a GPU to achieve a processing speed of 10 to
15 frames per second. Experiments on synthetic, real and
benchmark datasets show that the results are superior com-
pared to each sensor alone and to competing optimization
techniques. In a practical example, we are able to fuse a
Kinect triangulation sensor and a small size Time-of-Flight
camera to create a gaming sensor with superior resolution,
acquisition range and accuracy.

1. Introduction

Depth sensing is one of the fundamental challenges in
computational vision. It is used in a variety of applications
including microscopic and macroscopic object reconstruc-
tion, robotic navigation, human computer interaction and
automotive driver assistance. Unfortunately, existing ap-
proaches are always limited in some respect. Laser range
scanners are too slow to work at high frame rates, passive
stereo fails at texture-less scenes, active stereo is limited in
its acquisition range and Time-of-Flight sensors are low in
resolution and produce a high amount of noise [1]. Other
methods like Shape from Focus/Defocus need multiple se-
quential image acquisitions and a high amount of computa-
tional effort to reconstruct a scene.

In this work, we propose a method to fuse depth infor-

mation of complementary depth sensors in one multi-sensor
system, where the shortcomings of individual sensors are
compensated for, as shown in Figure 1.

(a) ToF sensor (b) Triangulated depth

(c) Intensity image (d) Fused depth map

Figure 1: Multi-Modality Depth Map Fusion. A scene ac-
quired by a ToF (a) and a stereo sensor (b) is fused into
one high resolution dense depth map (d). To preserve sharp
edges and further reduce noise a 2D intensity image is used
as an additional depth cue (c).

A ToF camera is an active range sensor, which mea-
sures depth through the runtime of light. The measure-
ment is independent of scene texture and lighting condi-
tions, which results in dense depth maps even at very close
ranges [13, 28]. Because no additional calculations are nec-
essary, the camera achieves frame rates up to 90 frames per
second. However, this method has two main disadvantages
which are the low lateral resolution and the high acquisi-
tion noise. This noise is composed of systematic parts, non-
systematic parts and gross outliers. The main systematic er-
rors are caused by different object reflectance. A lower ob-



ject reflectance results in a depth offset. The non-systematic
errors occur due to measurement inaccuracies depending on
the signal-to-noise ratio of the reflected light. These inaccu-
racies result in random noise with zero mean. Outliers occur
when the region that is acquired by one pixel contains large
depth discontinuities, e.g. foreground and background. This
error source is commonly known as the mixed pixel prob-
lem. An analysis of all these errors and their compensation
can be found in [7, 10, 15, 16].

The stereo sensor, either active or passive, calculates
depth values by triangulation. The lateral resolution is com-
paratively high and only limited by the camera resolution
and baseline of the stereo system. On the other hand, the
depth map may be incomplete or may contain strong out-
liers where no corresponding points can be found. This
is the case due to shadows, occlusions, thin structures or
close ranges. Furthermore, the triangulation fails on poorly
textured areas. Additionally, random noise occurs due to
matching uncertainty, which increases with the measured
distance and decreasing baseline [26].

Intuitively, these two methods are very complementary
in their sensing characteristics. Our method fuses the depth
maps of both a ToF camera and a stereo sensor to compen-
sate for low resolution, noise and outliers. Because every
triangulation sensor also delivers an intensity image of the
scene, we use the gradient information of this image as an
additional depth cue. We formulate the fusion problem as
a first order primal-dual energy minimization [5, 21]. The
energy consists of two main terms. First, the data term that
forces the solution to be similar to the input depth maps.
In our model we have chosen the Huber norm as data term
to handle both random noise and outliers in the input data.
This term alone would only produce a weighted mean of
the input depth maps. Second, the regularization term re-
flects prior knowledge of the smoothness of the solution.
This term is modeled as an anisotropic Huber norm, which
preserves sharp edges and is weighted according to the gra-
dients of the intensity image.

There are two main contributions of this work. First, we
propose a novel method to combine the complementary ad-
vantages of a ToF and a stereo range sensor in one fused
depth map through energy optimization. In this optimiza-
tion we simultaneously improve the range image density,
resolution, accuracy and robustness. Second, the first or-
der primal-dual optimization algorithm is efficiently paral-
lelized on the Graphical Processing Unit (GPU) with guar-
anteed and fast convergence resulting in frame rates of 10
to 15 frames per second.

In our experiments we prove this by a numerical and vi-
sual comparison to each sensor alone and to other energy
models on synthetic, real and benchmark datasets.

2. Related work
In the past, a variety of techniques have been proposed to

increase the resolution and quality of depth measurements
of triangulation based and ToF sensors. The approaches can
be separated into three main areas: (1) Low-level error char-
acterization and calibration of one sensor. (2) Temporal and
spatial fusion of one sensor technique from multiple view-
points. (3) Fusion of multiple sensors.

Sensor calibration A common low-level approach is to
exactly investigate and calibrate each error source. This can
be done by fitting non-linear functions or defining look-up
tables that relate the measured depth at each pixel to the
corrected depth value. For the Kinect stereo sensor this
is shown in [3, 11, 30]. Lindner and Kolb [15] calibrated
the distance related error of a ToF camera with B-Splines,
whereas Fuchs and Hirzinger [8] modeled this error by a
third order polynomial. An analysis of the amplitude re-
lated errors of ToF acquisitions is shown in [10, 15, 23].

Temporal and spatial fusion Schuon et al. [29] proposed
a method to fuse ToF acquisitions of slightly moved view-
points using bilateral regularization. A method to combine
multiple ToF cameras was proposed by Castaneda et al. [4].
They measure and fuse the depth of both cameras, while the
timing of the infrared pulse is actively changed. Newcombe
et al. [20] proposed a method for real-time fusion of depth
data from an active stereo Kinect sensor, while simultane-
ously tracking the position of the sensor in the scene.

Multi-Sensor Fusion One class of multi-sensor fusion is
the combination of depth images with higher resolution 2D
intensity images. Assuming that texture edges most likely
correspond to depth discontinuities, the low resolution of
the range image is upsampled through edge and texture in-
formation from the intensity image. Diebel and Thrun [6]
used a Markov Random Field (MRF) approach for regular-
ization, whereas Yang et al. [32] used bilateral filtering of
the cost volume of a depth image and a RGB image in an
iterative refinement process.

Recent work also addresses the fusion of multiple range
images. Gudmundsson et al. [9] presented a method for
stereo and ToF depth map fusion to increase the overall spa-
tial resolution in a dynamic programming approach. Zhu et
al. [35] presented a method for highly accurate ToF and
passive stereo calibration. The resulting depth maps are re-
fined by a spatial Markov Random Field. In [34] this spatial
Markov Random Field was extended by a temporal factor.
The method is used to generate high accuracy depth maps
over time while taking the temporal coherence into account.

Most of these methods use either a set of temporal consec-



utive depth acquisitions or only increase the lateral image
resolution. Compared to these methods, we use a common
global optimization technique to fuse the depth image of
stereo and the ToF depth map simultaneously. Through
primal-dual optimization the numerical algorithm is effi-
ciently parallelized on the GPU to run at high frame rates.

3. Sensor fusion
In the following, we first give a short description of the

sensor fusion problem. Second, we evolve our energy func-
tional in detail. Third, we describe the primal-dual op-
timization algorithm for efficient optimization. The opti-
mization requires that all sensors are calibrated and mapped
in a common coordinate frame. Further, the input depth
maps are normalized between [0, 1].

3.1. Sensor fusion problem

In our sensor fusion, we seek to combine ToF and stereo
depth acquisition to create one dense depth map with high
resolution, where the robustness and the accuracy are im-
proved and sharp edges are preserved. Before we derive the
fusion method, we discuss the individual properties of each
sensor. In Figure 2 prototype profiles of a stereo and a ToF
depth map are shown.

Figure 2: Sensor properties shown on a prototype profile
of a synthetic object. The stereo sensor delivers a high-
resolution depth map with random noise depending on the
measured depth (b,c) and missing parts due to occlusions
(a). The ToF sensor measures a dense depth map with noise
depending on object reflectance (c,d) and occasional out-
liers at large depth discontinuities (a).

The stereo sensor delivers a depth map with random
noise and missing parts but with a high resolution and ac-
curacy on visible edges. The noise originates from mea-
surement uncertainty and increases with the measured dis-

tance (compare Figure 2(b) and (c)). The missing parts oc-
cur due to occluded regions, as shown in Figure 2(b). The
ToF sensor, on the other hand, delivers a dense depth map
with lower resolution containing random acquisition noise
and pixel-wise strong outliers. The acquisition noise de-
pends on the object reflectance and therefore increases with
the surface gradient (compare Figure 2(c) and (d)). Strong
outliers occur when one pixel acquires a region with high
depth discontinuities, as shown in Figure 2(a).

3.2. Energy model

The energy of our multi-sensor fusion originates from
the general convex minimization problem [24, 25], which is
modeled as

min
u
{F (Ku) +G(u, d)} . (1)

In this formulation, G(u, d) is the data term that penalizes
the distance of the optimization argument u to the input im-
age d. The regularization term F (Ku) reflects prior knowl-
edge of the smoothness of our solution. This term is nec-
essary because the minimization of the data term alone is
an ill-posed problem and therefore would not produce a re-
liable depth map. Most of the current regularization terms
are based on the first order smoothness assumption [21, 25],
which results in F (Ku) = ‖∇u‖X , where ‖.‖X denotes
the norm of the regularization. In our model, we introduce
two different data terms to concern the depth map of both
the ToF and the stereo sensor to form the fusion model by

min
u
{‖∇u‖X + ‖ws(u− ds)‖X + ‖wt(u− dt)‖X}

where ws = λsw̃s, wt = λtw̃t.
(2)

In this model, ds and dt are the range images acquired by
the stereo sensor and by the ToF sensor. To neglect missing
data in both images we introduce w̃s, w̃t ∈ {0, 1}M×N ,
where zero values define missing data in the input depth.
The scalars λs and λt are used to balance the influence of
each term in our optimization.

The norm ‖.‖X in the regularization and the data term
strongly influences the quality of the fusion result. In this
context, common norms are the Euclidean L2 norm and the
L1 norm. While the L2 norm in the data term reduces ran-
dom noise, the optimization is erroneous for impulse noise
or outliers. Conversely, the L1 norm can effectively remove
impulse noise, but is sensitive to small random noise. The
same problems arise in the regularization term. While the
L2 norm smooths edges, the L1 norm preserves sharp edges
but also enforces piece-wise constant values, which results
in stair casing of the resulting depth.

In our model, we use the Huber norm [12] defined as

|q|ε =

{
|q|2
2ε if |q| ≤ ε
|q| − ε

2 if |q| > ε
. (3)



This norm combines the properties of the L2 norm at values
q smaller than ε and the L1 norm at larger values. We use
the Huber norm in both the data term and the regularization
term to achieve a robustness against random noise and to
reduce the stair-casing effect.

Most stereo sensors rely on 2D intensity images. As-
suming that texture edges most likely correspond to depth
discontinuities, this 2D information is used as an additional
depth cue in our optimization. Thus, the regularization pa-
rameters in the solution are weighted according to the inten-
sity gradients ∇I . A commonly used term for natural im-
ages is a weighting factor w = exp(−|∇I|) multiplied with
the regularization parameter in the functional, as shown in
[6]. Hence, we get a lower penalization for depth discon-
tinuities at high image gradients and vice versa. Such a
tendency towards image gradients can even be enforced by
incorporating an anisotropic weighting of the image gradi-
ents. This weighting is defined by an anisotropic diffusion
tensor D

1
2 based on the Nagel-Enkerlmann operator [19].

This tensor is calculated by

D
1
2 = exp

(
−αD |∇I|βD

)
nnT + n⊥n⊥T , (4)

where n is the normalized direction of the image gradient
n = ∇I

|∇I| and n⊥ is the normal vector to the gradient. This
extension was first used by Werlberger et al. [31] for 2D
optical flow calculation. The parameters αD and βD are
scalars to define the influence of the tensor on the regular-
ization. With this tensor the regularization term results in
‖D 1

2∇u‖εD . This enhancement leads to sharper and more
defined edges in the solution. Further, the regions where
the data from both sensors is missing are filled out more
reasonably.

All this results in our model

min
u

{
‖D 1

2∇u‖εD + ‖ws(u− ds)‖εs + ‖wt(u− dt)‖εt
}
,

(5)

where εD, εs and εt are the parameters of the respective
Huber norms. In this model, the solution is optimized ac-
cording to two separately weighted data terms and an in-
tensity image driven anisotropic regularization term. In the
next section we explain the numerical algorithm to solve
this problem in a primal-dual formulation.

3.3. Energy minimization

Our model (5) is convex but entirely non-smooth, which
makes it hard to optimize in a standard gradient descent al-
gorithm. Therefore, we use a first-order primal-dual scheme
to minimize the energy, as proposed by Chambolle and
Pock [5]. In this algorithm the model (5) is rewritten as
an equivalent convex-concave saddle-point problem apply-
ing the Legendre-Fenchel (LF) transform [24]. The advan-

tage of this formulation is that the Huber-L1 terms are trans-
formed into L2 terms with constraints. The primal-dual for-
mulation results in

min
u∈RMN

max
p∈P,rs∈Rs,rt∈Rt

{
〈D 1

2∇u, p〉+ 〈u− ds, rs〉 (6)

+〈u− dt, rt〉 −
εD
2
‖p‖2 − εs

2
‖rs‖2 −

εt
2
‖rt‖2

}
. (7)

We consider a regular Cartesian grid size of M × N for
(x, y) : 1 ≤ x ≤ M, 1 ≤ y ≤ N denoting the image co-
ordinate system. The convex sets P , Rs and Rt are given
by

P =
{
p ∈ R2MN : ‖p‖∞ ≤ 1

}
, (8)

Rs =
{
rs ∈ RMN : |rs(x, y)| ≤ ws(x, y)

}
, (9)

Rt =
{
rt ∈ RMN : |rt(x, y)| ≤ wt(x, y)

}
(10)

∀(x, y) : 1 ≤ x ≤M, 1 ≤ y ≤ N. (11)

This formulation is used for the primal-dual algorithm in
[5]. The solution is calculated on the individual pixels iter-
atively. First, the dual variables p, rs and rt are calculated
using gradient-ascent (maxp,rs,rt ). Second, the primal vari-
able u is updated using gradient-descent (minu). Third, the
primal variable is refined in an extrapolation step.

Choose step sizes µp ≥ 0, µsi ≥ 0, i ∈ {s, t},
τp ≥ 0, τr ≥ 0 and iterate

p̃n+1 = pn + µpD
1/2∇ūn

pn+1 = (I + µp∂F
∗)
−1

(p̃n+1)

r̃n+1
i = rni + µri(ū

n − di)
rn+1
i = (I + µri∂G)

−1
(r̃n+1
i )

un+1 = un − τu
(
∇TD1/2pn+1 +

∑
i ri
)

ūn+1 = 2un+1 − ūn)

(12)

until a stopping criterion is reached.

In each iteration the so-called resolvent operators for the
dual variables p, rs, rt are calculated through point-wise
Euclidean projections onto P , Rs and Rt by

p = (I + µp∂F
∗)
−1

(p̃)⇔

p(x, y) =

p̃(x,y)
1+µpεD

max
(

1,
∣∣∣ p̃(x,y)1+µpεD

∣∣∣) , (13)

and

r = (I + µri∂G)
−1

(r̃i)⇔

ri(x, y) = max

(
min

(
r̃i(x, y)

1 + µriεi
, wi

)
,−wi

) (14)



for i ∈ {s, t}.
In practice, we use a preconditioning of the step-sizes

for the primal and dual update of the regularization term,
as proposed in [22]. Thus, we achieve a fast and guaran-
teed convergence. The gradient and the divergence operator
are approximated using forward/backward differences with
Neumann and Dirichlet boundary conditions, respectively.

4. Experiments
In this Section, we evaluate the quality of our depth fu-

sion compared to single ToF and stereo imaging, and other
optimization models. For that, we apply the methods on
synthetic, real and benchmark datasets. In abbreviation, we
refer to a sole ToF acquisition as TOF, to the sole stereo
imaging as ST, to a ROF model [25] as ROF, to a total vari-
ation with L1 data terms [21] as TVL1 and to our multi-
modality depth map fusion as MMDF. In every scene the
optimization reaches convergence in a maximum of 300 it-
erations. The average runtime for all evaluations is calcu-
lated as mean over 100 runs over 300 iterations for each ob-
ject and each noise setting, computed on a NVIDIA GForce
GTX 560Ti standard GPU. While the step sizes µp, µrs ,
µrt and τu are determined through preconditioning [22], the
Huber, the weighting and the Tensor parameters are empir-
ically chosen once for all experiments. To encourage com-
parison and further work, the datasets are available on our
website.

4.1. Synthetic scenes

We evaluate the different techniques on a synthetically
generated dataset. To cover a variety of different surface
properties we design three scenes: First, a CUBE object
that contains sharp discontinuities and slanted parts. Sec-
ond, a SPHERE that contains visual rims and curved parts.
Third a PYRAMID that contains steep slanted parts and a
sharp peak. For each object we generate a noise-free dense
groundtruth image, a stereo image and a ToF image, (see
Fig. 3).

The stereo system is modeled with a standard baseline of
350mm to generate depth shadows in the scene. The image
of size 640×480 contains occluded regions according to the
object geometry and Gaussian noise, which is dependent on
the depth, according to [26, 30]. The acquisition noise in the
synthetic scenes is approximated with a standard deviation
of σs multiplied by each stereo depth value ds.

The ToF image of size 160×120 contains Gaussian noise
dependent on the object reflectance. This noise is estimated
according to the surface gradient and approximated with
a standard deviation of σt0 + σt∇dt, where σt0 denotes
ToF acquisition noise floor according to [8]. Additionally,
we model the mixed pixel problem in the ToF acquisitions,
which arises when the region that is acquired by one pixel

contains high depth discontinuities. We define these pixels
by comparison with the same region in the groundtruth. The
outliers at these pixels are modeled according to [14] with a
given percentage po.

In Figure 3 the visual results after optimization are
shown. An error analysis of the different methods compared
to groundtruth for medium and high noise is shown in Table
1. For error analysis, the input and output depth images are
normalized between [0, 1].

The error is calculated as the mean squared error (MSE)
between the resulting images and the known groundtruth.
For the stereo depth evaluation the error is only measured
in the visible parts. The ToF image is compared to the
groundtruth after nearest neighbor upsampling.

In the numerical evaluation of the synthetic datasets one
can see that our method handles Gaussian noise and strong
outliers in the input depth. Occluded parts are compensated
for while sharp edges as well as the smoothness of slanted
or curved surfaces are preserved.

4.2. Real scenes

For the evaluation of real scenes we use the Microsoft
Kinect device as an active stereo sensor [18]. In this sensor
an IR camera observes and decodes an IR projection pat-
tern. With an approximate baseline of 75mm between the
camera and the projector, the corresponding points of the
projected pattern are triangulated to a 3D scene. The sensor
generates a depth map with a resolution of 640×480 pixels
at 30 frames per second. This camera also produces an RGB
image of the same size, which is used for the anisotropic
diffusion tensor in our optimization. The ToF sensor in our
setup is a Swiss-Ranger SR4000 camera [17]. This sensor
delivers a range image with a resolution of 177 × 144 at
50fps.

The intrinsic camera parameters are calibrated using
a closed-form camera calibration algorithm proposed by
Zhang [33]. The extrinsic correspondences between the
sensors are calibrated using the Bouguet stereo calibration
tool [2], where we define the Kinect RGB camera as our
world coordinate center. For visual evaluation of the differ-
ent methods we acquired different scenes containing mul-
tiple objects, as shown in Figure 4. To compare the fusion
quality we enlarge significant parts of the optimized depth
maps.

To evaluate our method on more complex scenes with
known groundtruth we use the Middlebury Stereo Dataset
[27]. This dataset contains depth maps of size 450 ×
375 with corresponding occlusions to define a triangulated
depth together with the intensity images from the stereo cal-
culation. To use this dataset for our method we generate an
artificial ToF image out of the down-sampled groundtruth
depth image where additional acquisition noise is applied,
according to Section 4.1, resulting in a ToF depth map of



σs/σt po MSE(ST) MSE(TOF) MSE(ROF) MSE(TVL1) MSE(MMDF)
CUBE 0.04 / 0.25 10.0 0.35340 0.13386 0.07135 0.05743 0.05523
CUBE 0.16 / 1.00 50.0 5.59650 0.28823 0.07964 0.06851 0.06671
SPHERE 0.04 / 0.25 10.0 0.38720 0.07517 0.02310 0.01272 0.01186
SPHERE 0.16 / 1.00 50.0 6.17291 0.23813 0.04311 0.02339 0.02373
PYRAMID 0.04 / 0.25 10.0 0.43767 0.00591 0.00932 0.00235 0.00145
PYRAMID 0.16 / 1.00 50.0 6.95938 0.05821 0.01389 0.00813 0.00622
Avg. runtime [ms] - - - - - 74.9 101.7

Table 1: Comparison of fusion methods. The depth maps are normalized between [0, 1]. The error is measured through the
mean squared difference to the noise-free groundtruth summed up over all pixels. Gaussian noise is applied with a standard
deviation of σsds on the stereo data and σt0 + σt∇dt on the ToF data, whereas po denotes the percentage of strong outliers
at high depth discontinuities in the ToF depth image. In the last row the average runtime for 300 iterations is given.

MSE ROF TVL1 MMDF
TEDDY 2.10e-4 2.37e-4 0.979e-4
CONES 2.28e-04 2.74e-04 0.908e-04
Avg. runtime [ms] - 49.9 70.4

Table 2: Comparison of fusion methods on the Middlebury
Datasets. Gaussian noise is applied with a standard devia-
tion of σs = 0.04 on the stereo depth and σt = 0.25 on the
ToF depth with po = 10% of strong outliers at high depth
discontinuities, according to Section 4.1. In the last row the
average runtime for 300 iterations is given.

size 150× 125 pixels. The intensity images from the stereo
dataset are used for the anisotropic regularization in our
method. The fusion results are shown in Table 2 and in
Figure 5.

The evaluation on real datasets shows that our method
delivers an improvement in accuracy and robustness com-
pared to the ROF and the TVL1 model. The accuracy im-
provement caused by the anisotropic tensor increases for
more complex scenes. While the sharp edges are smoothed
in the ROF optimization result and random acquisition
noise could not be handled with the TVL1 model, our
method preserves edges and handles both random noise and
outliers.

5. Conclusions and future work
In this paper, we proposed a method to fuse the depth

information of complementary 3D and 2D sensors in one
depth map. The fusion was formulated as a convex energy
minimization problem. For fast numerical minimization we
used a first order primal-dual algorithm, which was effi-
ciently implemented on the GPU. In our experiments we
evaluated this method on two complementary 3D imaging
techniques, where we have shown that it is robust against
different amounts of noise, strong outliers and missing data.

In a practical setting, we were able to fuse a Kinect sen-
sor and a small size ToF camera to create a novel gaming
sensor still delivering 10 to 15 frames per second, but with
an acquisition range of 10cm to 5m, considerably less noise
and no shadow artifacts.

A topic for future work will be to use ToF acquisitions
with 90 frames per second and the high-resolution Kinect
intensity image of 1280×960 pixel in a spatial and temporal
fusion. This will further increase the resolution and even
will speed up the frame rate.
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