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INTEGER-VALUED POLYNOMIALS ON ALGEBRAS
A SURVEY

SOPHIE FRISCH

ABSTRACT. We compare several different concepts of integer-valued polynomials
on algebras and collect the few results and many open questions to be found in
the literature. (2000 Math. Subj. Classification: Primary 13F20; Secondary 16S50,
13B25, 13J10, 11C08, 11C20)

1. INTRODUCTION

Let D be a domain with quotient field K. The popular ring of integer-valued
polynomials Int(D) = {f € KJ[z| | f(D) C D} has been generalized to polynomials
acting on non-commutative algebras in different ways by different authors. Some
consider polynomials with coefficients in K that map a given D-algebra to itself. For
instance, Loper [5] and the present author [2,3] have investigated polynomials with
rational coefficients mapping n X n integer matrices to integer matrices.

Others consider polynomials with coefficients in a non-commutative K-algebra
that map a given D-subalgebra to itself. For instance, Werner [7] has investigated
polynomials with coefficients in the rational quaternions mapping integer quater-
nions to integer quaternions; Werner [6] and the present author [2] have looked at
polynomials with coefficients in M, (K) mapping matrices in M, (D) to matrices in
M, (D).

Before we give a precise definition of two types of rings of integer-valued polynomi-
als on algebras, a few examples (in one variable). For lack of a better idea, we write
the first kind of integer-valued polynomial rings, those with coefficients in K, with
parentheses: Intp(A), and the second kind, those with coefficients in a K-algebra,
with square brackets: Intp[A]. Throughout this paper, D is an integral domain, not
a field, with quotient field K.

Example 1.1. For fixed n € N, consider
Il’ltD< )

(D)) = 1f € K[z] [ VO € My(D) : f(C) € My(D)}
Intp[M,(D)] = {f eM

)=
€ (M (K))[z] | VO € My (D) = f(C) € Mu(D)}.
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Example 1.2. Let Q = Q + Qi + Qj + Qk be the Q-algebra of rational quaternions
and L the Z-subalgebra of Lipschitz quaternions Z + Zi + Z,j + Zk.

Intz(L) ={f €Qlz] |[Vze€ L: f(z) € L}

Intz[L]| ={f €Qlx] |Vz € L: f(z) € L}

Example 1.3. Let G be a finite group, K(G) and D(G) group rings.
Intp(D(G)) = {f € Klz]|Vze€ D(G): f(z) € D(G)}
Intp[D(G)] = {f € K(G)[z] |Vz € D(G): f(2) € D(G)}

Example 1.4. Let D C A be Dedekind rings with quotient fields K C F.
Intp(A) = {f € K[z] | f(4) € A}.

Convention 1.5. Let D be a domain and not a field, K the quotient field of D, and
A a torsion-free D-algebra that is finitely generated as a D-module.

Since A is faithful, we have an isomorphic copy of D embedded in A (by d +— d1,4).
Let B = K ®@p A (canonically isomorphic to the ring of fractions Ap\ (o). Then the
natural homomorphisms 1y : K - K®p A, k— k® 14 and 14 : A - K ®p A,
a — lg ® a allow us to evaluate in B polynomials with coefficients in K or B at
arguments in A, and we define:

Intp(A) ={f € K[z] |[Vae€ A: f(a) € A}
Intp[A] ={f e (K®p A)[z] |[Vac A: f(a) € A}
Note that tx and 14 are injective whenever A is a torsion-free D-module. To exclude
unwanted cases such as A = K we require K N A = D (or, more precisely, tx(K) N
ta(A) = wa(D)).
Note that K N A = D implies

Intp(4) C Int(D) = {f € K[«] | f(D) C D}.

With the conventions above, Intp(A) is easily seen to be a ring. In particular,
Intp(A) is closed with respect to multiplication, because (fg)(a) = f(a)g(a) for all
a € Aand f,g € K[z]. By the same token, Intp[A] is a ring for commutative A. The
argument involving subsitution homomorphism works only in the commutative case,
however. For non-commutative A, multiplicative closure of Intp[A] is not evident.
We will look into this in the next section.

2. NON-COMMUTATVE COEFFICIENT RINGS

Theorem 2.1 (Werner [6]). If A is finitely generated by units as a D-algebra, then
Intp[A] is closed under multiplication and hence a ring.
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Proof. Let f(z) =Y, Bex® and g(x) be in Intp[A] and € A. To show (fg)(a) € A,
we first check the special case where g = u, a unit in A:

(fu)(a) = Zﬂkuak = Zﬁk(uau_l)ku = f(uau™Hu € A.
[ k
Now for general f, g € Intp[A]:

(f9)(a) = Z Bt = Z ﬁm(z nah)a™ = Z Bmg(a)a™.

Expressing g(«) as a D-linear combination of units uy,...,u, of A,

g(a) = dyuy + ... + dyuy,

yields
() (@) =D Bud_djuj)a™=>"d; > Buuja™ =Y d;(fu;)().
m j=1 j=1 m J=1
Since d; € D and each (fu;)(a) is in A, it follows that (fg)(«) is in A. O

Remark 2.2. In all three non-commutative examples in the introduction, A is gen-
erated as a D-module by units, and Intp[A] is a therefore a ring. In example 1.1,
for instance, the free D-module M, (D) of dimension n? has the following basis (sug-
gested by L. Vaserstein) consisting of matrices of determinant 1: let E; ;(\) for i # j
denote the elementary matrix with ones on the diagonal, A in position (i, j) and zeros
elsewhere. As basis, take the n* — n elementary matrices E; ;(1) for i # j, together
with the n products of two elementary matrices E;;1(1)E;p1,;(—1) for 1 <i <n
(with indices mod n, i.e., n+1=1).

One of the rings of the form Intp[A] for non-commutative A that have been ex-
amined in some detail is Intz[L], the ring of polynomials with coefficients in the
rational quaternions mapping integer quaternions to integer quaternions. Werner [7]
has shown Intp[A] to be non-Noetherian, and has exhibited some prime ideals.

In his forthcoming paper [6], Werner explores Intp[M,,(D)], and shows that every
ideal of this ring is generated as a left M, (D)-module by elements of K[z]. Using
ideas from [6], one can show more, however: the ring Intp[M, (D)] of polynomials
with coefficients in M, (K) that map every matrix in M, (D) to a matrix in M, (D)
is isomorphic to the ring of n x n matrices over the ring Intp (M, (D)) of polynomials
in K[z] that map every matrix in M, (D) to a matrix in M, (D).
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Theorem 2.3 ( [2]). Let

Intp (M, (D)) = {f € K[z] | VC € M,(D) : f(C) € M,(D)},
Intp[M,(D)] = {f € (Mn(K))[z] | VC € M (D) : f(C) € My(D)}.

We identify Intp[M,,(D)] with its isomorphic image under the natural ring isomor-
phism

ot (M (Kfa] = Mo(KTa]), S0 1o s o <Z agoxk)

Then o
Intp[M,,(D)] = M, (Intp(M,,(D))).

Corollary 2.4. Under the identification of Intp[M,(D)] with its isomorphic image
in M,(Klz]), the ideals of Intp[M,(D)] are precisely the sets of the form M,(I),
where I is an ideal of Intp(M,(D)). Prime ideals of Intp[M,(D)] correspond to
prime ideals of Intp (M, (D)) and vice versa.

Our definition of prime ideal for a possibly non-commutative ring is: a two-sided
ideal P # R, such that for any two-sided ideals A, B of R, AB C R implies A C P
or BCP.

It might be interesting to generalize Theorem 2.3 to other rings of integer-valued
polynomials on a D-algebra A with coefficients in a non-commutative K-algebra B.
Given a matrix representation B C M,,(K), we can identify the ring Intp[A] C Blx]
of polynomials with coefficents in B, integer-valued on A, with its image in M, (K [z])
under the isomorphism of (M, (K))[z] with M, (K|z]).

e Starting with a matrix representation B C M, (K), is the isomorphic image
of Intp[A] C (M,,(K))[x] embedded in M, (K [z]) a matrix algebra over a ring
of integer-valued polynomials with coefficents in K7

3. THE SPECTRUM

We now return to commuting coefficents and describe the spectrum of Intp(A). If
A is a commutative D-algebra, we also consider polynomials is several variables and
define

Inth) ={f € K[z1,...,2,] |Va € A" : f(a) € A}.
Prime ideals lying over a prime P of infinite index of D are easy to describe: they all
come from prime ideals of Dp[z]| (or Dplxy,...,x,], for Int}(A)), since Intp(A) C
Int(D) C Dplz]| (and Int}(A) C Int(D™) C Dplzy,...,x,]) whenever [D : P| = 0o
(cf. [1]).
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Concerning primes lying over a maximal ideal M of finite index of D, they have
been characterized for one-dimensional Noetherian D in [2]. For commutative A,
they look just like the maximal ideals of Int(D).

Note that the somewhat technical condition M Ay N A = MA is satisfied in two
natural cases, firstly, if A is a free D-module, and secondly, if D C A is an extension
of Dedekind rings.

Theorem 3.1 ( [2]). Let D be a domain, A a commutative torsion-free D-algebra
finitely generated as a D-module, M a finitely generated maximal ideal of D of finite
index and height one, such that MAyy NA= MA, andn € N.

Then every prime ideal of Int}(A) lying over M is maximal, and of the form

Fo={f €Intp(A) | fa) € P},

for some a € A (the M-adic completion of A) and P a mazimal ideal of A with
PND=M.

In the case of a non-commutative D-algebra A, the images of elements a € A
under Intp(A) play a role in the description of the maximal ideals lying above M. If
the exact image Intp(A)(a) is not known, it can be replaced by a commutative ring

R, between Intp(A)(a) and A.

Theorem 3.2 ( [2]). Let D be a domain, A a torsion-free D-algebra finitely generated

as a D-module, M a finitely generated maximal ideal of D of finite index and height
one, such that MAy NA= MA.
The prime ideals of Intp(A) lying over M are precisely the ideals of the form

Fo={f € Intp(A) | f(a) € P},
where a € A (the M-adic completion of A), and P is a mazimal ideal of Intp(A)(a)
(the image of a under Int}y(A)) with PN D = M.

We can replace Intp(A)(a) by a commutative ring R, with Intp(A)(a) € R, C A
for the simple reason that every extension of ﬁniAte commutative rings, in particular
the ring extension Intp(A)(a)/(Intp(A)(a) N MA) C R,/(R, N MA) satisfies “lying
over”.

Corollary 3.3. Under the hypotheses of of Theorem 3.2, suppose we are given, for
every a € A, a commutative ring R, with Intp(A)(a) C R, C A.
Then the prime ideals of Intp(A) are precisely the ideals of the form

Fu ={f € Intp(A4) | f(a) € P},

where a € A and P is a mazimal ideal of R, lying over M.
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For A = M,(D), and a € A, the image of a under Int(A)(a) is just D|a], and for a
general a € A, the image of a under Int(A)(a) is contained in D[a| (cf. [2]), so that
we may take R, = Dla] in Corollary 3.3. For other algebras, the question is open:

e is there a simple description of the image of an element a € A under Intp, (A)?

Another property of the ring of integer-valued polynomials on matrices is waiting
for generalization. If D is a domain with zero Jabobson radical, such as, for instance,
a Dedekind ring with infinitely many maximal ideals, then the subset C of M, (D)
consisting of the companion matrices of all monic irreducible polynomials in D is a
polynomially dense subset of M,,(D), i.e., every polynomial f € K|x] with f(C) €
M, (D) for every C' € C is in Intp(M,(D)). This prompts the question, for a general
D-algebra A,

e does A have a polynomially dense subset of elements with irreducible minimal
polynomial in K[z]?

4. A NON-TRIVIALITY CRITERION
For rings of integer valued polynomials with coefficients in a field, of the type
Intp(A) = {f € K[z] | f(A) C A},
or, for commutative A,
Int}(A) = {f € Klx1,...,x,] | Yar,...,a, € A: f(ay,...,a,) € A},
we have the inclusions
Diz] C Intp(A) C Int(D) C K|z],

and similarly for several variables. As before, D is a domain with quotient field
K, A a torsion-free D-algebra finitely generated as a D-module, and evaluation of
polynomials is performed in B = K ®p A. As noted in the introduction, we also
require (of the homomorphic images in B) that K N A = D.

Intp(A) is considered trivial if Intp(A) = D[z]. We will see that the non-triviality
criterion for Int(D) = {f € Klz| | f(D) C D} for Noetherian D ( [1] Thm. 1.3.14)
carries over to Intp(A).

Lemma 4.1. Let A be a torsion-free D-algebra that is finitely generated as a D-
module, and let n € N. If there exists a proper ideal of D of the form I = (b :p c)
(with b,c € D) of finite index, then Int})(A) # D[y, .., z,).

Proof. Say A is generated by d elements as a D-module. Then every element of A
is integral of degree at most d over D. Given I = (b :p ¢) # D of finite index,
let f € Dlz] be a monic polynomial that is divisible modulo I[z] by every monic
polynomial of degree at most d. Then for every a € A, f(a) € [A, and hence
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7f(a) € A. If follows that {f(z) is in Intp(A) (as well as in Intp(A) for all n > 1),
but not in D[z], since its leading coefficient § is not in D. O

Lemma 4.2. If, for some n € N, Int},(A) # D[z, ...,x,| then there exists a proper
ideal of D of the form I = (b :p ¢) (with b,c € D) such that every prime ideal P of
D containing I is of finite index.

Proof. Let b,c € D such that k = { ¢ D occurs as a coefficient of a polynomial in
Int} (A). If P is a prime ideal of infinite index in D, then Int})(A) C Dplzy, ..., x,];
so there exists some s € D\ P with sk € D, i.e., with s € (b:p ¢). This means that
(b :p ¢) is not contained in any prime ideal of infinite index. O

It is easy to see that, for arbitrary fixed b € D, an ideal that is maximal among
proper ideals of the form (b : d) (with d € D) is prime. In a Noetherian domain D
therefore, every proper ideal I = (b : ¢) is contained in a prime ideal P = (b : d).
This shows that for a Noetherian domain D and a D-algebra A whose elements are
integral of bounded degree over D, the necessary and the sufficient condition for
Intp(A) # Dlz| (in 4.1 and 4.2, respectively) are each equivalent to: D has a prime
ideal of finite index of the form P = (b: d).

If, given an ideal I of D, we call a prime ideal of the form (I :p d) (with d € D)
an associated prime ideal of I then our criterion for non-triviality of Int})(A) in the
Noetherian case becomes:

Theorem 4.3. Let D be a Noetherian domain and A a torsion-free D-algebra that
is finitely generated as a D-module and let n € N. Then Int}(A) # Dz, ..., x,]
if and only if D has a prime ideal of finite index that is an associated prime of a
principal ideal of D.

A different question of non-triviality is, whether Intp(A) is properly contained in
Int(D). (Recall that Intp(A) C Int(D) follows from our convention K N A = D.)
Let K be a number field and Ok its ring of algebraic integers. It has been shown
by Halter-Koch and Narkiewicz [4] that Intz(Of) is always properly contained in
Int(Z). For general D and A it is an open question,

e under what hypotheses is Intp(A) C Int(D)?

5. PRUFER OR NOT PRUFER

For rings of integer-valued polynomials on algebras of the type

Intz(A) = {f € Qla] | F(A) C A},

for a Z-algebra A, the big question is, what are criteria for Intz(A) to be Priifer, or
just to be integrally closed?
In some interesting special cases Loper [5] has the answer:
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Theorem 5.1 (Loper [5]).
(1) Let Ok be the ring of algebraic integers in the number field K. Then Intz(Ok)

1s Prifer.

(2) Let Ms(Z) be the ring of 2 x 2 integer matrices, then Intz(My(Z)) is not
Priifer.

(3) Let L be the ring of integer (Lipschitz) quaternions. Then Intz(L) is not
Priifer.

In cases 2 and 3, Loper shows that the ring in question is not Priifer by exhibiting
an overring that is not integrally closed. For any non-commutative Z-algebra A, such
as A= M,(Z) or A = L, this prompts the following questions:

e Is Intz(A) integrally closed?
e What is its integral closure?
e Is the integral closure Priifer?
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