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Abstract

The use of hydrogels has exponentially increased in recent years in many fields, such as biology,
medicine, pharmaceuticals, agriculture, and more. These materials are so widely used because their
mechanical properties change drastically with the different chemical compositions of the constituent
polymer chains, making them highly versatile for different applications. We introduce a numerical
simulation tool that relies on the Discrete Element Method to reproduce and predict the behavior of
hydrogel spheres. We first use a benchmark test, namely an oscillatory compression test on a single
hydrogel, to calibrate the model parameters, obtaining a good agreement on the material’s rheological
properties. Specifically, we show that the normal modified storage and loss moduli, E’ and E”, obtained
in the simulation match the experimental data with a small relative error, around 3%, for E’ and
11% for E”. This result aligns with recent work on numerical modeling of hydrogels, introducing a
novel approach with bonded particles and a viscoelastic constitutive relation that can capture a wide
range of applications thanks to the higher number of elements. Moreover, we validate the model on
a particle-particle compression test by comparing the simulation output with the contact force in the
compression direction, again obtaining promising results.
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1 Introduction

Hydrogels are polymer-based compounds that
are highly hydrophilic. When a hydrogel absorbs
water, its volume can contain up to 99% water,
making it almost identical to it for some physical
properties, such as refractive index [1] and density.

However, its mechanical properties differ signifi-
cantly from water, especially its stiffness and flow
behavior. This highly hydrophilic behavior is due
to the nature of the polymer chains, which are
composed of many hydrophilic functional groups
along the chain, attracting the hydrogen atoms
in the water molecules [2]. A slight change in the
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composition can lead to vastly different mechan-
ical properties. Hence, spherical hydrogels have
been the focus of research in many other fields,
such as biomedical, [3–5] pharmaceutical [6], agri-
cultural [7], and so on. Given this wide range of
applications, defining the mechanical properties of
the hydrogels for a specific product is of utmost
importance. The most common way to char-
acterize hydrogels is experimental rheology [8],
where the frequency sweep or strain sweep is the
most used test since hydrogels show a viscoelastic
behavior that is possible to capture with a differ-
ent timescale of applied stress/strain. Alongside
experiments, numerical methods have also been
used to predict the behavior of hydrogels as a sin-
gle particle or in a packing [9]. Each numerical
model must be validated with experiments before
being expanded to other applications [10]. Regard-
ing the current work, we decided to use a bonded
particle model based on the original formulation
of Potyondy and Cundall [11]. Differently from
other work where the viscoelastic response of
deformable grains has been studied using a multi-
contact model, which accounts for the increased
deformability of single grains and inherently has
a viscoelastic response due to the dissipative part
of the contact[12, 13], here we introduce a new
methodology. In our work, the single grain is com-
posed of hard DEM spheres that do not account
for multi-contact or high deformability. Still, given
the bonded model’s more complex viscoelastic
constitutive relation used, which can predict mul-
tiple timescales, it can realistically capture high
deformability for the single grain, as opposed to
the multi-contact model, which is modeling the
real deformation. A similar implementation is used
in [14], where the single grain deformation is still
modeled but with a linear, more complex vis-
coelastic response. Still, the goal of our work is to
be able to capture the real deformation of highly
deformable hydrogels and to predict the behavior
of single grains and grain-grain contact. In addi-
tion, the bonded nature of the model can describe
more continuous materials, such as pastes, as done
in [15]. The numerical method is first explained in
detail, describing the parameters that define the
forces between the discrete elements of the system.
Furthermore, the experiment used as a calibra-
tion benchmark is defined such that it can be
reproduced and its result is shown. Consequently,
the simulation boundary and initial conditions

are described, and the simulation result against
the experimental data is shown with reasonable
accuracy.

2 Methodology

The approach used here to model and simulate the
response of a swollen spherical hydrogel is based
on the Bonded Particle Model first introduced
by Potyondy and Cundall [11]. In their origi-
nal formulation, a solid bond is formed between
particles when certain geometrical conditions are
met. The bond produces an elastic and a dis-
sipative force, depending on the relative motion
between the particles. For this study, the forces
produced by the bonds are based on the General-
ized Maxwell model, which defines a viscoelastic
interaction when deformed [15].

2.1 Bonded Particle Model

In the classical Discrete Element Method (DEM),
the force between interacting particles is (almost)
always repulsive, i.e., when the particles are in
contact, the force is proportional to the overlap
between them, and its direction is opposite to the
relative normal unit vector, hence the repulsive
nature of the force. However, with the Bonded
Particle Model, not only are the particles not nec-
essarily in contact, but the force can be either
repulsive if the particles are getting closer to the
equilibrium position or attractive if the particles
are getting farther. The classical DEM contact is
switched off when particles are bonded, but it is
active when a particle is in contact with a par-
ticle to which it is not bonded. The model can
be considered a hybrid as it allows for both a
classic DEM contact and the bonded interaction,
depending merely on the condition of the bond’s
existence. The condition for the bond creation fol-
lows the same strategy as used by Potyondy and
Cundall [11], where the radii of the particles are
multiplied by a constant parameter, called the
radius multiplier λ, and the overlap between the
increased radii is taken as a condition for the bond
creation. Starting, for simplicity, with two parti-
cles i and j with equal radii r, positions x⃗i, x⃗j ,
a cylindrical bond is formed when the distance
between the particles is less or equal to the sum
of the increased radii, or d = |x⃗i− x⃗j | ≤ 2λr, with
d being the distance. In general, the length and
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radius of the bond are defined at its creation to
be L = d and radius R = λmin(ri, rj) in the case
of particles with different sizes. Moreover, bonds
can either form continuously as the simulation
advances, given the particles are close, or they are
formed at a given timestep and do not form for
the rest of the simulation or until a user-specified
timestep. This permits the user to define separate
Hydrogels that do not form bonds between them
when they come into contact.

Fig. 1 Schematic representation of the viscoelastic ele-
ment forming the Generalized Maxwell Model.

2.2 Generalized Maxwell Model

A Generalized Maxwell Model has been imple-
mented to deal with the viscoelastic nature of a
wide range of materials. The main reason behind
this choice is the ability of the model to introduce
multiple elements without necessarily making the
discretization more complex. Moreover, the ana-
lytical solution is known for many simple tests,
which can be helpful when validating the imple-
mentation of the model in the numerical solver. As
the name suggests, the model is defined as a par-
allel connection of a certain number of Maxwell
elements plus a spring or a dashpot, as depicted in
Fig. 1. For this work, a version with 4 Maxwell ele-
ments and a single spring is used as this has been
successfully implemented for other applications,
which also shows the reason behind the choice
of 4 elements [15]. Even though it appears quite
complex, its implementation is relatively simple.
Starting from the constitutive relation of the jth

single Maxwell element,

dε

dt
=

1

kj

dσj

dt
+

σj

µj
, (1)

where ε is the strain, σ is the stress, kj is the
spring stiffness, and µj is the damper viscosity. It
is possible to transform it to its respective force-
displacement relation, which reads

du

dt
=

1

yj

dfj
dt

+
fj
cj

, (2)

with f being the force and u the displacement.
Here, a cylindrical bond shape is used to make it
easier to define a limit stress for fracture, which
is not implemented yet but is a natural next step
to improve the model. In addition, the cylindri-
cal shape is also used to define the micro-contact
parameters and scale them with a characteristic
length accordingly, resulting in yj = Ab/L ∗ kj
and cj = Ab/L ∗ µj , where Ab is the cross-section
area of the bond, computed as Ab = πR2, with
L being the bond length.To conclude, the bond
is merely a massless “connection” between DEM
particles which carries the viscoelastic constitutive
relation. Since the bond connects the centers of
the particles, L is equal to the particles’ distance
when the bond is formed. Hence, it is constant
throughout the simulation. Moreover, a parameter

called α is added, such that kj,shear =
kj,normal

α
,

ke,shear =
ke,normal

α
and µj,shear =

µj,normal

α
,

where the j subscript represents the coefficient of
the spring or dashpot in the jth Maxwell element
and the subscript e stands for elastic and it defines
the spring stiffness of the isolated spring element
in the generalized Maxwell model. The choice of
a single scaling parameter α is motivated by the
need to keep the number of parameters (to be cal-
ibrated) as low as possible. Nevertheless, the same
set of parameters is used for all the bonds in the
system.

2.2.1 Discretization and
implementation

The constitutive relation of Eq. (2) must be dis-
cretized in time to implement the model in the
DEM code. By taking values at half timestep and
computing Taylor Series expansions for the force
and the displacement, centered at t = ∆t(n +
1/2), one would obtain (we note that the super-
scripts between curled brackets {} in the following
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equations are not exponential, but they refer to
the timestep index at which the variables are
computed)

du

dt

∣∣∣∣∣
n+ 1

2

=
u{n+1} − u{n}

∆t
+O(∆t2). (3)

df

dt

∣∣∣∣∣
n+ 1

2

=
f{n+1} − f{n}

∆t
+O(∆t2). (4)

Substituting the newly found approximations
for the force and displacement derivatives in Eq.
(2), the following discretized force equation for the
jth Maxwell element is obtained

f
{n+1}
j =

u{n+1} − u{n} + f
{n}
j

(
1

yj
− ∆t

2cj

)
1

yj
+

∆t

2cj

,

(5)
A finite deformation approach regarding the

single spring force is used, given that the relative
positions at the bond creation are known. Hence
it is straightforward to compute the displacement
relative to the bond creation timestep n0, leading

to f
{n+1}
e = ye(u

{n+1} − u{n0}), where ye is the
micro-contact spring stiffness of the single spring
element in the generalized Maxwell computed as
ye = Ab/L · ke. Finally, the total force is just a
sum of the Maxwell elements plus the single spring

contributions, i.e. f{n+1} = f
{n+1}
e +

∑4
j f

{n+1}
j .

The new particle’s position is then updated by
integrating the translational equation of motion.
A flowchart of the algorithm is shown in Fig. 2 to
visualize better how particle-particle interactions
are computed.

The rotations are turned off for bonded parti-
cles, so the model does not solve for the torques.
However, it is extremely important to consider
both normal and tangential displacement when
computing the interactions between bonded par-
ticles. Without tangential displacement, we would
lose information on the out-of-direction defor-
mation. If we compressed a face-centered cube
lattice, for example, and turned off the tangen-
tial displacement, we would not observe a lateral

Fig. 2 Flowchart of the algorithm used to compute
particle-particle interactions.

deformation. Such a behavior would not be phys-
ical (i.e., result in a Poisson’s ratio of 0). As
mentioned, the model acts in the relative normal
and shear directions, with the parameters being
scaled according to the value of α. Generally,
the parameter α can assume any positive value,
depending on the material to be calibrated and the
geometry of the mechanical test used, as done in
[15, 16]. In our current work, choosing α equal to
unity has been found to best replicate the experi-
mental data in Sec. 3.1. What is different between
normal and shear directions are the values of the
displacements, depending on the relative motion
of the bonded particles. After solving the parti-
cle equation of motion, all the information on its
position and velocity are known at the timestep
n + 1, while quantities at timestep n are saved
from previous iterations. Let two particles i and
j be bonded. Their relative displacement between
two consecutive timesteps is ∆u⃗ = r⃗{n+1} − r⃗{n},
with r⃗ = x⃗i − x⃗j the relative position between the
particles. While the definition of the unit normal
vector is relatively simple, being just the nor-
malized r⃗, for the shear direction, many different
ways are possible, being infinite orthogonal lines
w.r.t. n̂. The method adopted here is that of defin-
ing a bond plane between the timestep at which
the bond is formed, called n0, and the actual
timestep, considering as shear direction the unit
vector orthogonal to n̂ which lays on said plane
[17]. As a result, the unit shear vector is defined as

ŝ{n+1} =
n̂{n+1} × (n̂{n+1} × n̂{n0})∣∣n̂{n+1} × (n̂{n+1} × n̂{n0})

∣∣ . (6)
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Once the principal directions at the new timestep
are known, the semi-projected displacements in
normal and shear directions are then computed,
giving

∆unorm = ∆u⃗ · n̂{n+1}

∆ushear = ∆u⃗ · ŝ{n+1}.

3 Experimental setups on
Hydrogel spheres

Two mechanical tests are conducted on the parti-
cles to observe different behaviors of the hydrogel
spheres. The first experiment is on a single grain,
compressed in an oscillatory motion, to measure
the rheological properties under cyclic compres-
sion, which will be used as a test case to calibrate
the DEM parameters. The second experiment is
a particle-particle linear compression, where the
two spheres are forced into contact by a vertical
motion, measuring the forces in the direction of
the motion.

3.1 Cyclic compression-extension

3.1.1 Sample preparation

The hydrogel used in the experiment is commer-
cially available, with an average diameter of 19.32
mm, and kept in water until no significant increase
in volume is noted.

3.1.2 Setup

The rheometer used is an Anton Paar MCR
702e Space. The measuring plate is an Anton
Paar’s PP25 with a diameter of 25 mm, while
the bottom plate is an Anton Paar’s L-PP50
plate with a diameter of 50 mm. Since an oscilla-
tory compression-extension frequency sweep test
is performed, the particle is placed between the
moving plate and the measuring plate. To keep
the hydrogel centered on the lower plate and
run the experiment both in a dry and in a sub-
merged setup, a 3D printed holder with a concave
base, where the curvature radius of the base is 80
mm, has been used. This way, the hydrogel sits
permanently at the center of the lower plate, main-
taining a good quality measurement throughout
the experiment. To better understand the setup,

Figs. 3 and 4 show the sphere placement and the
overall configuration of the rheometer.

3.1.3 Protocol

An initial preload compression strain of 5.5%
of the sphere diameter was used to ensure that
the contact between the measuring plate and the
hydrogel would be kept during the test, thus get-
ting the initial height to a value of h0 = 0.055 ·
19.32 mm = 18.35 mm. After that, the oscilla-
tions are performed with a constant amplitude of
5% of the initial particle diameter, resulting in
a displacement of the mechanical drive of ∆h =
0.05 · D = 0.966 mm, giving a total strain of
ε0 = (h0 − ∆h)/h0 = 0.053, with D the parti-
cle’s diameter. The frequency sweep ranges from
0.01 rad/s to 7 rad/s, and both dry and fully
submerged tests are performed.

Fig. 3 Schematic of the experimental setup for the
compression-extension oscillations on the hydrogel sphere.
The sample is initially compressed to h0. Then, an oscil-
latory motion is applied from the mechanical drive with
an amplitude ε0 and frequency ω. The stress response is
measured on the measuring plate and processed by the
rheometer, which gives the rheological properties as output.

Unfortunately, the experimental device used
in our experiments does not permit us to obtain
insights on the stress distribution within the
sphere. Therefore, it measures the force on the
measuring plate and computes the stress σ0 by
considering the sphere as a cube with a side length
equal to the sphere diameter as σ0 = f0/D

2, where
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Fig. 4 This picture shows the placement of the hydrogel
sphere, sitting on the concave bottom of the plate with the
measuring plate slightly compressing to apply a preload on
the sphere.

f0 is the force signal amplitude. Once the stress
is evaluated, the rheometer compares the stress
and strain signals, (the exact procedure for this
has not been made known by the manufacturer),
which ultimately outputs E′ = σ0/ε0 cosφ and
E′′ = σ0/ε0 sinφ, with φ being the phase shift
between stress and strain waves. We understand
that the quantities outputted by the rheometer
are not the real E′ and E′′ of the material due
to the stress distribution being not homogeneous
in the sphere. These values simply represent the
amplitude of the observed stress and its phase shift
w.r.t. the applied strain and we call them the mod-
ified storage and loss moduli. A spherical hydrogel
was used since cutting the material resulted in
uncontrolled fracturing. Attempts to manufacture
our own hydrogels resulted in non-uniform sam-
ples or samples whose surfaces were not flat and
could not be aligned with the compression plate,
producing non-uniform boundary conditions while
testing. The quantities E′ and E′′ were used for
the model calibration, and since stresses defined
in the simulation were consistent, we believe there
is a minimal loss of information. When compar-
ing the wet and the dry case, the same qualitative
behavior is observed for both E′ and E′′; see Fig.
5. Additionally, a slight difference in magnitude is
present. This is expected, especially at the lower

frequencies, which can be explained by the fact
that the rheometer first performs the oscillations
at higher frequencies. Once it is time to run the
lower frequencies, some water has been squeezed
out of the hydrogel sphere, rendering it stiffer,
thus giving higher values for the complex modu-
lus. Given that both E′ and E′′ are put on the
same plot in logarithmic scale, the difference only
looks more prominent for E′′, although it is quite
the opposite. The average difference between the
dry and the wet case for E′ is 863 Pa, while for E′′,
it is 63 Pa. Nevertheless, the dry case is used for
the calibration since considering the presence of
water would significantly increase the complexity
of the simulation setup.

Fig. 5 Rheological properties of the hydrogel sphere under
a cyclic compression-extension frequency sweep. The dry
and the submerged cases show the same behavior with a
slight difference in magnitude. The dry case is ultimately
used for the calibration, but a similar result would have
been obtained if the wet dataset was to be used.

3.2 Particle-Particle compression

3.2.1 Sample Preparation

The hydrogel spheres used in this test are similar
to the ones used in section 3.1. Educational Inno-
vation Inc. manufactures these. The dry hydrogels
are grown in Milli-Q water mixed with Nile Blue
Perchlorate dye (dissolved in absolute ethanol)
for a minimum of 24 hours at a lab tempera-
ture of approximately 19 degrees Celsius. Once
grown, the diameters of the spheres to be tested
were measured with Vernier calipers two times in
perpendicular planes. For the data sets shown in
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this paper, the mean diameter of the used par-
ticles is 18.365 ± 0.275 mm (upper particle) and
18.275±0.275 mm (lower particle). These particles
are then placed in a 3D-printed shell and clamped
down with a collar with a spherical cutout.

3.2.2 Setup

Based on previous work by Boots et al. [18] and
Asadi et al. [19], the particle-particle compression
test was conducted on a home-built setup. The
schematics of the setup are shown in Fig. 6. In
this setup, the force sensing and the motion of
the particles are decoupled, meaning that there is
no electronic feedback between the force measure-
ment and the particle’s motion or vice versa. The
motion of the upper particle is set by an actuator
(Thorlabs Z825BV) connected to a moving stage
(Thorlabs MT1). It is regulated by a motor con-
troller (Kinesis KDC 101) that can interact with
a Matlab platform. Through metallic rods and
posts, the moving stage is connected to a Wheat-
stone bridge-based S-beam load sensor (Futek
LSB200 FSH03871). A strain gauge input sig-
nal conditioner (ICP DAS SG-3016) regulates the
voltage supplied to the load sensor and amplifies
the signal output from the load sensor. The ampli-
fied signal is then filtered through a low-pass RC
filter (10Ω resistor 10nF capacitor) and converted
to a digital signal with a 14-bit analog-to-digital
converter (ADC) present in a National Instru-
ment data acquisition instrument (NI DAQ 6001).
This digital signal is then read into a computer
using Matlab’s NI Data Acquisition Toolbox. For
the dataset used in this study, the sampling fre-
quency for the load cell was set to 1 kHz. The
load cell is attached to one end of a metallic rod.
The other end of the rod is connected to the shell
containing the hydrogel used to compress another
hydrogel in a shell attached to the bottom of a
static container. Both the shells and the hydrogels
are immersed in Milli Q water. The alignment of
the particles is done by eye and is visualized in
figure 6b).

3.2.3 Protocol

The hydrogel spheres placed in the 3D-printed
shell were attached to the base of a transparent
container with double-sided tape and immersed
entirely in Milli-Q water. The transparent con-
tainer is then filled with water. A second hydrogel

Actuator

To ADC
a)

To ADC

Motor

Controller

Moving

Stage

Hydrogel

Collar
Container

Bearing

a)

Load

Cell

Fig. 6 a) Schematics on the particle-particle compression
test. b) Particles under compression during the experiment

is attached to another shell and screwed to a
metallic rod. This metallic rod is then connected
to the force sensor via a bearing to limit lateral
deflections that might damage the force sensor.
The moving arm with the load sensor is lowered
slowly until slightly above the hydrogel attached
to the transparent container. The container is then
moved until the top and bottom hydrogels are
sufficiently aligned to the eye in two perpendicu-
lar directions. More Milli-Q water might need to
be added so that the upper shell and part of the
metallic rod are underwater.

The upper hydrogel is then moved down using
the actuator with 0.5 mm steps at a speed of
0.3mm/s until an increment in force is detected
to ascertain contact. Once contact is detected, the
upper hydrogel is moved back up, and the process
is repeated after a few minutes to obtain a reliable
contact location.
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Once the location of contact is reliably
assessed, the upper hydrogel is moved to the con-
tact position and moved down at a speed of about
0.09 mm/s (to obtain a targeted strain rate of
0.002/s, the actuator could not precisely achieve
this strain rate) to a depth of 1.82 mm (repre-
senting a strain of 5 percent assuming the sample
length to be the sum of average diameters of the
two spheres). The upper hydrogel is then moved
back up to the contact point at the same speed.
The process is then repeated ten times. During
this entire process, the forces are recorded at the
sampling rate of 1kHz. The time is recorded only
at the start and end of the movement (both during
compression and retraction), and the movement is
assumed to be smooth.

4 DEM simulation

This chapter shows how the simulations for the
different mechanical tests are prepared, calibrated,
and performed. The calibration is the most essen-
tial element; starting from oscillatory data, it
connects the real world to the simulated world.

4.1 Parameters calibration

At the beginning of Sec. 2.2, no explanation was
given for why four elements for the Generalized
Maxwell Model are used. Starting from the rheo-
logical properties measured, which in our case are
the modified storage modulus E′ and the modified
loss modulus E′′ as a function of the frequency ω,
we will show the reason behind this choice.

4.2 Calibration theory

In classic DEM, the model parameters are cal-
ibrated by a simulation-evaluation-update loop.
The latter consists of a loop where a simula-
tion is run at each iteration, the corresponding
output is compared with experimental or ana-
lytical values, and a cost function is evaluated
and minimized, hence updating the new parame-
ters fed into the new iteration. Here, a different
approach is used, which follows the method of
other works dealing with viscoelastic model cal-
ibration, i.e., finding the optimal parameters by
minimization of a cost function that connects ana-
lytical and experimental data,[20, 21]. The reasons
for using a different approach are mainly two.

First, the number of parameters is relatively high
w.r.t. other DEM models, making it difficult to
go through the loop described above. Moreover,
an analytical solution is beneficial when fitting
experimental data because at least reasonable
first-guess parameters can be found. Some work
also shows the effect of fitting the normal and
shear micro-parameters separately, but with the
need for oscillatory rheometer data in both shear
and compression setups [16].
In the current study, the methodology described
in the following steps will be used:

1. Read rheological data from an experiment, usu-
ally in the form of the storage and loss modulus
E′

exp, E
′′
exp.

2. Using the following equations [22] to compute
E′

0 and E′′
0 :

E′
0 =

4∑
j

kj(ωτj)
2

1 + (ωτj)2
+ ke, (7)

E′′
0 =

4∑
j

ωµj

1 + (ωτj)2
(8)

with τj = µj/kj being the timescale of the
jth element and the initial values are taken as
unity.

3. Evaluate the cost function by comparing exper-
imental and analytical data

fcost =

m∑
i

[(
E′

0

E′
exp

− 1

)2

+

(
E′′

0

E′′
exp

− 1

)2
]
.

(9)
4. The cost function is then written in a Python

script, where a minimization loop is chosen to
find the minima of the function. For our case,
a bounded Nelder-Mead algorithm is used to
iterate through steps 2 and 3 until a minimum
is reached, giving the optimal values of µj , kj
and ke.

It is important to note that the parameters
used for normal and shear directions are the same.
Depending on the particles distribution and the
application, the shear parameters might need to
be reduced, as explained in Appendix A. Addi-
tional simulations have been performed to try and
optimize the value of α, but the calibration pro-
cess for this particular case would return α = 1 as
the optimal value. Hence the choice to keep α = 1
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for all the simulations. In the current work, a four
elements model is chosen for the following reasons.
The first and most relevant reason is that we want
our model to be as general as possible and accu-
rate for various materials on various applications.
To achieve this, we want to capture the behavior
of a specific material on different timescales but,
at the same time, offer an efficient solver. In their
book, Osswald and Rudolph [23] describe how
more elements in a Generalized Maxwell model
contribute to a better fit with experimental data
by showing how a four elements model can predict
the shape of the relaxation response function of a
polystyrene melt at a given temperature.

4.2.1 Calibration result

We tested the fitting procedure on different data
sets from different materials in our previous work
[15] to determine how many elements would be
good enough for a specific application. We con-
cluded that 4 elements are best suited for general
applications, whereas 3 elements lack accuracy in
most cases. In our current work, fitting the exper-
imental data with 3 or 4 elements is indifferent,
as both approaches give us the same residuals
shown in Fig. 7. However, given the fact that a 4-
elements model shows increased performance on a
wider range of applications, the 4-elements fit was
selected. A similar implementation has been used
by Ren et al. [24], without bonds and in combi-
nation with different phases behaving elastically
or viscoelastically depending on the nature of the
contact. They obtained a relatively good agree-
ment with experimental data. Applying the fitting
procedure to the compression-extension dataset in
the dry case might prove tricky as there is more
than one correct way to estimate the parameters
[25]. If one tries to fit the experimental data using
the method described at the beginning of this
section, one will obtain the results in Fig. 7, which
gives good quality of the fit with the root mean
square errors for E′ and E′′ of 1.9% and 3.5%,
respectively.

When calibrating the parameters of a DEM
simulation, those reflect the material’s behaviour
under a certain range of timescales (or frequen-
cies in this case). When using a model to simulate
a process, the experiment used to calibrate the
parameters needs to have a timescale that is com-
parable to the one of the process, so that the

Fig. 7 Analytical fit of the dry oscillatory compression-
extension experiment using the Generalized Maxwell model
on the whole frequency range. Residuals for E′ and E′′ are
1.9% and 3.5%, respectively.

model can describe the material’s behaviour under
the process operating conditions accurately. In our
case, we show that the model maintains validity
in a relatively wide range of frequencies, hence it
is possible to use the same set of parameters for
different operating conditions without the need to
redo the calibration process. The optimal param-
eters are shown in Tab. 1. Unfortunately, there is
no way of telling if the calibration falls into local
minima rather than absolute ones, but this might
be a realistic case. What can be said for sure is
that the parameters do not directly represent, in
any way, the mechanical properties of the mate-
rial itself. However, combined, they can give more
information on the material’s mechanical prop-
erties under certain conditions. If, for example,
one wanted to measure the dynamic viscosity at
a given shear rate, one could apply the Cox-Merz
rule [26], obtaining a relation for the dynamic vis-
cosity at shear rates much larger or smaller than
the ones used in experiments. This is true if the
simulation using these parameters can reproduce
the experimental data with a small error.

4.3 Simulation of the single sphere
cyclic compression-extension
test

As mentioned before, Discrete Element Method
particles are bonded together, and each bond
produces a force when deformed, according to
the Generalized Maxwell Model described in Sec.
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Table 1 Optimal generalized Maxwell model parameters for the hydrogel sphere under oscillatory compression test,
using a α = 1 value. k1,2,3,4 are the stiffness of the Maxwell elements springs, ke is the single spring stiffness and µ1,2,3,4

are the viscosity of the Maxwell elements dampers.

ω range [rad/s] k1 [Pa] k2 [Pa] k3 [Pa] k4 [Pa] ke [Pa] µ1 [Pa s] µ2 [Pa s] µ3 [Pa s] µ4 [Pa s]

0.116-6.98 2.77e-1 9.59e2 6.6e2 7.66e4 1.31e4 1.03e5 3.99e2 4.16e3 8.34e1

2.2. To increase accuracy, as shown in Appendix
A, the hydrogel sphere is discretized using a
DEM particle diameter of dp = 0.35 mm, with
a total sphere diameter of D = 6 mm and total
number of particles Np = 903, as depicted in Fig.
8. The DEM particles are arranged by spatial
discretization of the spherical coordinates defin-
ing the hydrogel sphere. Taking, for example,
the top sphere, the discretization is done by first
defining a shell of radius R0 = (D1 − dp)/2.
Starting from the maximum circumference, a
series of parallel circumferences are constructed,
starting from the maximum one on the surface of
the shell, at a distance a, called the discretiza-
tion pace, with decreasing radius. This results
in a distribution of points on the surface of the
shell, distant from each other by less than a. The
process is then repeated for each ith shell with
radius Ri = Ri−1 − ia until the sphere’s center is
reached. Different types of discretization, such as
face-centered cube, simple cube, and hexagonal
close-packed, have been attempted before settling
for the one described above. In all cases, a good
approximation of the spherical shape was not
obtainable unless a very large number of particles
was used. For the current discretization, which
uses polar coordinates to create a sphere, good
control of the internal and surface refinement
levels could be achieved. The discretization of
each hydrogel sphere is composed of two parts:
the spatial configuration of the smaller DEM
particles and their radius. As shown in Appendix
A, a different spatial configuration does not affect
the springs and dashpots parameters, as they
are computed via analytical fitting. However, it
might affect the scaling between normal and shear
parameters, resulting in the need to calibrate
the value of α. Regarding the particles size, the
choice of a smaller DEM particle radius results
in more accurate simulations, but at the same
time requires more computational time, hence
a trade-off is needed to find the optimal DEM

particles size. The timestep used in our simula-
tions is already one order of magnitude smaller
than the one used for a classical DEM-based
simulation with, e.g., a Hertzian contact closure.
Moreover, we simulate a smaller hydrogel than
the one of the experiment. The reason behind this
is to maintain accuracy whilst reducing computa-
tional time: on the one hand, if we would use the
same DEM particle radius to discretize the real
hydrogel size, resulting in a much higher number
of particles, we would have much longer simula-
tions, scaling up to 7-fold for each added particle.
This is because the bonded particle model has a
much higher number of neighbours per particle,
in average, than the classical DEM models. On
the other hand, if we scaled the DEM radius with
the hydrogel sphere to maintain the total number
of particles the same, we would have a drop in
accuracy, as shown in Appendix A.

Fig. 8 The hydrogel sphere is discretized using smaller
DEM particles bonded together. The plates are discretized
using triangular elements, on which the forces are evalu-
ated. The total force is then divided by the plate area, and
the simulation output is compared with the experimental
data.
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Moreover, two triangular meshes are created
to simulate the plates used in the rheometer. The
contact between particles and the wall is treated
like there is no bond. Hence, a Hertzian contact
is solved at the sphere boundaries. The reason
for using Hertz at the boundaries is to keep a
degree of rigidity and reduce overlap. If we would,
for example, fit the parameters of the General-
ized Maxwell model for a very soft material by
using the same parameters internally and at the
boundaries, we would observe very large non-
physical overlaps. This could be fixed by tuning
the boundary parameters differently, but it would
result in 9 additional parameters in our model.
This would be sub-optimal. The parameters used
for the particles are Young’s modulus Ep = 1
GPa, Poisson’s ratio νp = 0.5, with no dissipa-
tion and no shear force, as done for the case of
the particle-particle compression test, where we
already discussed the effect of the Youngs modu-
lus at the DEM particle level. In contrast, for the
wall, we used Young’s modulus of Ewall = 1 GPa,
Poisson’s ratio νwall = 0.5, a restitution coeffi-
cient of corwall = 0.7 and friction coefficient of
cfwall = 0.25. All parameters used in the simula-
tion are summarized in Table 2. The main reason
for choosing Young’s modulus is to avoid excessive
nonphysical overlap at the boundaries. It’s cho-
sen as the value at which no noticeable increase
in the global vertical force is observed on a linear
compression on the single hydrogel, obtaining the
plot of force vs non-dimensional time t̂ = t/tsim
of Fig 9. Considering that the particles at the
boundaries are the first to transmit the informa-
tion internally, they are not “soft” as one would
expect, but they need to be incompressible, fric-
tionless, and very stiff. The bonds will take care
of the internal dissipation and compressibility and
define the particles’ softness. The values for the
walls of Youngs’ modulus and Poisson’s ratio are
chosen so as to reflect the particles at the bound-
aries, while the friction coefficient and restitution
coefficient are taken from the pairing of the hydro-
gel spheres with the rheometer plates. The stress,
which will then be used to obtain the rheological
properties of the sphere, is obtained by summa-
tion of the forces acting on the plate divided by
the diameter of the sphere squared. This is done to
maintain consistency with the rheometer measure-
ment. The boundary conditions are applied to the

top plate as follows. Considering the sphere’s ori-
gin in the center of the reference frame, an initial
compression of 0.055D is performed. The oscilla-
tion is then applied with an amplitude A = 0.05D,
so that contact is maintained during the whole
oscillation. This results in an average deformation
ε = 0.053, which will then be used to calculate the
rheological properties of the simulated hydrogel.

Fig. 9 Global vertical force measured during a linear
compression of the hydrogel used for the oscillatory test-
ing against non-dimensional time t̂ = t/tsim, where tsim is
the total simulation time. The walls, the discretization, and
the viscoelastic parameters are kept constant, and only the
Youngs modulus of the DEM particles is changed to show
that at certain values, no notable increase of global vertical
force is observed. The errors of the 5 MPa, 10 MPa, and
100 MPa w.r.t the 1 GPa data are 9.8%, 6.4%, and 1.2%,
respectively.

4.3.1 Simulation output and
comparison with experiment

The frequency range used to run the frequency
sweep is reduced w.r.t. the experimental data
to speed up the process, starting from a mini-
mum frequency of ω = 1.04 rad/s. Regardless,
the parameters used in the simulations are shown
in Tab. 1. Before computing the modified stor-
age and loss moduli, the stress response is filtered
using a Fast Fourier Transform, such that the sec-
ondary eigenfrequencies oscillations are smoothed
out [27]. Once the FFT is applied to the stress
response signal, the largest amplitude is taken as
the stress amplitude of the system, which is also
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Table 2 Parameters used in the single particle compression oscillation test.

dp [mm] D [mm] Np a [mm] Ep [Pa] νp Ewall [Pa] νwall corwall cfwall

0.7 3 903 1 1e9 0.5 1e9 0.5 0.7 0.25

found at the value of the applied frequency.
Furthermore, a dummy function of the form σ =
σ0 sin(ωt + φ) is computed to evaluate the phase
lag between the stress and the applied strain fitted
to the stress response, where σ0 is the stress ampli-
tude found before. The fit would return φ, hence
giving the phase shift in radians. Once ampli-
tude and phase shift are known, it is possible to
compute the modified storage and loss moduli as
E′ = σ0/ε0 cosφ and E′′ = σ0/ε0 sinφ, resulting
in the plot of Fig. 10. It is also noted that E′ has a
lower error than E′′. This reflects what is observed
already during the fitting procedure done in Sec.
4.1, where the error on E’ is lower than E”, Fig.
7. These differences are then amplified in the sim-
ulation due to numerical errors that propagate. It
is noteworthy to mention that the model parame-
ters are valid as long as the chosen process has a
timescale that falls within the range of frequencies
on which the parameters are fitted. Otherwise, a
new experimental setup is needed to include the
timescale of the given process and a new fitting
procedure must be sought to find the new optimal
model parameters.

Fig. 10 Rheological properties of the hydrogel sphere
under cyclic compression, comparison of experimental data
and simulation output obtained with parameters of Tab. 1.
The root mean square error for E′ and E′′ are 2.9% and
11.3%, respectively.

4.4 Validation of the
particle-particle compression
test

The second experiment to be simulated is the
particle-particle compression shown in Sec. 3.2.
Here, to reduce the number of particles, two half
spheres are used, maintaining the same size as
the spheres of the experiment. As explained in
section Sec. 3.2, the spheres do not have a constant
diameter, depending on the point at which they
are measured. To align with the experiment, the
spheres have been created with an average diam-
eter between the ones measured in the vertical
and horizontal direction, obtaining Dtop = 18.365
mm for the top sphere and Dbot = 18.275 mm for
the bottom sphere. Once a DEM particle diame-
ter dp = 0.5 mm, is chosen, together with a = 0.8
mm, the system of Fig. 11 is obtained, resulting
in a total number of particles of Np = 2361. All
parameters are summarized in Table 3. Moreover,
while the experiment is performed until a 1.82
mm contact depth is achieved, in the simulation,
we stop at a value of 1.2 mm to reduce com-
putational time, considering that when looking
at the experimental data, going into higher com-
pressions beyond the value at which we stop the
simulations, we observed that the force does not
diverge from the relative fitting function, hence
it does not add any value to the data in the
lower range of compression. In the experiment, the
spheres are constrained by (slightly more than)
half into the holders. Our simulations modelled
this by not considering the constrained half and
applying appropriate boundary conditions. A con-
stant motion is forced on the top disk of the upper
half-sphere. This means that, regardless of the
interaction forces, the particles belonging to this
region will keep their velocity constant. Another
condition is applied to the bottom disk of the lower
half-sphere; the particles belonging to this region
are not integrated. Hence, they will have a value
of interaction force different from zero but will not
move.
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Table 3 Parameters used in the particle-particle compression test.

dp [mm] Dtop [mm] Dbot [mm] Np a [mm] Ep [Pa] νpart vcomp [mm/s]

0.5 18.365 18.275 2361 0.8 1e9 0.5 3-1-0.5

Fig. 11 Simulation setup for the particle-particle linear
compression test. Two half spheres are discretized. A con-
stant motion is applied on the upper sphere’s top disk while
the lower sphere’s bottom disk is not integrated, resulting
in it not displacing. The force is measured on the top disk
of the upper sphere as the sum of the forces on each DEM
particle.

Since the Hydrogel sphere is composed of many
DEM particles - thanks to the bonds and the lack
of Hertzian contact between particles inside the
same sphere – it can deform internally following
the viscoelastic interaction with the same param-
eters found in Sec. 4.1. At the contact interface
between different spheres, a Hertzian elastic non-
dissipative force is computed, where there is no
friction and no shear forces, the reasons behind
these choices are explained.
Regarding dissipation, it can be proven that most
energy loss happens internally in the sphere. Two
test simulations with a non-dissipative (COR = 1)
and a dissipative Hertzian contact (COR = 0.01)
resulted in perfectly overlapping functions for the
global vertical force on the sphere with a devia-
tion between the dataset of 0.18 %. The friction
coefficient of hydrogel spheres is relatively low,
with values ranging from 0.001 to 0.02, depend-
ing on the composition and the sliding velocity,
[28]. Moreover, given the compression direction

is aligned with the spheres’ centers, the contri-
bution of shear forces at the contact interface
to the global vertical force is close to zero. In
addition, given the discrete nature of the parti-
cles, if we wanted to simulate a shear contact
between the particles, we would observe a dis-
sipation force even in the absence of dissipative
contact forces in the Hertzian formulation, due to
numerical friction [29]. Numerical friction is an
issue that is observed when discrete elements are
used to describe larger particles. It is observed in
multisphere models, SPH, and our bonded model.
Numerical friction is observed when there is a
relative tangential motion between the larger par-
ticles, which produces a “stick and slide” type of
motion at the boundaries (like real friction works
but on a larger scale). This results in non-physical
oscillations in the macroscopic force that alters
the simulation output. Unfortunately, such oscil-
lations are still an open problem in DEM, and
research has been going on to solve this issue.
Moreover, for a reason already explained in Sec.
3.1, the Youngs Modulus of the DEM particles is
chosen to be Ep = 1 GPa.

4.4.1 Simulation output and
comparison with experiment

The only parameter not in line with experiments
is the compression velocity. While in the exper-
iments, the compression speed is vcomp = 0.09
mm/s, different values have been used in the sim-
ulation to address the impact of such a parameter
on the output force. Moreover, the choice of higher
compression speeds used in the simulation is to
reduce computational time significantly. If we had
matched the experimental speed in the simula-
tion, it would have required a not-feasible amount
of time to complete these simulations. It must
be pointed out that, as we explained in Sec. 4.1,
when simulating a process or an experiment, to
obtain accurate results, we need to use a set of
parameters that have been fitted on a range of fre-
quencies that includes the characteristic time of
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said process or simulation. In this case, the exper-
iment strain rate is 0.002/s, which is not in either
the whole or the reduced range of frequencies of
the single compression. However, for the reason
explained before, the simulations are run at much
higher speeds, namely 3 mm/s, 1 mm/s, and 0.5
mm/s. If we compute the average strain rate for
all three cases, we would obtain 0.163 Hz, 0.055
Hz and 0.0225 Hz, which are all higher than the
minimum frequency of the whole range of 0.0185
Hz. Since the simulations are run with strain rates
that fall within the experimental range, the output
can be considered to be accurate. The force out-
put is then evaluated against time, directly related
to displacement, since the compression velocity is
constant. To show the effect of compression veloc-
ity on the simulation output, the force is fitted
with a function f = fmax · t̂m, with fmax being
the maximum force of the dataset and t̂ = t/tmax

the non-dimensional time. The fitting quality and
the raw data are shown in Fig. 12 to highlight the
quality of both the fitting and the simulation raw
data.

Fig. 12 Fitting of the global vertical force for the case
with compression velocity v = 1 mm/s.

Plotting the fitted force output for the three
velocities against the experimental data, we obtain
the graph of Fig. 14. The main effect of the
compression velocity is on the exponent of the
fitting function, with a higher value for lower
speed. The fitting function aims to highlight the
effect of the compression speed, showing us how
the hydrogel behavior aligns with its rheological
properties. This means faster compression results
in higher deformations at the same compression

level, since the loss modulus E” increases at higher
frequencies, rendering the hydrogel a bit softer.

Fig. 13 Raw data and relative fitting of the purely elas-
tic simulation for the particle-particle compression. The
parameters used are µi = 1e20 Pa s, ki = ke = 1e4 Pa.
Notably, the exponent deviates from the experimental data
and Hertz contact law. This is because no dissipation is
present in the purely elastic case, since dampers are ineffec-
tive. The conclusion is that the dampers’ effect is significant
in the simulations.

Additionally, given the very low timescale of
the simulation, it is cause for concern that the
dampers would be ineffective, given that they have
enough time to relax. Hence, the model would pro-
duce an almost purely elastic response. To confirm
so, a simulation is run with a purely elastic rela-
tion, obtained by taking the constitutive equation
1 and letting µi → ∞, obtaining ε̇i = σ̇i/ki.
By setting as initial conditions ε0i = σ0

i = 0,
and integrating the last equation once, we obtain
σi = kiεi. Following this, the simulation of the
purely elastic case is run with µi = 1e20 Pa s,
and ki = ke = 1e4 Pa. The reason for choosing
ki = ke = 1e4 Pa is that we want to check if
the exponent of the fitting function of the global
vertical force will change w.r.t. the case where
the dampers are active, so we look into a qualita-
tive match rather than a quantitative one. Finally,
plotting the global vertical force of the purely elas-
tic case, 13, we note that the fitting exponent is
much higher than the one obtained in both the
experiment and the damped simulations, conclud-
ing that the dampers are active even at much lower
strain rates.

Looking again at Fig. 14 and comparing the
simulated force with the experimental one, we
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Fig. 14 Comparison of the global vertical forces out-
put in the simulation of the particle-particle compression
test against experimental data. Three compression veloci-
ties are used, showing an increase of the exponent m for
the fitting function at decreasing speed. The independent
variable used is a non-dimensional time t̂

observe how the main difference is in the exponent
of the fitting function, which for the experimental
data is m = 1.45. The reason behind this needs
to be investigated further. We speculate that the
particle distribution and the nature of the dis-
cretization play a role. This statement needs to
be supported with data, but that would require a
significant amount of work and time, and it goes
beyond the scope of this paper, which focuses on
calibrating and validating a viscoelastic bonded
model for simulating the mechanical properties of
hydrogels. Notably, the hydrogels used in particle-
particle compression differ in size from those used
in single-particle compression. Moreover, the sin-
gle compression is oscillatory in nature while the
particle-particle compression is performed with
a constant velocity. However, our data in Fig.
14 indicate that bond parameters calibrated in
the oscillatory single-particle experiment can be
used in particle-particle compression experiments.
Unfortunately, a generalization to particle geome-
tries other than spheres cannot be guaranteed and
has not been tested in our current study.

5 Conclusions and Outlook

A Bonded Particle DEM model has been imple-
mented, where the constitutive relation between
particles follows a Generalized Maxwell equation.
This formulation proves robust in describing
single-particle deformations that classical DEM

could not otherwise capture. This tool has been
developed to aid both experimental research and
process optimization. Regarding the experiments,
once the model is fitted and calibrated with a
specific data set, it is possible to use the opti-
mized model to extend the experiment limits,
for example, by exciting the material at higher
frequencies, applying larger deformations, or run-
ning the same tests and gain knowledge at much
smaller timescales, that would be impossible to
capture due to instruments limitations. For exam-
ple, one could use the calibrated bonded particle
model to make predictions of particle deforma-
tion. Such information could be useful for further
improving so-called multi-contact DEM models
[13, 30], or novel types of contact force mod-
els for extremely deformed particles. Additionally,
our model can improve on existing mesh-based
methods such as FEM. For example, when deal-
ing with flow situations with moving boundaries,
using the BPM in such scenarios would greatly
simplify the simulation setup (no re-meshing).
Also, bond breakage (and reformation or heal-
ing) can be easily handled in our bonded particle
model, which is highly problematic in FEM-
based models. Two experimental setups have been
shown, which can be reproduced on hydrogels
with different properties to compare their rheo-
logical and mechanical properties. Starting from
the single particle compression test as a bench-
mark, we showed that the model could capture
the rheological properties of a given hydrogel and
reproduce them with reasonable accuracy, obtain-
ing a relative error of 2.9 % for E′ and 11.3
% for E′′. Even though we obtain an average
error of 7.1 % , we have room for improvement
by adding, for example, an additional Maxwell
element. The applied preload strain and the oscil-
latory strain (maximum 10.8%) might motivate a
future improvement of the bond model (e.g., by
accounting for non-linearity). However, we could
reproduce a non-linear force-displacement rela-
tionship upon particle compaction, the same as
suggested by Hertz’s theory, as shown in Fig.
12. Thus, it appears sufficient to consider a lin-
ear viscoelastic bond model based on our test
with hydrogel spheres. If one changed the hydro-
gel properties and ran the same test by fitting
the new dataset, one could reproduce the rheol-
ogy of the new hydrogel in the model. This could
drastically improve the wide range of applications
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hydrogels are used for. At the same time, the
same parameters fitted using the compression test
are used to replicate data from a particle-particle
compression test. A good agreement is obtained
regarding the global vertical force. Since this force
is more related to the compression of the hydro-
gel spheres, it shows the robustness of the model
in capturing compressive forces and its validity
in obtaining meaningful data on different setups
starting from a benchmark oscillatory test used to
calibrate the model parameters. As introduced at
the end of Sec. 4.4.1, the simulated force from the
particle-particle compression test differs qualita-
tively from the experimental data. This difference,
reflected in the exponent of the fitting function for
the global vertical force against time, is intrinsic
in the model, but its origin is still unknown. We
observed the effect of the compression velocity on
the exponent, with an increase at a lower speed,
showing a convergence towards the experimental
case. However, we believe that other more funda-
mental elements are responsible for this behavior,
and we will investigate this further in the future.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was funded by the EU Horizon 2020
MSCA ITN program CALIPER with grant num-
ber 812638. The Department of Physical Chem-
istry and Soft Matter of Wageningen University
and Research has supported this work.

A Validation of the bonded
Generalized Maxwell model

The simulation is defined to resemble the single
particle compression-extension experiment under
dry conditions as accurately as possible, where
the effect of the discretization needs to be inves-
tigated. When discretizing a larger object with
DEM spheres, both the spatial configuration and
the particles size play a role. In general, the higher
the number of particles, the higher the compu-
tational cost of the simulation, but the better
accuracy is achieved and vice-versa. Some models
try to apply a so-called ”coarse-graining”, which

aims to reduce the number of particles in the sim-
ulation without losing the information a larger
system gives. Similarly, in this case, we want to
check the effect of particle size and their con-
figuration on the variables computed in a test
simulation. We start by checking the effect of
particles size by means of a simple test case.
We simulate an oscillatory compression-extension
motion, similar to the one used in the cyclic com-
pression experiment, but applied to a cube this
time. The cube is formed by a Face Centered Cube
lattice, as shown in Fig. 15.

Fig. 15 Geometrical representation of the FCC lattice
cube used for the convergence study and validation of the
model.

Three different particle sizes are used to study
the effect on the output. The size is computed such
that the total volume of the cube is kept constant
according to the number of particles on one side
of the cube. The particles aligned vertically have a
distance of δl = 1.001 ·

√
2 · d between each other,

accounting for a total length of the cube side of
L = δl · (N − 1) + d = 0.005 m, with N being the
number of particles on the side of the cube and d
being the diameter of the particles. It is straight-
forward to conclude that, given the fixed length
of the cube and, hence, the volume, the relative
diameter of the DEM particles can be calculated
by changing the number of particles.
If one blindly computed the system’s stress
response and compared it to the analytical solu-
tion, one would obtain a great difference in magni-
tude. This is because the lattice configuration used
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here, together with the direction of the deforma-
tion, would produce both normal and shear force
components that are not aligned with the defor-
mation, which means that the shear component of
the force must be reduced using the ratio intro-
duced in Sec. 2.2 between the normal and shear
parameters.
To determine the optimal parameter α, the classi-
cal approach used in determining DEM simulation
parameters is used, which consists of simulat-
ing with a first guess parameter, evaluating the
macro-properties to compare with analytical or
experimental solutions, computing a residual and
repeating the loop until the residual is minimized.
The latter is a well-known and established method
to calibrate parameters in a model. However, it
lacks generality as it is usually optimized for
specific applications, and the procedure must be
repeated each time something in the original setup
is changed. The cost function used in this case is
similar to the one used in Eq. 9, with the differ-
ence that now we do not have a frequency sweep
but only one frequency, and instead of compar-
ing the modified storage and loss modulus, we are
comparing the amplitude and the phase shift of
the stress response, since those are the quantities
that we want to minimize the difference of, giving

fcost =

(
σ0,an − σ0,sim

σ0,an

)2

+

(
φan − φsim

φan

)2

,

(10)
where the analytical solution, in this case, is
known as [23]

σ(t) =

4∑
j

kjγ0ωτj
1 + (ωτ)2

(ωτj sinωt+ cosωt). (11)

The stress in the DEM simulation is computed
as the average force on the top layer of particles
of the cube, divided by the face area

σsim(t) =
1

L2

Ntop∑
i

fi(t). (12)

with Ntop being the number of particles on the top
layer of the cube. Once the stresses are known,
the analytical and the simulated phase lags are
computed by fitting the relative stresses with a
function of the form y = A sin(ωt+ φ).

Fig. 16 Zoomed particular of the stress response of the
FCC lattice cube under cyclic compression, when using
the parameters of Tab. 1, with relative errors for phase
and amplitude showing on the inset graph. All errors are
measured against the analytical solution given by Eq. 11,
resulting in values well below 3%, making the model valid
for predicting the stress response in oscillatory deforma-
tion, regardless of particle size. To note the relative errors
for both phase shift and amplitude in the inset graph.
Stress is normalized w.r.t. the amplitude of the analytical
stress σ0,an.

To perform the calibration, the smallest par-
ticle size is used, returning a value of α = 9.1.
This parameter is then used with the three differ-
ent particles sizes to produce the plot of Fig. 16,
which is a zoomed-in version of the total stress
response, to observe better the effect of the par-
ticles’ size on the amplitude and the phase of the
stress signal. In detail, no effect is observed on the
phase shift error χφ, as shown in the inset graph
of Fig. 16, with a relative error that is almost con-
stant and below 2%. A more significant effect is
observed for the amplitude error χσ. In conclu-
sion, smaller particles give more accurate results,
without the need to change the model parameters.

To check the effect of the particles spatial con-
figuration, a body-centered cube lattice is now
used to compute the stress response of the same
volume. The same model parameters are used as
in the FCC configuration, and the same test is
performed together with the same post process-
ing to compute the stress, resulting in the plot
of Fig. 17. In this case, the particle size used is

computed according to d =
L

(N − 1) ∗ 1.001 + 1
,

17



Fig. 17 Stress response of the BCC lattice for the same
parameters of the FCC case. Here, the value of α found for
the FCC lattice can not be used, showing how this param-
eter needs to be optimized for each specific system when
changing either the lattice configuration and/or the particle
size.

giving d = 5 · 10−4 m for N=10. As it can be
easily observed, a large difference in the ampli-
tude is observed between analytical and simulated
stress. This suggests that the scaling of the shear
parameters w.r.t. the normal ones needs to be
adjusted, resulting in another calibration process
to obtain the optimal α parameter. In conclu-
sion, when changing the spatial configuration, one
needs to adjust the α parameter accordingly but,
once that is found, a change in particle size would
improve the accuracy of the model without the
need to re-calibrate its parameters.
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