

PIN Skimming: Exploiting the Ambient-Light Sensor in Mobile Devices

Raphael Spreitzer

IAIK, Graz University of Technology, Austria

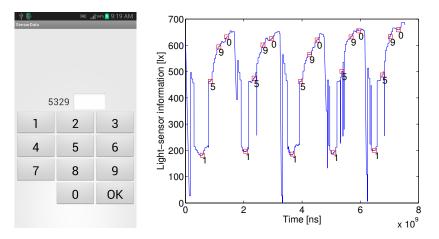
SPSM @ ACM CCS 2014, Scottsdale, Arizona, 7th November 2014

Outline

- Introduction & motivation
- Ambient-light sensor
- Attack scenario
- Evaluation of results
- Mitigation techniques
- Conclusion

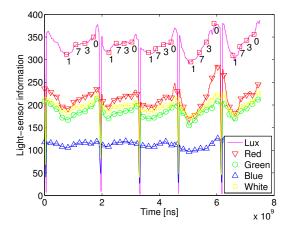
Introduction & Motivation

- Wide-spread usage of mobile devices
 - Entertainment applications
 - Business applications (*e.g.*, banking)
- Protection of private information
- Features/sensors that can be exploited
 - Camera, sound, motion sensors, ...
 - Less obvious: ambient-light sensor


Ambient-Light Sensor

- 1) Front camera
- 2) Ambient-light sensor
 - Intensity of surrounding illumination
 - Adapt screen brightness
 - Android Sensor API (~750 Hz)

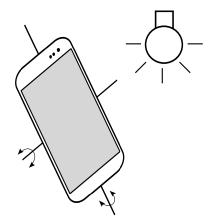
Information Leakage



Prompt user to enter a random 4-digit PIN

RGBW Sensor

■ No API support → read virtual filesystem directly



Raphael Spreitzer SPSM @ ACM CCS 2014, Scottsdale, Arizona, 7th November 2014

Observation

Tilts and turns during smartphone operation

Assumptions

- User is holding the device in his hands
- PIN is entered on a keypad rather than a QWERTY keyboard
- Light sensor faces sufficiently large variance of ambient light
- Training data and test data is collected in the same environment

Attack Scenario

Training phase

- A game to collect the training data (labeled data)
- Learn a specific set of PINs

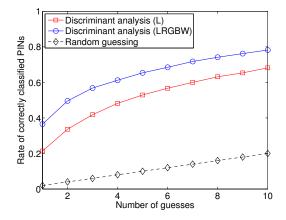
Attack phase

- Trick user into starting the application to be attacked
- Collect sensor values in the background
- Infer PIN by means of machine learning

Security implications

- Samsung KNOX [SA13]
- BYOD
- Attack "business" world from "private" world

Setup


Unconstrained environments (rooms)

- Uniformly lit via tube lights
- Standard ceiling lamp
- Window as the only light source
 - Even considered different daytimes
 - Diffuse light conditions
- Users were asked not to walk around
 - Compliant with our attack scenario
- We did not insist on a specific input method

Correctly Classified PINs after Guessing

Based on a set of 50 learned PINs

Comparison with Related Work

Attacks targeting a set of 50 PINs

	[ASBS12]	[SA13]	Ours
Sensor	Accelerometer	Camera	Ambient-light sensor
Permissions	Internet	Camera, Internet	Internet
Input method	No constraints	0	No constraints
Accuracy	43% within 5 guesses		65% within 5 guesses

Our attack works at least as good as related attacks

Countermeasures

UI and API modifications

- Disable sensors during "sensitive" input? [ASBS12]
- Varying keyboard layout [OHD⁺12]
- Restrict access to OS

Permission model & application analysis

- OS developers need to deal with this problem
- Install-time warning [FEF⁺12, FHE⁺12]
- Scan apps during the installation
- \Rightarrow Raise user awareness

Conclusion

Summary

- Ambient-light sensor leaks sensitive information
- No permission required
- Developed a proof-of-concept application
- Future work
 - Detailed comparison of sensor-based attacks
 - Combination of sensors

PIN Skimming: Exploiting the Ambient-Light Sensor in Mobile Devices

Raphael Spreitzer

IAIK, Graz University of Technology, Austria

SPSM @ ACM CCS 2014, Scottsdale, Arizona, 7th November 2014

Bibliography I

- [ASBS12] Adam J. Aviv, Benjamin Sapp, Matt Blaze, and Jonathan M. Smith.
 Practicality of Accelerometer Side Channels on Smartphones.
 In Annual Computer Security Applications Conference (ACSAC), pages 41–50, 2012.
- [FEF⁺ 12] Adrienne Porter Felt, Serge Egelman, Matthew Finifter, Devdatta Akhawe, and David Wagner.
 How to Ask for Permission.
 In USENIX Conference on Hot Topics in Security (HotSec), 2012.
- [FHE⁺12] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and David Wagner.
 Android Permissions: User Attention, Comprehension, and Behavior.
 In Symposium On Usable Privacy and Security (SOUPS), page 3, 2012.
- [OHD⁺12] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang. ACCessory: Password Inference using Accelerometers on Smartphones. In Mobile Computing Systems and Applications (HotMobile), page 9, 2012.

Bibliography II

[SA13] Laurent Simon and Ross Anderson.

PIN Skimmer: Inferring PINs Through The Camera and Microphone.

In ACM Workshop on Security and Privacy in Smartphones & Mobile Devices (SPSM), pages 67–78, 2013.