A numerical model for chemo-thermo-mechanical coupling at large strains with an application to thermoresponsive hydrogels

Florian Brunner, Tristan Seidlhofer, Manfred Hannes Ulz*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

The aim of this work is the derivation and examination of a material model, accounting for large elastic deformations, coupled with species diffusion and thermal effects. This chemo-thermo-mechanical material model shows three key aspects regarding its numerical formulation. Firstly, a multiplicative split of the deformation gradient into a mechanical, a swelling and a thermal part. Secondly, temperature-scaled gradients for a numerical design comprising symmetric tangents and, thirdly, dissipation potentials for the modelling of dissipative effects. Additionally, the derived general material model is specialised to thermoresponsive hydrogels to study its predictive capabilities for a relevant example material class. An appropriate finite element formulation is established and its implementation discussed. Numerical examples are investigated, including phase transition and stability phenomena, to verify the ability of the derived chemo-thermo-mechanical material model to predict relevant physical effects properly. We compare our results to established models in the literature and discuss emerging deviations.

Originalspracheenglisch
FachzeitschriftComputational Mechanics
Jahrgang2024
Frühes Online-Datum16 Feb. 2024
DOIs
PublikationsstatusElektronische Veröffentlichung vor Drucklegung. - 16 Feb. 2024

ASJC Scopus subject areas

  • Computational Mathematics
  • Maschinenbau
  • Meerestechnik
  • Angewandte Mathematik
  • Numerische Mechanik
  • Theoretische Informatik und Mathematik

Dieses zitieren