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INTEGER-VALUED POLYNOMIALS ON ALGEBRAS

A SURVEY

SOPHIE FRISCH

Abstract. We compare several different concepts of integer-valued polynomials
on algebras and collect the few results and many open questions to be found in
the literature. (2000 Math. Subj. Classification: Primary 13F20; Secondary 16S50,
13B25, 13J10, 11C08, 11C20)

1. Introduction

Let D be a domain with quotient field K. The popular ring of integer-valued
polynomials Int(D) = {f ∈ K[x] | f(D) ⊆ D} has been generalized to polynomials
acting on non-commutative algebras in different ways by different authors. Some
consider polynomials with coefficients in K that map a given D-algebra to itself. For
instance, Loper [5] and the present author [2, 3] have investigated polynomials with
rational coefficients mapping n× n integer matrices to integer matrices.
Others consider polynomials with coefficients in a non-commutative K-algebra

that map a given D-subalgebra to itself. For instance, Werner [7] has investigated
polynomials with coefficients in the rational quaternions mapping integer quater-
nions to integer quaternions; Werner [6] and the present author [2] have looked at
polynomials with coefficients in Mn(K) mapping matrices in Mn(D) to matrices in
Mn(D).
Before we give a precise definition of two types of rings of integer-valued polynomi-

als on algebras, a few examples (in one variable). For lack of a better idea, we write
the first kind of integer-valued polynomial rings, those with coefficients in K, with
parentheses: IntD(A), and the second kind, those with coefficients in a K-algebra,
with square brackets: IntD[A]. Throughout this paper, D is an integral domain, not
a field, with quotient field K.

Example 1.1. For fixed n ∈ N, consider

IntD(Mn(D)) = {f ∈ K[x] | ∀C ∈ Mn(D) : f(C) ∈ Mn(D)}
IntD[Mn(D)] = {f ∈ (Mn(K))[x] | ∀C ∈ Mn(D) : f(C) ∈ Mn(D)}.
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Example 1.2. Let Q = Q+Qi+Qj +Qk be the Q-algebra of rational quaternions
and L the Z-subalgebra of Lipschitz quaternions Z+ Zi+ Zj + Zk.

IntZ(L) = {f ∈ Q[x] | ∀z ∈ L : f(z) ∈ L}
IntZ[L] = {f ∈ Q[x] | ∀z ∈ L : f(z) ∈ L}

Example 1.3. Let G be a finite group, K(G) and D(G) group rings.

IntD(D(G)) = {f ∈ K[x] | ∀z ∈ D(G) : f(z) ∈ D(G)}

IntD[D(G)] = {f ∈ K(G)[x] | ∀z ∈ D(G) : f(z) ∈ D(G)}

Example 1.4. Let D ⊆ A be Dedekind rings with quotient fields K ⊆ F .

IntD(A) = {f ∈ K[x] | f(A) ⊆ A}.

Convention 1.5. Let D be a domain and not a field, K the quotient field of D, and
A a torsion-free D-algebra that is finitely generated as a D-module.
Since A is faithful, we have an isomorphic copy of D embedded in A (by d 7→ d1A).

Let B = K ⊗D A (canonically isomorphic to the ring of fractions AD\{0}). Then the
natural homomorphisms ιK : K → K ⊗D A, k 7→ k ⊗ 1A and ιA : A → K ⊗D A,
a 7→ 1K ⊗ a allow us to evaluate in B polynomials with coefficients in K or B at
arguments in A, and we define:

IntD(A) = {f ∈ K[x] | ∀a ∈ A : f(a) ∈ A}
IntD[A] = {f ∈ (K ⊗D A)[x] | ∀a ∈ A : f(a) ∈ A}

Note that ιK and ιA are injective whenever A is a torsion-free D-module. To exclude
unwanted cases such as A = K we require K ∩ A = D (or, more precisely, ιK(K) ∩
ιA(A) = ιA(D)).
Note that K ∩ A = D implies

IntD(A) ⊆ Int(D) = {f ∈ K[x] | f(D) ⊆ D}.

With the conventions above, IntD(A) is easily seen to be a ring. In particular,
IntD(A) is closed with respect to multiplication, because (fg)(a) = f(a)g(a) for all
a ∈ A and f, g ∈ K[x]. By the same token, IntD[A] is a ring for commutative A. The
argument involving subsitution homomorphism works only in the commutative case,
however. For non-commutative A, multiplicative closure of IntD[A] is not evident.
We will look into this in the next section.

2. Non-commutatve coefficient rings

Theorem 2.1 (Werner [6]). If A is finitely generated by units as a D-algebra, then

IntD[A] is closed under multiplication and hence a ring.
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Proof. Let f(x) =
∑

k βkx
k and g(x) be in IntD[A] and α ∈ A. To show (fg)(α) ∈ A,

we first check the special case where g = u, a unit in A:

(fu)(α) =
∑

k

βkuα
k =

∑

k

βk(uαu
−1)ku = f(uαu−1)u ∈ A.

Now for general f, g ∈ IntD[A]:

(fg)(α) =
∑

m,l

βmγlα
m+l =

∑

m

βm(
∑

l

γlα
l)αm =

∑

m

βmg(α)α
m.

Expressing g(α) as a D-linear combination of units u1, . . . , un of A,

g(α) = d1u1 + . . . + dnun,

yields

(fg)(α) =
∑

m

βm(
n
∑

j=1

djuj)α
m =

n
∑

j=1

dj
∑

m

βmujα
m =

n
∑

j=1

dj(fuj)(α).

Since dj ∈ D and each (fuj)(α) is in A, it follows that (fg)(α) is in A. �

Remark 2.2. In all three non-commutative examples in the introduction, A is gen-
erated as a D-module by units, and IntD[A] is a therefore a ring. In example 1.1,
for instance, the free D-module Mn(D) of dimension n2 has the following basis (sug-
gested by L. Vaserstein) consisting of matrices of determinant 1: let Ei,j(λ) for i 6= j
denote the elementary matrix with ones on the diagonal, λ in position (i, j) and zeros
elsewhere. As basis, take the n2 − n elementary matrices Ei,j(1) for i 6= j, together
with the n products of two elementary matrices Ei,i+1(1)Ei+1,i(−1) for 1 ≤ i ≤ n
(with indices mod n, i.e., n+ 1 = 1).

One of the rings of the form IntD[A] for non-commutative A that have been ex-
amined in some detail is IntZ[L], the ring of polynomials with coefficients in the
rational quaternions mapping integer quaternions to integer quaternions. Werner [7]
has shown IntD[A] to be non-Noetherian, and has exhibited some prime ideals.
In his forthcoming paper [6], Werner explores IntD[Mn(D)], and shows that every

ideal of this ring is generated as a left Mn(D)-module by elements of K[x]. Using
ideas from [6], one can show more, however: the ring IntD[Mn(D)] of polynomials
with coefficients in Mn(K) that map every matrix in Mn(D) to a matrix in Mn(D)
is isomorphic to the ring of n×n matrices over the ring IntD(Mn(D)) of polynomials
in K[x] that map every matrix in Mn(D) to a matrix in Mn(D).
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Theorem 2.3 ( [2]). Let

IntD(Mn(D)) = {f ∈ K[x] | ∀C ∈ Mn(D) : f(C) ∈ Mn(D)},
IntD[Mn(D)] = {f ∈ (Mn(K))[x] | ∀C ∈ Mn(D) : f(C) ∈ Mn(D)}.

We identify IntD[Mn(D)] with its isomorphic image under the natural ring isomor-

phism

ϕ : (Mn(K))[x] → Mn(K[x]),
∑

k

(a
(k)
ij )1≤i,j≤n x

k 7→

(

∑

k

a
(k)
ij xk

)

1≤i,j≤n

.

Then

IntD[Mn(D)] = Mn(IntD(Mn(D))).

Corollary 2.4. Under the identification of IntD[Mn(D)] with its isomorphic image

in Mn(K[x]), the ideals of IntD[Mn(D)] are precisely the sets of the form Mn(I),
where I is an ideal of IntD(Mn(D)). Prime ideals of IntD[Mn(D)] correspond to

prime ideals of IntD(Mn(D)) and vice versa.

Our definition of prime ideal for a possibly non-commutative ring is: a two-sided
ideal P 6= R, such that for any two-sided ideals A, B of R, AB ⊆ R implies A ⊆ P
or B ⊆ P .
It might be interesting to generalize Theorem 2.3 to other rings of integer-valued

polynomials on a D-algebra A with coefficients in a non-commutative K-algebra B.
Given a matrix representation B ⊆ Mn(K), we can identify the ring IntD[A] ⊆ B[x]
of polynomials with coefficents in B, integer-valued on A, with its image in Mn(K[x])
under the isomorphism of (Mn(K))[x] with Mn(K[x]).

• Starting with a matrix representation B ⊆ Mn(K), is the isomorphic image
of IntD[A] ⊆ (Mn(K))[x] embedded in Mn(K[x]) a matrix algebra over a ring
of integer-valued polynomials with coefficents in K?

3. The Spectrum

We now return to commuting coefficents and describe the spectrum of IntD(A). If
A is a commutative D-algebra, we also consider polynomials is several variables and
define

IntnD = {f ∈ K[x1, . . . , xn] | ∀a ∈ An : f(a) ∈ A}.

Prime ideals lying over a prime P of infinite index of D are easy to describe: they all
come from prime ideals of DP [x] (or DP [x1, . . . , xn], for IntnD(A)), since IntD(A) ⊆
Int(D) ⊆ DP [x] (and IntnD(A) ⊆ Int(Dn) ⊆ DP [x1, . . . , xn]) whenever [D : P ] = ∞
(cf. [1]).
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Concerning primes lying over a maximal ideal M of finite index of D, they have
been characterized for one-dimensional Noetherian D in [2]. For commutative A,
they look just like the maximal ideals of Int(D).
Note that the somewhat technical condition MAM ∩ A = MA is satisfied in two

natural cases, firstly, if A is a free D-module, and secondly, if D ⊆ A is an extension
of Dedekind rings.

Theorem 3.1 ( [2]). Let D be a domain, A a commutative torsion-free D-algebra

finitely generated as a D-module, M a finitely generated maximal ideal of D of finite

index and height one, such that MAM ∩ A = MA, and n ∈ N.
Then every prime ideal of IntnD(A) lying over M is maximal, and of the form

Pa = {f ∈ IntnD(A) | f(a) ∈ P},

for some a ∈ Â (the M -adic completion of A) and P a maximal ideal of Â with

P ∩D = M .

In the case of a non-commutative D-algebra A, the images of elements a ∈ Â
under IntD(A) play a rôle in the description of the maximal ideals lying above M . If
the exact image IntD(A)(a) is not known, it can be replaced by a commutative ring

Ra between IntD(A)(a) and Â.

Theorem 3.2 ( [2]). Let D be a domain, A a torsion-free D-algebra finitely generated

as a D-module, M a finitely generated maximal ideal of D of finite index and height

one, such that MAM ∩ A = MA.
The prime ideals of IntD(A) lying over M are precisely the ideals of the form

Pa = {f ∈ IntD(A) | f(a) ∈ P},

where a ∈ Â (the M -adic completion of A), and P is a maximal ideal of IntD(A)(a)
(the image of a under IntnD(A)) with P ∩D = M .

We can replace IntD(A)(a) by a commutative ring Ra with IntD(A)(a) ⊆ Ra ⊆ Â
for the simple reason that every extension of finite commutative rings, in particular
the ring extension IntD(A)(a)/(IntD(A)(a) ∩MÂ) ⊆ Ra/(Ra ∩MÂ) satisfies “lying
over”.

Corollary 3.3. Under the hypotheses of of Theorem 3.2, suppose we are given, for

every a ∈ Â, a commutative ring Ra with IntD(A)(a) ⊆ Ra ⊆ Â.
Then the prime ideals of IntD(A) are precisely the ideals of the form

Pa = {f ∈ IntD(A) | f(a) ∈ P},

where a ∈ Â and P is a maximal ideal of Ra lying over M .
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For A = Mn(D), and a ∈ A, the image of a under Int(A)(a) is just D[a], and for a

general a ∈ Â, the image of a under Int(A)(a) is contained in D̂[a] (cf. [2]), so that

we may take Ra = D̂[a] in Corollary 3.3. For other algebras, the question is open:

• is there a simple description of the image of an element a ∈ Â under IntD(A)?

Another property of the ring of integer-valued polynomials on matrices is waiting
for generalization. If D is a domain with zero Jabobson radical, such as, for instance,
a Dedekind ring with infinitely many maximal ideals, then the subset C of Mn(D)
consisting of the companion matrices of all monic irreducible polynomials in D is a
polynomially dense subset of Mn(D), i.e., every polynomial f ∈ K[x] with f(C) ∈
Mn(D) for every C ∈ C is in IntD(Mn(D)). This prompts the question, for a general
D-algebra A,

• does A have a polynomially dense subset of elements with irreducible minimal
polynomial in K[x]?

4. A non-triviality criterion

For rings of integer valued polynomials with coefficients in a field, of the type

IntD(A) = {f ∈ K[x] | f(A) ⊆ A},

or, for commutative A,

IntnD(A) = {f ∈ K[x1, . . . , xn] | ∀a1, . . . , an ∈ A : f(a1, . . . , an) ∈ A},

we have the inclusions

D[x] ⊆ IntD(A) ⊆ Int(D) ⊆ K[x],

and similarly for several variables. As before, D is a domain with quotient field
K, A a torsion-free D-algebra finitely generated as a D-module, and evaluation of
polynomials is performed in B = K ⊗D A. As noted in the introduction, we also
require (of the homomorphic images in B) that K ∩ A = D.
IntD(A) is considered trivial if IntD(A) = D[x]. We will see that the non-triviality

criterion for Int(D) = {f ∈ K[x] | f(D) ⊆ D} for Noetherian D ( [1] Thm. I.3.14)
carries over to IntD(A).

Lemma 4.1. Let A be a torsion-free D-algebra that is finitely generated as a D-

module, and let n ∈ N. If there exists a proper ideal of D of the form I = (b :D c)
(with b, c ∈ D) of finite index, then IntnD(A) 6= D[x1, . . . , xn].

Proof. Say A is generated by d elements as a D-module. Then every element of A
is integral of degree at most d over D. Given I = (b :D c) 6= D of finite index,
let f ∈ D[x] be a monic polynomial that is divisible modulo I[x] by every monic
polynomial of degree at most d. Then for every a ∈ A, f(a) ∈ IA, and hence
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c
b
f(a) ∈ A. If follows that c

b
f(x) is in IntD(A) (as well as in IntnD(A) for all n ≥ 1),

but not in D[x], since its leading coefficient c
b
is not in D. �

Lemma 4.2. If, for some n ∈ N, IntnD(A) 6= D[x1, . . . , xn] then there exists a proper

ideal of D of the form I = (b :D c) (with b, c ∈ D) such that every prime ideal P of

D containing I is of finite index.

Proof. Let b, c ∈ D such that k = c
b
/∈ D occurs as a coefficient of a polynomial in

IntnD(A). If P is a prime ideal of infinite index in D, then IntnD(A) ⊆ DP [x1, . . . , xn];
so there exists some s ∈ D \ P with sk ∈ D, i.e., with s ∈ (b :D c). This means that
(b :D c) is not contained in any prime ideal of infinite index. �

It is easy to see that, for arbitrary fixed b ∈ D, an ideal that is maximal among
proper ideals of the form (b : d) (with d ∈ D) is prime. In a Noetherian domain D
therefore, every proper ideal I = (b : c) is contained in a prime ideal P = (b : d).
This shows that for a Noetherian domain D and a D-algebra A whose elements are
integral of bounded degree over D, the necessary and the sufficient condition for
IntD(A) 6= D[x] (in 4.1 and 4.2, respectively) are each equivalent to: D has a prime
ideal of finite index of the form P = (b : d).
If, given an ideal I of D, we call a prime ideal of the form (I :D d) (with d ∈ D)

an associated prime ideal of I then our criterion for non-triviality of IntnD(A) in the
Noetherian case becomes:

Theorem 4.3. Let D be a Noetherian domain and A a torsion-free D-algebra that

is finitely generated as a D-module and let n ∈ N. Then IntnD(A) 6= D[x1, . . . , xn]
if and only if D has a prime ideal of finite index that is an associated prime of a

principal ideal of D.

A different question of non-triviality is, whether IntD(A) is properly contained in
Int(D). (Recall that IntD(A) ⊆ Int(D) follows from our convention K ∩ A = D.)
Let K be a number field and OK its ring of algebraic integers. It has been shown
by Halter-Koch and Narkiewicz [4] that IntZ(OK) is always properly contained in
Int(Z). For general D and A it is an open question,

• under what hypotheses is IntD(A) ( Int(D)?

5. Prüfer or not Prüfer

For rings of integer-valued polynomials on algebras of the type

IntZ(A) = {f ∈ Q[x] | f(A) ⊆ A},

for a Z-algebra A, the big question is, what are criteria for IntZ(A) to be Prüfer, or
just to be integrally closed?
In some interesting special cases Loper [5] has the answer:
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Theorem 5.1 (Loper [5]).

(1) Let OK be the ring of algebraic integers in the number field K. Then IntZ(OK)
is Prüfer.

(2) Let M2(Z) be the ring of 2 × 2 integer matrices, then IntZ(M2(Z)) is not

Prüfer.

(3) Let L be the ring of integer (Lipschitz ) quaternions. Then IntZ(L) is not

Prüfer.

In cases 2 and 3, Loper shows that the ring in question is not Prüfer by exhibiting
an overring that is not integrally closed. For any non-commutative Z-algebra A, such
as A = Mn(Z) or A = L, this prompts the following questions:

• Is IntZ(A) integrally closed?
• What is its integral closure?
• Is the integral closure Prüfer?
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