Continuous Flow Synthesis of Mesalazine via data-driven Nonlinear Model Predictive Control

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

The synthesis of Mesalazine via data-driven modelling and a control scheme for the underlying complex continuous flow chemistry process is presented. The challenges of modelling continuous flow synthesis of Mesalazine are overcome
by the usage of Neuro-Fuzzy Models together with the so-called Local Linear Model Tree (NFM-LoLiMoT) training algorithm based on data from a highly detailed simulator for the reactor. A state-space representation of the NFM-LoLiMoT allows the implementation of a Non-linear Model Predictive Control
(NMPC) strategy in order to perform output tracking and fulfil all input and output constraints. The NMPC scheme guarantees stability through the approximation of an Infinite Horizon cost function using a terminal cost and terminal state constraints. The proposed method provides a systematic approach that can be applied for different setup configurations and reduces the time-consuming process of first-principles modelling of the chemical processes. Simulations of a hydrogenation reactor for the synthesis of Mesalazine are presented to show the performance of the introduced method.
Originalspracheenglisch
TitelProceedings of the 2023 European Control Conference (ECC)
Seiten490-495
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 European Control Conference: ECC 2023 - Bucharest, Rumänien
Dauer: 13 Juni 202316 Juni 2023

Konferenz

Konferenz2023 European Control Conference
KurztitelECC 2023
Land/GebietRumänien
OrtBucharest
Zeitraum13/06/2316/06/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Continuous Flow Synthesis of Mesalazine via data-driven Nonlinear Model Predictive Control“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren