INTEGER-VALUED POLYNOMIALS ON ALGEBRAS A SURVEY

SOPHIE FRISCH

Abstract

We compare several different concepts of integer-valued polynomials on algebras and collect the few results and many open questions to be found in the literature. (2000 Math. Subj. Classification: Primary 13F20; Secondary 16S50, 13B25, 13J10, 11C08, 11C20)

1. Introduction

Let D be a domain with quotient field K. The popular ring of integer-valued polynomials $\operatorname{Int}(D)=\{f \in K[x] \mid f(D) \subseteq D\}$ has been generalized to polynomials acting on non-commutative algebras in different ways by different authors. Some consider polynomials with coefficients in K that map a given D-algebra to itself. For instance, Loper [5] and the present author [2,3] have investigated polynomials with rational coefficients mapping $n \times n$ integer matrices to integer matrices.

Others consider polynomials with coefficients in a non-commutative K-algebra that map a given D-subalgebra to itself. For instance, Werner [7] has investigated polynomials with coefficients in the rational quaternions mapping integer quaternions to integer quaternions; Werner [6] and the present author [2] have looked at polynomials with coefficients in $M_{n}(K)$ mapping matrices in $M_{n}(D)$ to matrices in $M_{n}(D)$.
Before we give a precise definition of two types of rings of integer-valued polynomials on algebras, a few examples (in one variable). For lack of a better idea, we write the first kind of integer-valued polynomial rings, those with coefficients in K, with parentheses: $\operatorname{Int}_{\mathrm{D}}(A)$, and the second kind, those with coefficients in a K-algebra, with square brackets: $\operatorname{Int}_{\mathrm{D}}[A]$. Throughout this paper, D is an integral domain, not a field, with quotient field K.

Example 1.1. For fixed $n \in \mathbb{N}$, consider

$$
\begin{array}{r}
\operatorname{Int}_{\mathrm{D}}\left(\mathrm{M}_{n}(D)\right)=\left\{f \in K[x] \mid \forall C \in \mathrm{M}_{n}(D): f(C) \in \mathrm{M}_{n}(D)\right\} \\
\operatorname{Int}_{\mathrm{D}}\left[\mathrm{M}_{n}(D)\right]=\left\{f \in\left(\mathrm{M}_{n}(K)\right)[x] \mid \forall C \in \mathrm{M}_{n}(D): f(C) \in \mathrm{M}_{n}(D)\right\} .
\end{array}
$$

Example 1.2. Let $Q=\mathbb{Q}+\mathbb{Q} i+\mathbb{Q} j+\mathbb{Q} k$ be the \mathbb{Q}-algebra of rational quaternions and L the \mathbb{Z}-subalgebra of Lipschitz quaternions $\mathbb{Z}+\mathbb{Z} i+\mathbb{Z} j+\mathbb{Z} k$.

$$
\begin{aligned}
\operatorname{Int}_{\mathbb{Z}}(L) & =\{f \in \mathbb{Q}[x] \mid \forall z \in L: f(z) \in L\} \\
\operatorname{Int}_{\mathbb{Z}}[L] & =\{f \in Q[x] \mid \forall z \in L: f(z) \in L\}
\end{aligned}
$$

Example 1.3. Let G be a finite group, $K(G)$ and $D(G)$ group rings.

$$
\begin{aligned}
\operatorname{Int}_{\mathrm{D}}(D(G)) & =\{f \in K[x] \mid \forall z \in D(G): f(z) \in D(G)\} \\
\operatorname{Int}_{\mathrm{D}}[D(G)] & =\{f \in K(G)[x] \mid \forall z \in D(G): f(z) \in D(G)\}
\end{aligned}
$$

Example 1.4. Let $D \subseteq A$ be Dedekind rings with quotient fields $K \subseteq F$.

$$
\operatorname{Int}_{\mathrm{D}}(A)=\{f \in K[x] \mid f(A) \subseteq A\}
$$

Convention 1.5. Let D be a domain and not a field, K the quotient field of D, and A a torsion-free D-algebra that is finitely generated as a D-module.

Since A is faithful, we have an isomorphic copy of D embedded in A (by $d \mapsto d 1_{A}$). Let $B=K \otimes_{D} A$ (canonically isomorphic to the ring of fractions $A_{D \backslash\{0\}}$). Then the natural homomorphisms $\iota_{K}: K \rightarrow K \otimes_{D} A, k \mapsto k \otimes 1_{A}$ and $\iota_{A}: A \rightarrow K \otimes_{D} A$, $a \mapsto 1_{K} \otimes a$ allow us to evaluate in B polynomials with coefficients in K or B at arguments in A, and we define:

$$
\begin{array}{r}
\operatorname{Int}_{\mathrm{D}}(A)=\{f \in K[x] \mid \forall a \in A: f(a) \in A\} \\
\operatorname{Int}_{\mathrm{D}}[A]=\left\{f \in\left(K \otimes_{D} A\right)[x] \mid \forall a \in A: f(a) \in A\right\}
\end{array}
$$

Note that ι_{K} and ι_{A} are injective whenever A is a torsion-free D-module. To exclude unwanted cases such as $A=K$ we require $K \cap A=D$ (or, more precisely, $\iota_{K}(K) \cap$ $\left.\iota_{A}(A)=\iota_{A}(D)\right)$.

Note that $K \cap A=D$ implies

$$
\operatorname{Int}_{\mathrm{D}}(A) \subseteq \operatorname{Int}(D)=\{f \in K[x] \mid f(D) \subseteq D\}
$$

With the conventions above, $\operatorname{Int}_{\mathrm{D}}(A)$ is easily seen to be a ring. In particular, $\operatorname{Int}_{D}(A)$ is closed with respect to multiplication, because $(f g)(a)=f(a) g(a)$ for all $a \in A$ and $f, g \in K[x]$. By the same token, $\operatorname{Int}_{D}[A]$ is a ring for commutative A. The argument involving subsitution homomorphism works only in the commutative case, however. For non-commutative A, multiplicative closure of $\operatorname{Int}_{D}[A]$ is not evident. We will look into this in the next section.

2. Non-Commutatve coefficient Rings

Theorem 2.1 (Werner [6]). If A is finitely generated by units as a D-algebra, then $\operatorname{Int}_{\mathrm{D}}[A]$ is closed under multiplication and hence a ring.

Proof. Let $f(x)=\sum_{k} \beta_{k} x^{k}$ and $g(x)$ be in $\operatorname{Int}_{\mathrm{D}}[A]$ and $\alpha \in A$. To show $(f g)(\alpha) \in A$, we first check the special case where $g=u$, a unit in A :

$$
(f u)(\alpha)=\sum_{k} \beta_{k} u \alpha^{k}=\sum_{k} \beta_{k}\left(u \alpha u^{-1}\right)^{k} u=f\left(u \alpha u^{-1}\right) u \in A .
$$

Now for general $f, g \in \operatorname{Int}_{\mathrm{D}}[A]$:

$$
(f g)(\alpha)=\sum_{m, l} \beta_{m} \gamma_{l} \alpha^{m+l}=\sum_{m} \beta_{m}\left(\sum_{l} \gamma_{l} \alpha^{l}\right) \alpha^{m}=\sum_{m} \beta_{m} g(\alpha) \alpha^{m} .
$$

Expressing $g(\alpha)$ as a D-linear combination of units u_{1}, \ldots, u_{n} of A,

$$
g(\alpha)=d_{1} u_{1}+\ldots+d_{n} u_{n}
$$

yields

$$
(f g)(\alpha)=\sum_{m} \beta_{m}\left(\sum_{j=1}^{n} d_{j} u_{j}\right) \alpha^{m}=\sum_{j=1}^{n} d_{j} \sum_{m} \beta_{m} u_{j} \alpha^{m}=\sum_{j=1}^{n} d_{j}\left(f u_{j}\right)(\alpha)
$$

Since $d_{j} \in D$ and each $\left(f u_{j}\right)(\alpha)$ is in A, it follows that $(f g)(\alpha)$ is in A.
Remark 2.2. In all three non-commutative examples in the introduction, A is generated as a D-module by units, and $\operatorname{Int}_{\mathrm{D}}[A]$ is a therefore a ring. In example 1.1, for instance, the free D-module $M_{n}(D)$ of dimension n^{2} has the following basis (suggested by L. Vaserstein) consisting of matrices of determinant 1 : let $E_{i, j}(\lambda)$ for $i \neq j$ denote the elementary matrix with ones on the diagonal, λ in position (i, j) and zeros elsewhere. As basis, take the $n^{2}-n$ elementary matrices $E_{i, j}(1)$ for $i \neq j$, together with the n products of two elementary matrices $E_{i, i+1}(1) E_{i+1, i}(-1)$ for $1 \leq i \leq n$ (with indices $\bmod n$, i.e., $n+1=1$).

One of the rings of the form $\operatorname{Int}_{\mathrm{D}}[A]$ for non-commutative A that have been examined in some detail is $\operatorname{Int}_{\mathbb{Z}}[L]$, the ring of polynomials with coefficients in the rational quaternions mapping integer quaternions to integer quaternions. Werner [7] has shown $\operatorname{Int}_{\mathrm{D}}[A]$ to be non-Noetherian, and has exhibited some prime ideals.

In his forthcoming paper [6], Werner explores $\operatorname{Int}_{\mathrm{D}}\left[M_{n}(D)\right]$, and shows that every ideal of this ring is generated as a left $M_{n}(D)$-module by elements of $K[x]$. Using ideas from [6], one can show more, however: the ring $\operatorname{Int}_{\mathrm{D}}\left[\mathrm{M}_{n}(D)\right]$ of polynomials with coefficients in $M_{n}(K)$ that map every matrix in $M_{n}(D)$ to a matrix in $M_{n}(D)$ is isomorphic to the ring of $n \times n$ matrices over the $\operatorname{ring} \operatorname{Int}_{\mathrm{D}}\left(\mathrm{M}_{n}(D)\right)$ of polynomials in $K[x]$ that map every matrix in $M_{n}(D)$ to a matrix in $M_{n}(D)$.

Theorem 2.3 ([2]). Let

$$
\begin{array}{r}
\operatorname{Int}_{\mathrm{D}}\left(\mathrm{M}_{n}(D)\right)=\left\{f \in K[x] \mid \forall C \in M_{n}(D): f(C) \in M_{n}(D)\right\}, \\
\operatorname{Int}_{\mathrm{D}}\left[\mathrm{M}_{n}(D)\right]=\left\{f \in\left(M_{n}(K)\right)[x] \mid \forall C \in M_{n}(D): f(C) \in M_{n}(D)\right\} .
\end{array}
$$

We identify $\operatorname{Int}_{\mathrm{D}}\left[\mathrm{M}_{n}(D)\right]$ with its isomorphic image under the natural ring isomorphism

$$
\varphi:\left(M_{n}(K)\right)[x] \rightarrow M_{n}(K[x]), \quad \sum_{k}\left(a_{i j}^{(k)}\right)_{1 \leq i, j \leq n} x^{k} \mapsto\left(\sum_{k} a_{i j}^{(k)} x^{k}\right)_{1 \leq i, j \leq n}
$$

Then

$$
\operatorname{Int}_{\mathrm{D}}\left[\mathrm{M}_{n}(D)\right]=M_{n}\left(\operatorname{Int}_{\mathrm{D}}\left(\mathrm{M}_{n}(D)\right)\right) .
$$

Corollary 2.4. Under the identification of $\operatorname{Int}_{\mathrm{D}}\left[M_{n}(D)\right]$ with its isomorphic image in $M_{n}(K[x])$, the ideals of $\operatorname{Int}_{\mathrm{D}}\left[M_{n}(D)\right]$ are precisely the sets of the form $M_{n}(I)$, where I is an ideal of $\operatorname{Int}_{\mathrm{D}}\left(M_{n}(D)\right)$. Prime ideals of $\operatorname{Int}_{\mathrm{D}}\left[M_{n}(D)\right]$ correspond to prime ideals of $\operatorname{Int}_{\mathrm{D}}\left(M_{n}(D)\right)$ and vice versa.

Our definition of prime ideal for a possibly non-commutative ring is: a two-sided ideal $P \neq R$, such that for any two-sided ideals A, B of $R, A B \subseteq R$ implies $A \subseteq P$ or $B \subseteq P$.

It might be interesting to generalize Theorem 2.3 to other rings of integer-valued polynomials on a D-algebra A with coefficients in a non-commutative K-algebra B. Given a matrix representation $B \subseteq M_{n}(K)$, we can identify the ring $\operatorname{Int}_{\mathrm{D}}[A] \subseteq B[x]$ of polynomials with coefficents in B, integer-valued on A, with its image in $M_{n}(K[x])$ under the isomorphism of $\left(M_{n}(K)\right)[x]$ with $M_{n}(K[x])$.

- Starting with a matrix representation $B \subseteq M_{n}(K)$, is the isomorphic image of $\operatorname{Int}_{\mathrm{D}}[A] \subseteq\left(M_{n}(K)\right)[x]$ embedded in $M_{n}(K[x])$ a matrix algebra over a ring of integer-valued polynomials with coefficents in K ?

3. The Spectrum

We now return to commuting coefficents and describe the spectrum of $\operatorname{Int}_{\mathrm{D}}(A)$. If A is a commutative D-algebra, we also consider polynomials is several variables and define

$$
\operatorname{Int}_{\mathrm{D}}^{\mathrm{n}}=\left\{f \in K\left[x_{1}, \ldots, x_{n}\right] \mid \forall a \in A^{n}: f(a) \in A\right\} .
$$

Prime ideals lying over a prime P of infinite index of D are easy to describe: they all come from prime ideals of $D_{P}[x]$ (or $D_{P}\left[x_{1}, \ldots, x_{n}\right]$, for $\operatorname{Int}_{\mathrm{D}}^{\mathrm{n}}(A)$), $\operatorname{since}_{\operatorname{Int}_{\mathrm{D}}}(A) \subseteq$ $\operatorname{Int}(D) \subseteq D_{P}[x]\left(\right.$ and $\left.\operatorname{Int}_{\mathrm{D}}^{\mathrm{n}}(A) \subseteq \operatorname{Int}\left(D^{n}\right) \subseteq D_{P}\left[x_{1}, \ldots, x_{n}\right]\right)$ whenever $[D: P]=\infty$ (cf. [1]).

Concerning primes lying over a maximal ideal M of finite index of D, they have been characterized for one-dimensional Noetherian D in [2]. For commutative A, they look just like the maximal ideals of $\operatorname{Int}(D)$.

Note that the somewhat technical condition $M A_{M} \cap A=M A$ is satisfied in two natural cases, firstly, if A is a free D-module, and secondly, if $D \subseteq A$ is an extension of Dedekind rings.

Theorem 3.1 ([2]). Let D be a domain, A a commutative torsion-free D-algebra finitely generated as a D-module, M a finitely generated maximal ideal of D of finite index and height one, such that $M A_{M} \cap A=M A$, and $n \in \mathbb{N}$.

Then every prime ideal of $\operatorname{Int}_{\mathrm{D}}^{\mathrm{n}}(A)$ lying over M is maximal, and of the form

$$
P_{a}=\left\{f \in \operatorname{Int}_{\mathrm{D}}^{\mathrm{n}}(A) \mid f(a) \in P\right\},
$$

for some $a \in \hat{A}$ (the M-adic completion of A) and P a maximal ideal of \hat{A} with $P \cap D=M$.

In the case of a non-commutative D-algebra A, the images of elements $a \in \hat{A}$ under $\operatorname{Int}_{\mathrm{D}}(A)$ play a rôle in the description of the maximal ideals lying above M. If the exact image $\operatorname{Int}_{\mathrm{D}}(A)(a)$ is not known, it can be replaced by a commutative ring R_{a} between $\operatorname{Int}_{\mathrm{D}}(A)(a)$ and \hat{A}.

Theorem 3.2 ([2]). Let D be a domain, A a torsion-free D-algebra finitely generated as a D-module, M a finitely generated maximal ideal of D of finite index and height one, such that $M A_{M} \cap A=M A$.

The prime ideals of $\operatorname{Int}_{\mathrm{D}}(A)$ lying over M are precisely the ideals of the form

$$
P_{a}=\left\{f \in \operatorname{Int}_{\mathrm{D}}(A) \mid f(a) \in P\right\}
$$

where $a \in \hat{A}$ (the M-adic completion of A), and P is a maximal ideal of $\operatorname{Int}_{\mathrm{D}}(A)(a)$ (the image of a under $\operatorname{Int}_{\mathrm{D}}^{\mathrm{n}}(A)$) with $P \cap D=M$.

We can replace $\operatorname{Int}_{\mathrm{D}}(A)(a)$ by a commutative ring R_{a} with $\operatorname{Int}_{\mathrm{D}}(A)(a) \subseteq R_{a} \subseteq \hat{A}$ for the simple reason that every extension of finite commutative rings, in particular the ring extension $\operatorname{Int}_{\mathrm{D}}(A)(a) /\left(\operatorname{Int}_{\mathrm{D}}(A)(a) \cap M \hat{A}\right) \subseteq R_{a} /\left(R_{a} \cap M \hat{A}\right)$ satisfies "lying over".

Corollary 3.3. Under the hypotheses of of Theorem 3.2, suppose we are given, for every $a \in \hat{A}$, a commutative ring R_{a} with $\operatorname{Int}_{\mathrm{D}}(A)(a) \subseteq R_{a} \subseteq \hat{A}$.

Then the prime ideals of $\operatorname{Int}_{\mathrm{D}}(A)$ are precisely the ideals of the form

$$
P_{a}=\left\{f \in \operatorname{Int}_{\mathrm{D}}(A) \mid f(a) \in P\right\}
$$

where $a \in \hat{A}$ and P is a maximal ideal of R_{a} lying over M.

For $A=M_{n}(D)$, and $a \in A$, the image of a under $\operatorname{Int}(A)(a)$ is just $D[a]$, and for a general $a \in \hat{A}$, the image of a under $\operatorname{Int}(A)(a)$ is contained in $\hat{D}[a]$ (cf. [2]), so that we may take $R_{a}=\hat{D}[a]$ in Corollary 3.3. For other algebras, the question is open:

- is there a simple description of the image of an element $a \in \hat{A}$ under $\operatorname{Int}_{\mathrm{D}}(A)$?

Another property of the ring of integer-valued polynomials on matrices is waiting for generalization. If D is a domain with zero Jabobson radical, such as, for instance, a Dedekind ring with infinitely many maximal ideals, then the subset \mathcal{C} of $M_{n}(D)$ consisting of the companion matrices of all monic irreducible polynomials in D is a polynomially dense subset of $M_{n}(D)$, i.e., every polynomial $f \in K[x]$ with $f(C) \in$ $M_{n}(D)$ for every $C \in \mathcal{C}$ is in $\operatorname{Int}_{\mathrm{D}}\left(M_{n}(D)\right)$. This prompts the question, for a general D-algebra A,

- does A have a polynomially dense subset of elements with irreducible minimal polynomial in $K[x]$?

4. A NON-TRIVIALITY CRITERION

For rings of integer valued polynomials with coefficients in a field, of the type

$$
\operatorname{Int}_{\mathrm{D}}(A)=\{f \in K[x] \mid f(A) \subseteq A\}
$$

or, for commutative A,

$$
\operatorname{Int}_{\mathrm{D}}^{\mathrm{n}}(A)=\left\{f \in K\left[x_{1}, \ldots, x_{n}\right] \mid \forall a_{1}, \ldots, a_{n} \in A: f\left(a_{1}, \ldots, a_{n}\right) \in A\right\}
$$

we have the inclusions

$$
D[x] \subseteq \operatorname{Int}_{\mathrm{D}}(A) \subseteq \operatorname{Int}(D) \subseteq K[x]
$$

and similarly for several variables. As before, D is a domain with quotient field K, A a torsion-free D-algebra finitely generated as a D-module, and evaluation of polynomials is performed in $B=K \otimes_{D} A$. As noted in the introduction, we also require (of the homomorphic images in B) that $K \cap A=D$.
$\operatorname{Int}_{\mathrm{D}}(A)$ is considered trivial if $\operatorname{Int}_{\mathrm{D}}(A)=D[x]$. We will see that the non-triviality criterion for $\operatorname{Int}(D)=\{f \in K[x] \mid f(D) \subseteq D\}$ for Noetherian D ([1] Thm. I.3.14) carries over to $\operatorname{Int}_{\mathrm{D}}(A)$.

Lemma 4.1. Let A be a torsion-free D-algebra that is finitely generated as a D module, and let $n \in \mathbb{N}$. If there exists a proper ideal of D of the form $I=\left(b:_{D} c\right)$ (with $b, c \in D$) of finite index, then $\operatorname{Int}_{\mathrm{D}}^{\mathrm{n}}(A) \neq D\left[x_{1}, \ldots, x_{n}\right]$.

Proof. Say A is generated by d elements as a D-module. Then every element of A is integral of degree at most d over D. Given $I=\left(b:_{D} c\right) \neq D$ of finite index, let $f \in D[x]$ be a monic polynomial that is divisible modulo $I[x]$ by every monic polynomial of degree at most d. Then for every $a \in A, f(a) \in I A$, and hence
$\frac{c}{b} f(a) \in A$. If follows that $\frac{c}{b} f(x)$ is $\operatorname{in~}_{\operatorname{Int}}^{\mathrm{D}}(A)$ (as well as in $\operatorname{Int}_{\mathrm{D}}^{\mathrm{D}}(A)$ for all $n \geq 1$), but not in $D[x]$, since its leading coefficient $\frac{c}{b}$ is not in D.

Lemma 4.2. If, for some $n \in \mathbb{N}$, $\operatorname{Int}_{\mathrm{D}}^{\mathrm{n}}(A) \neq D\left[x_{1}, \ldots, x_{n}\right]$ then there exists a proper ideal of D of the form $I=\left(b:_{D} c\right)$ (with $\left.b, c \in D\right)$ such that every prime ideal P of D containing I is of finite index.

Proof. Let $b, c \in D$ such that $k=\frac{c}{b} \notin D$ occurs as a coefficient of a polynomial in $\operatorname{Int}_{\mathrm{D}}^{\mathrm{n}}(A)$. If P is a prime ideal of infinite index in D, then $\operatorname{Int}_{\mathrm{D}}^{\mathrm{n}}(A) \subseteq D_{P}\left[x_{1}, \ldots, x_{n}\right]$; so there exists some $s \in D \backslash P$ with $s k \in D$, i.e., with $s \in\left(b:_{D} c\right)$. This means that $\left(b:_{D} c\right)$ is not contained in any prime ideal of infinite index.

It is easy to see that, for arbitrary fixed $b \in D$, an ideal that is maximal among proper ideals of the form $(b: d)$ (with $d \in D$) is prime. In a Noetherian domain D therefore, every proper ideal $I=(b: c)$ is contained in a prime ideal $P=(b: d)$. This shows that for a Noetherian domain D and a D-algebra A whose elements are integral of bounded degree over D, the necessary and the sufficient condition for $\operatorname{Int}_{\mathrm{D}}(A) \neq D[x]$ (in 4.1 and 4.2 , respectively) are each equivalent to: D has a prime ideal of finite index of the form $P=(b: d)$.

If, given an ideal I of D, we call a prime ideal of the form $\left(I:_{D} d\right)$ (with $d \in D$) an associated prime ideal of I then our criterion for non-triviality of $\operatorname{Int}_{\mathrm{D}}^{\mathrm{n}}(A)$ in the Noetherian case becomes:

Theorem 4.3. Let D be a Noetherian domain and A a torsion-free D-algebra that is finitely generated as a D-module and let $n \in \mathbb{N}$. Then $\operatorname{Int}_{\mathrm{D}}^{\mathrm{n}}(A) \neq D\left[x_{1}, \ldots, x_{n}\right]$ if and only if D has a prime ideal of finite index that is an associated prime of a principal ideal of D.

A different question of non-triviality is, whether $\operatorname{Int}_{\mathrm{D}}(A)$ is properly contained in $\operatorname{Int}(D)$. (Recall that $\operatorname{Int}_{\mathrm{D}}(A) \subseteq \operatorname{Int}(D)$ follows from our convention $K \cap A=D$.) Let K be a number field and \mathcal{O}_{K} its ring of algebraic integers. It has been shown by Halter-Koch and Narkiewicz [4] that $\operatorname{Int}_{\mathbb{Z}}\left(\mathcal{O}_{K}\right)$ is always properly contained in $\operatorname{Int}(\mathbb{Z})$. For general D and A it is an open question,

- under what hypotheses is $\operatorname{Int}_{\mathrm{D}}(A) \subsetneq \operatorname{Int}(D)$?

5. Prüfer or not Prüfer

For rings of integer-valued polynomials on algebras of the type

$$
\operatorname{Int}_{\mathbb{Z}}(A)=\{f \in \mathbb{Q}[x] \mid f(A) \subseteq A\}
$$

for a \mathbb{Z}-algebra A, the big question is, what are criteria for $\operatorname{Int}_{\mathbb{Z}}(A)$ to be Prüfer, or just to be integrally closed?

In some interesting special cases Loper [5] has the answer:

Theorem 5.1 (Loper [5]).
(1) Let \mathcal{O}_{K} be the ring of algebraic integers in the number field K. Then $\operatorname{Int}_{\mathbb{Z}}\left(\mathcal{O}_{K}\right)$ is Prüfer.
(2) Let $M_{2}(\mathbb{Z})$ be the ring of 2×2 integer matrices, then $\operatorname{Int}_{\mathbb{Z}}\left(M_{2}(\mathbb{Z})\right)$ is not Prüfer.
(3) Let L be the ring of integer (Lipschitz) quaternions. Then $\operatorname{Int}_{\mathbb{Z}}(L)$ is not Prüfer.

In cases 2 and 3, Loper shows that the ring in question is not Prüfer by exhibiting an overring that is not integrally closed. For any non-commutative \mathbb{Z}-algebra A, such as $A=M_{n}(\mathbb{Z})$ or $A=L$, this prompts the following questions:

- Is $\operatorname{Int}_{\mathbb{Z}}(A)$ integrally closed?
- What is its integral closure?
- Is the integral closure Prüfer?

References

[1] P.-J. Cahen and J.-L. Chabert, Integer-valued polynomials, vol. 48 of Mathematical Surveys and Monographs, Amer. Math. Soc., 1997.
[2] S. Frisch, Integer-valued polynomials on algebras, preprint.
[3] S. Frisch, Polynomial separation of points in algebras, in Arithmetical Properties of Commutative Rings and Monoids (Chapel Hill Conf. 2003), S. Chapman, ed., Dekker, 2005, 249-254.
[4] F. Halter-Koch and W. Narkiewicz, Commutative rings and binomial coefficients, Mh. Math 114 (1992), 107-110.
[5] K. A. Loper, A generalization of integer-valued polynomial rings, preprint.
[6] N. J. WERNER, Integer-valued polynomials over matrix rings, preprint.
[7] N. J. WERNER, Integer-valued polynomials over quaternion rings, J. Algebra (2010), 1754-1769.
Institut für Mathematik A, Technische Universität Graz, Steyrergasse 30, A8010 Graz, Austria

E-mail address: frisch@TUGraz.at

