A Duality Based Algorithm for TV-L1-Optical-Flow Image Registration

Thomas Pock*, Martin Urschler, Christopher Zach, Reinhard Beichel, Horst Bischof

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in Buch/BerichtBegutachtung


Nonlinear image registration is a challenging task in the field of medical image analysis. In many applications discontinuities may be present in the displacement field, and intensity variations may occur. In this work we therefore utilize an energy functional which is based on Total Variation regularization and a robust data term. We propose a novel, fast and stable numerical scheme to find the minimizer of this energy. Our approach combines a fixed-point procedure derived from duality principles combined with a fast thresholding step. We show experimental results on synthetic and clinical CT lung data sets at different breathing states as well as registration results on inter-subject brain MRIs.
TitelMedical Image Computing and Computer-Assisted Intervention – MICCAI 2007
Untertitel10th International Conference, Brisbane, Australia, October 29 - November 2, 2007, Proceedings, Part II
Redakteure/-innenNicholas Ayache, Sébastien Ourselin, Anthony Maeder
ErscheinungsortBerlin Heidelberg
Herausgeber (Verlag)Springer
Band4792 LNCS
AuflagePART 2
ISBN (elektronisch)978-3-540-75759-7
ISBN (Print)978-3-540-75758-0
PublikationsstatusVeröffentlicht - 2007
Veranstaltung10th International Conference on Medical Imaging and Computer-Assisted Intervention: MICCAI 2007 - Brisbane, Australien
Dauer: 29 Okt. 20072 Nov. 2007


NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NummerPART 2
Band4792 LNCS
ISSN (Print)03029743
ISSN (elektronisch)16113349


Konferenz10th International Conference on Medical Imaging and Computer-Assisted Intervention

Fields of Expertise

  • Information, Communication & Computing


Untersuchen Sie die Forschungsthemen von „A Duality Based Algorithm for TV-L1-Optical-Flow Image Registration“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren