Deep Neural Network Pruning for Nuclei Instance Segmentation in Hematoxylin & Eosin-Stained Histological Images

Amirreza Mahbod*, Rahim Entezari, Isabella Ellinger, Olga Saukh

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Recently, pruning deep neural networks (DNNs) has received a lot of attention for improving accuracy and generalization power, reducing network size, and increasing inference speed on specialized hardwares. Although pruning was mainly tested on computer vision tasks, its application in the context of medical image analysis has hardly been explored. This work investigates the impact of well-known pruning techniques, namely layer-wise and network-wide magnitude pruning, on the nuclei instance segmentation performance in histological images. Our utilised instance segmentation model consists of two main branches: (1) a semantic segmentation branch, and (2) a deep regression branch. We investigate the impact of weight pruning on the performance of both branches separately, and on the final nuclei instance segmentation result. Evaluated on two publicly available datasets, our results show that layer-wise pruning delivers slightly better performance than network-wide pruning for small compression ratios (CRs) while for large CRs, network-wide pruning yields superior performance. For semantic segmentation, deep regression and final instance segmentation, 93.75%, 95%, and 80% of the model weights can be pruned by layer-wise pruning with less than 2% reduction in the performance of respective models.
Originalspracheenglisch
TitelApplications of Medical Artificial Intelligence. AMAI 2022
Seiten108 - 117
ISBN (elektronisch)978-303117720-0
DOIs
PublikationsstatusVeröffentlicht - 16 Sept. 2022
VeranstaltungMICCAI workshop on Applications of Medical AI - Singapore, Singapore, Singapur
Dauer: 18 Sept. 202218 Sept. 2022
https://sites.google.com/view/amai2022/home#h.ejcv6c56z2ym

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Band13540
ISSN (elektronisch)0302-9743

Konferenz

KonferenzMICCAI workshop on Applications of Medical AI
KurztitelAMAI
Land/GebietSingapur
OrtSingapore
Zeitraum18/09/2218/09/22
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deep Neural Network Pruning for Nuclei Instance Segmentation in Hematoxylin & Eosin-Stained Histological Images“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren