Configuration of manufacturing networks by a multi-objective perspective enabled by simulation and machine learning

Elias Franziskus Detlef Auberger*, Hugo Daniel Karre, Matthias Wolf, Heimo Preising, Christian Ramsauer

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftKonferenzartikelBegutachtung

Abstract

Manufacturing companies are facing an increasingly volatile environment today. Internal manufacturing networks are becoming ever more important for ensuring competitive survival. The objective of this research is to introduce an iterative approach for the configuration of manufacturing networks by increasing the transparency for decision making including effects on tactical and operational level. In this context a combined method with discrete event simulation and machine learning is considered. The results of the new approach were validated within a use case at an Austrian company in the railway sector by reconfiguration of the manufacturing network consisting of 4 sites.
Originalspracheenglisch
Seiten (von - bis)993-998
Seitenumfang6
FachzeitschriftProcedia CIRP
Jahrgang104
DOIs
PublikationsstatusVeröffentlicht - 26 Nov. 2021
Veranstaltung54th CIRP Conference on Manufacturing Systems: Towards Digitalized Manufacturing 4.0 - Virtuell
Dauer: 22 Sept. 202124 Sept. 2021

Schlagwörter

  • Operations management
  • Manufacturing network configuration
  • Machine learningData Analytics
  • Discrete event simulation
  • Maintenance industry

Fingerprint

Untersuchen Sie die Forschungsthemen von „Configuration of manufacturing networks by a multi-objective perspective enabled by simulation and machine learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren