An adaptive finite element method for distributed elliptic optimal control problems with variable energy regularization

Ulrich Langer, Richard Löscher, Olaf Steinbach*, Huidong Yang

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

We analyze the finite element discretization of distributed elliptic optimal control problems with variable energy regularization, where the usual L2(Ω) norm regularization term with a constant regularization parameter ϱ is replaced by a suitable representation of the energy norm in H−1(Ω) involving a variable, mesh-dependent regularization parameter ϱ(x). It turns out that the error between the computed finite element state u˜ϱh and the desired state u‾ (target) is optimal in the L2(Ω) norm provided that ϱ(x) behaves like the local mesh size squared. This is especially important when adaptive meshes are used in order to approximate discontinuous target functions. The adaptive scheme can be driven by the computable and localizable error norm ‖u˜ϱh−u‾‖L2(Ω) between the finite element state u˜ϱh and the target u‾. The numerical results not only illustrate our theoretical findings, but also show that the iterative solvers for the discretized reduced optimality system are very efficient and robust.

Originalspracheenglisch
Seiten (von - bis)1-14
Seitenumfang14
FachzeitschriftComputers and Mathematics with Applications
Jahrgang160
Frühes Online-Datum12 Feb. 2024
DOIs
PublikationsstatusVeröffentlicht - 15 Apr. 2024

ASJC Scopus subject areas

  • Modellierung und Simulation
  • Theoretische Informatik und Mathematik
  • Computational Mathematics

Fingerprint

Untersuchen Sie die Forschungsthemen von „An adaptive finite element method for distributed elliptic optimal control problems with variable energy regularization“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren