A Guideline to Mitigate Interfacial Degradation Processes in Solid-State Batteries Caused by Cross Diffusion

Mir Mehraj Ud Din, Lukas Ladenstein, Joseph Ring, Daniel Knez, Stefan Smetaczek, Markus Kubicek, Mohsen Sadeqi-Moqadam, Steffen Ganschow, Elena Salagre, Enrique G. Michel, Stefanie Lode, Gerald Kothleitner, Iulian Dugulan, Jeffrey G. Smith, Andreas Limbeck, Jürgen Fleig, Donald J. Siegel, Günther J. Redhammer, Daniel Rettenwander*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Diffusion of transition metals across the cathode–electrolyte interface is identified as a key challenge for the practical realization of solid-state batteries. This is related to the formation of highly resistive interphases impeding the charge transport across the materials. Herein, the hypothesis that formation of interphases is associated with the incorporation of Co into the Li7La3Zr2O12 lattice representing the starting point of a cascade of degradation processes is investigated. It is shown that Co incorporates into the garnet structure preferably four-fold coordinated as Co2+ or Co3+ depending on oxygen fugacity. The solubility limit of Co is determined to be around 0.16 per formula unit, whereby concentrations beyond this limit causes a cubic-to-tetragonal phase transition. Moreover, the temperature-dependent Co diffusion coefficient is determined, for example, D700 °C = 9.46 × 10−14 cm2 s−1 and an activation energy Ea = 1.65 eV, suggesting that detrimental cross diffusion will take place at any relevant process condition. Additionally, the optimal protective Al2O3 coating thickness for relevant temperatures is studied, which allows to create a process diagram to mitigate any degradation with a minimum compromise on electrochemical performance. This study provides a tool to optimize processing conditions toward developing high energy density solid-state batteries.

Originalspracheenglisch
Aufsatznummer2303680
FachzeitschriftAdvanced Functional Materials
Jahrgang33
Ausgabenummer42
Frühes Online-Datum15 Juni 2023
DOIs
PublikationsstatusVeröffentlicht - 13 Okt. 2023

ASJC Scopus subject areas

  • Elektronische, optische und magnetische Materialien
  • Allgemeine Chemie
  • Biomaterialien
  • Allgemeine Materialwissenschaften
  • Physik der kondensierten Materie
  • Elektrochemie

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Guideline to Mitigate Interfacial Degradation Processes in Solid-State Batteries Caused by Cross Diffusion“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren