Component behaviour and excess of random bipartite graphs near the critical point

Tuan Anh Do, Joshua Erde, Mihyun Kang, Michael Missethan

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

The binomial random bipartite graph G(n, n, p) is the random graph formed by taking two partition classes of size n and including each edge between them independently with probability p. It is known that this model exhibits a similar phase transition as that of the binomial random graph G(n, p) as p passes the critical point of 1n. We study the component structure of this model near to the critical point. We show that, as with G(n, p), for an appropriate range of p there is a unique ‘giant’ component and we determine asymptotically its order and excess. We also give more precise results for the distribution of the number of components of a fixed order in this range of p. These results rely on new bounds for the number of bipartite graphs with a fixed number of vertices and edges, which we also derive.

Originalspracheenglisch
AufsatznummerP3.7
Seitenumfang35
FachzeitschriftElectronic Journal of Combinatorics
Jahrgang30
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - 14 Juli 2023

ASJC Scopus subject areas

  • Theoretische Informatik
  • Angewandte Mathematik
  • Diskrete Mathematik und Kombinatorik
  • Geometrie und Topologie
  • Theoretische Informatik und Mathematik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Component behaviour and excess of random bipartite graphs near the critical point“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren