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ABSTRACT

This paper investigates the use of auditory perceptualisation for
analysing the statistical properties of time series data. We intro-
duce the problem domain and provide basic background on higher
order statistics like skewness and kurtosis. The chosen approach
was direct audification because of the inherent time line and the
high number of data points usually available for time series. We
present the tools we developed to investigate this problem domain
and elaborate on a listening test we conducted to find perceptual
dimensions that would correlate with the statistical properties. The
results indicate that there is evidence that kurtosis correlates with
roughness or sharpness and that participants were able to distin-
guish signals with increasing difference of the kurtosis. For the
setting in the experiment the just noticeable difference was found
to be 5. The collected data did not show any similar evidence for
skewness and it remains unclear whether this is perceivable in di-
rect audification at all.

[Keywords: Audification, Time series data, Higher-order statis-
tics]

1. INTRODUCTION

The analysis of time series date is key to many scientific disci-
plines. Time series may be the result of measurements, unknown
processes or simply digitised signals. Although usually visualised
and analysed through statistics, the inherent relationship to time

makes them particularly suitable for a representation through sound.

The following work was conducted as part of the interdisci-
plinary research project SonEnvir' [1]. SonEnvir investigates the
use of sonification in a number of different scientific fields, high-
lighting research problems that can potentially benefit from audi-
tory perceptualisation as an alternative form of analysis to visu-
alisation or statistics. By drawing upon many different sonficia-
tions and research problems, SonEnvir aims at the development of
a generalised sonification environment for scientific data. Target
sciences involved include neurology, theoretical physics, sociol-
ogy and signal processing and speech communication. In all of the
target sciences promising problem statements were selected for the
development of sonification prototypes. Through the unique diver-
sity of backgrounds and questions, the approach demanded high-
est flexibility and an open-minded attitude of all researchers in-
volved. As expected, the scepticism in the communities of the tar-
get sciences was substantial and for a lot of problems we only were
able to scratch the surface without answering real-world questions.
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Through our work, however, we highlighted the benefits of audi-
tory perceptualisation and raised awareness for sonification as an
alternative method to analyse and explore data in the target sci-
ences and various other scientific fields.

The Signal Processing and Speech Communication Labora-
tory focuses on research in the area of non-linear signal process-
ing methods, algorithm engineering and applications thereof in
speech communication and telecommunication. After investigat-
ing sonification approaches to the analysis of stochastic processes
and wave propagation in ultra-wide-band communication [2], the
focus for the last phase in SonEnvir was on the analysis of time
series data. In signal processing and speech communication, most
of the data to handle are sequences of values over time - time se-
ries. There are many properties of time series data that interest the
researcher. Besides the analysis in the frequency domain, the sta-
tistical distribution of values provides important information about
the data at hand. With this work we aim at investigating the use
of sonification in analysing the statistical properties of amplitude
distributions in time series data. From the target science’s point of
view this can be used as a method for the classification of signals
of unknown origin or for the classification of surrogate data to be
used in experiments in telecommunication systems.

The following will provide some background to the mathemat-
ics of statistical analysis of time series data. In section 3 we will
present the sonification tools that we developed before section 4
will discuss a psychoacoustic experiment conducted. Finally, we
conclude the paper and elaborate on future work in section 5.

2. BACKGROUND

The statistical analysis of time series data is concerned about the
distribution of values without taking into account their sequence
in time. As we will see later, changing the sequence of values in a
time series, completely destroys the frequency information while
keeping the statistical properties intact. The most well known sta-
tistical properties of time series data is the arithmetic mean (1) and
the variance (2).
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However, higher order statistics provides more properties of time
series data describing more detailed the shape of the underlying
probability function. They all derive from the statistical moments
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of a distribution defined by

where n is the order of the moment, o the value around which the
moment is taken and P(x) the probability function. The moments
are most commonly taken around the mean, which is equivalent to
the first moment y1. The second moment around the mean (or sec-
ond central moment) is equivalent with the variance o? and hence,
the squared standard deviation o.

Higher order moments define the skewness and kurtosis of the
distribution. The skewness is a measurement for the asymmetry of
the probability function, meaning a distribution has high skewness
if its probability function has a more pronounced tail to one end
than to the other. The skew is defined by

m=4£ )
725

with u; being the ¢ — th central moment. The kurtosis describes
the “peakedness” of a probability function; the more pronounced
peaks there are in the probability function, the higher the kurtosis
of the distribution. It is defined by

B=1 ®)
a2
Both values distinguish time series data and are significant proper-
ties in signal processing.

The inherent time line and the often high numbers of data val-
ues in time series data suggest the use of the most direct approach
to auditory perceptualisation - audification. When interpreted as
sonic waveform the statistical properties of time series data be-
come acoustical dimensions of perception. The variance corre-
sponds directly to the power of the signal, hence (non-linearly) to
its perceived loudness. The mean, however, is nothing more than
an offset and is not perceivable. The question is whether the skew-
ness and the kurtosis of signals can be assigned to perceptional
dimensions too.

3. SONIFICATION TOOLS

In order to investigate the statistical properties of time series data
through audification we first developed a simple tool that allows
for defining arbitrary probability functions for noise. Subsequently,
we built a more generic analysing tool that makes it possible to
analyse any kind of signal which was also used as the underlying
framework for the experiment in section 4.

3.1. PDFShaper

The PDFShaper is an interactive audification tool that allows users
to draw probability functions and hear the resulting distribution
as audification in real-time. Figure 1 shows the user interface.
PDFShaper provides four graphs (top down): the probability func-
tion, the mapping function, the measured histogram and the fre-
quency spectrum. The tool allows the user to interactively draw in
the first graph to create any kind of distribution. It then calculates
a mapping function which is defined by
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Figure 1: The PDFShaper interface

where C/(z) is the cumulative probability function and g(z) is a
mapping function that if applied to a uniform distribution y pro-
duces values according to the probability function P(t). This map-
ping function essentially shapes values from a uniform distribution
to any desired probability function P(t).

In the screenshot shown, the probability function is drawn into
the top graph as shifted exponential function. After applying the
mapping function shown in the second graph to white noise, the
third graph shows the real-time histogram of the result. It approx-
imately resembles the target probability function. Note that both,
skew and kurtosis are relatively high in this example as the proba-
bility function is shifted to the right and has a sharp peak.

3.2. TSAnalyser

The TSAnalyser is a tool to load any time series data and analyse
its statistical properties. Figure 2 shows the user interface. Besides
providing statistical information about the file loaded (aiff format)
it shows a histogram and a spectrum. Its main feature is to be able
to ’scramble” the signal. By that, it randomly re-orders the val-
ues in the time series and hence, destroys all spectral information.
If analysing the amplitude distribution, the spectral information is
often distracting. Scrambling a signal will result in a noise-like
sound with the same statistical properties as the original. In the
screenshot the loaded file is a speech sample that comes with ev-
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a8ane TSAnalyser GUI
Open File | Stop | | Un-scramble |

Save scrambled | Variance for saving: 0.01

Status: File loaded, ready

Statistics:

Mean: -0.02 Variance: 0.04 Skew: -0.08 Kurtosis: 248

Histogram:

Spectrum:

Figure 2: The TSAnalyser interface

ery SuperCollider installation. When scrambled the spectrum at
the bottom shows almost a uniform distribution in the frequency
domain.

TSAnalyser is implemented in SuperCollider [3] in two parts.
While the class TSAnalyser provides the functionality TSAnaly-
serGUI is implementing the user interface. Both are packaged in
the SonEnvir framework for SuperCollider available from the web
site [4].

4. LISTENING TEST

The following experiment was designed to investigate whether the
higher order statistical properties of arbitrary time series data are
perceivable through audification. And if yes, what are the percep-
tual dimensions that would correlate to these properties and what
are the just noticeable difference levels?

4.1. Data

The first challenge in designing the experiment was to choose ap-
propriate data. It should not contain any spectral information and
the statistical properties should be controllable, ideally indepen-
dently. Unfortunately, it is a non-trivial task to define probabil-
ity functions with certain statistical moments as it is an ill-defined
problem. We settled on a random number generator for the Levi
skew alpha-stable distribution [5]. It was chosen because it fea-
tures parameters that directly control the resulting skew and kurto-
sis which also can be made unnaturally high. It is defined by the

probability function
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Where « is an exponent, 3 directly controls the skewness and ¢ and
w are scaling parameters. There is no analytic solution to the inte-
gral, but there are special cases in which the distribution behaves
in specific ways. For example, for « = 2 the distribution reduces
to a Gaussian distribution. Fortunately, the Levi distribution was
implemented as a number generator in the GNU Scientific Library
(GLS) [6]. By providing the « and (3 it allows for generating se-
quences of numbers for that distribution of any length.

For the experiment we generated 24 signals with skew ranging
from -0.19 to 0.25 and kurtosis ranging from 0.17 to 14. It seemed
to be impossible to completely de-couple skew from kurtosis. So,
we decided to generate two sets, one that has insignificant changes
in skew, but a range in kurtosis of 0.16 to 14. While the other
covered the full range for skew and 0.15 to 5 for kurtosis. All
signals were normalised to have a variance of 0.001 and were 3
seconds long with a 0.2 seconds fade-in and fade-out.

4.2. Experiment

The experiment was designed as a similarity listening test. Partici-
pants were listening to sequences of three signals and had to select
two which they perceived as most similar. A sequence would be
randomly arranged out of the signal under investigation (each of
the 24), another, randomly chosen signal out of the 24 and the first
signal scrambled. It was pointed out to participants that they will
not hear two exactly similar sounds within the sequence, but they
were asked to select the two that sounded most similar. The signal
under investigation and its scrambled counterpart were essential
different signals, but shared the same statistical properties. It was
not specified which quality of the sound they should listen for to
make this decision. This and the scrambling was done to make
sure that participants focus on a generic quality of the noise rather
than specific events within the signals.

After a brief written introduction into the problem domain and
the nature of the experiment, participants started off with a train-
ing phase of three sequences to learn the user interface. For this
training phase, the signals with the largest differences in skew and
kurtosis were chosen to give people an idea about what to expect.
Subsequently, each of the sets were played; Set one with 9 se-
quences, Set two with 15. The sequence of the sets was altered
with each participant. Participants were also able to replay the
sequence as often as they wished and adjust the volume to their
taste. Figure 3 shows the user interface used. A post-questionnaire
probed for the sound quality participants used to distinguish the
signals and asked them to assign three adjectives to describe this
quality. Further questions were if participants could tell any dif-
ference between the sets and if they had the feeling that there was
any learning effect i.e. whether it got easier during the experiment.

4.3. Results

Eleven participants took part in the experiment, most of them work-
ing colleagues or students at the institute. Four participants were
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ene Time series analysis experiment
Example 1 of 3 Exit
Sample 1 | Sample 2 | Sample 3 |
Volume | C [0.7
Replay
__Replay | =

Figure 3: The interface for the experiment

members of the SonEnvir team and had more substantial back-
ground on the topic which, however, did not seem to have had any
impact on their results.

The collected data shows that there is a significant increase in
the probability of choosing the correct signals as the difference in
kurtosis and skew increased. Figure 4 shows the average proba-
bilities in four different ranges of A kurtosis. The skew in this set
was nearly constant (+0.001), so the resulting difference in cor-
rectness is related to the change in A kurtosis. While up to the
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5 .
a [8,0.588]
.
[1.6,0452] .
[4.8,0.348]
o
0.528 Kurtosis 133

—

Figure 4: Probability of correctness over A kurtosis in set 1

difference of 5 in kurtosis the probability is only insignificantly
higher than 0.33, the probability of random selection - and even
decreases, there is a considerable increase thereafter, topping at
over 70% at differences of around 11. This indicates that 5 is the
threshold for just noticeable differences for kurtosis. This is also
supported by the results from set 2 as shown in figure 5

For skewness the matter is more difficult as we had no inde-
pendent control over it. Although the data from set 2 suggests
that there is an increase in probability with increasing difference
in skew (as shown in figure 6), this might also be related to the dif-
ference in kurtosis. Looking at the probability of correctness over
both, the difference in kurtosis and the difference in skew (as in
figure 7) reveals that it is unlikely that the increase is related to the
change in A skewness. While in every spine in which A skew is
constant the probability increases with increasing A kurtosis, this
is not the case vice versa. Summarising, we found evidence that
participants could reliably detect changes in kurtosis greater than
5, but we did not find enough prove in the case of skewness. This
might indicate that we need to use a different dataset so that we
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Figure 5: Probability of correctness over A kurtosis in set 2
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Figure 6: Probability of correctness over A skew in set 2

have bigger differences in skew while having small values for the
kurtosis. However, for this another family of distributions must be
found.

The number of times participants used the replay option seemed
to have no impact on their performance. Figure 8 shows the num-
ber of replays of all data points over A kurtosis. Red crosses in-
dicate correct answers, black dots incorrect answers. Although
participants replayed the sequence more often when the difference
in kurtosis was small, there is no evidence that they were more
successful when using more replays.

The answers to the post-questionnaire must be seen in the light
of the data analysis above. The quality participants assessed to
drive their decisions must be linked to the kurtosis rather than
skewness in the signal. The most common answers for this qual-
ity were crackling and the frequency of events. Others included
roughness and spikes. However, some participants also stated that
they heard different colours of noise and other artefacts related to
the frequency spectrum. This is a common effect when being ex-
posed to noise signals for a longer period of time. Even if the
spectrum of noise is not changing at all (as in our case), humans
often start to imagine hearing tones and other frequency related
patterns. Asked for adjectives to describe the quality the partic-
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Figure 7: Probability over A skew and A kurtosis in set 2
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Figure 8: Number of replays over A kurtosis in set 2

ipants provided cracking, clicking, sizzling, annoying, rhythmic,
sharp, rough and bright - dark. Which, in retrospect, correlates
nicely with the kurtosis being the “peakedness” of the probability
function.

There was no agreement over which set was easier. Most par-
ticipants said there was hardly any difference while some would
state the one or the other. Also people in average felt that there was
no learning curve involved and the examples were short enough for
them not to get too tired over listening to them.

5. CONCLUSION

In this paper we presented an approach to analyse statistical prop-
erties of time series data by auditory means. We provided some
background on the mathematics involved and presented the tools
for audification of time series data that were developed. Subse-
quently, we described a listening test in which we intended to
investigate the perceptual dimensions that would correlate with
higher order statistical properties like skew and kurtosis. We dis-
cussed the data chosen and the design of the experiment. The
results show that there is evidence that participants improved in
distinguishing noise signals as the difference in kurtosis increased.
The data suggests that in this setting the just noticeable difference

was 5. However, for skew we were not able to find similar ev-
idence. In a post-questionnaire we probed for the qualities that
participants used to distinguish the signals and presented a set of
related adjectives.

Future work has to investigate why there was nothing to be
found for skewness in the signals. It might have been the case that
our range of values did not allow for segregation and a different
source for data must be found to have independent control over
skew. However, it might also be the case that skew is not perceiv-
able in direct audification and a different sonification approach has
to be chosen to pronounce this property.
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