Chat2Scenario: Scenario Extraction From Dataset Through Utilization of Large Language Model

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

The advent of Large Language Models (LLM) provides new insights to validate Automated Driving Systems (ADS). In the herein-introduced work, a novel approach to extracting scenarios from naturalistic driving datasets is presented. A framework called Chat2Scenario is proposed leveraging the advanced Natural Language Processing (NLP) capabilities of LLM to understand and identify different driving scenarios. By inputting descriptive texts of driving conditions and specifying the criticality metric thresholds, the framework efficiently searches for desired scenarios and converts them into ASAM OpenSCENARIO 1 and IPG CarMaker text files 2. This methodology streamlines the scenario extraction process and enhances efficiency. Simulations are executed to validate the efficiency of the approach. The framework is presented based on a user-friendly web app and is accessible via the following link: https://github.com/ftgTUGraz/Chat2Scenario.

Originalspracheenglisch
Titel35th IEEE Intelligent Vehicles Symposium, IV 2024
Herausgeber (Verlag)IEEE Xplore
Seiten559-566
Seitenumfang8
ISBN (elektronisch)9798350348811
DOIs
PublikationsstatusVeröffentlicht - 15 Juli 2024

Publikationsreihe

NameIEEE Intelligent Vehicles Symposium, Proceedings
ISSN (Print)1931-0587
ISSN (elektronisch)2642-7214

ASJC Scopus subject areas

  • Angewandte Informatik
  • Fahrzeugbau
  • Modellierung und Simulation

Fields of Expertise

  • Mobility & Production

Fingerprint

Untersuchen Sie die Forschungsthemen von „Chat2Scenario: Scenario Extraction From Dataset Through Utilization of Large Language Model“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren