EEG2Vec: Learning affective EEG representations via variational autoencoders

David Bethge, Philipp Hallgarten, Tobias Grosse-Puppendahl, Mohamed Kari, Lewis Chuang, Ozan Özdenizci, Albrecht Schmidt

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung


There is a growing need for sparse representational formats of human affective states that can be utilized in scenarios with limited computational memory resources. We explore whether representing neural data, in response to emotional stimuli, in a latent vector space can serve to both predict emotional states as well as generate synthetic EEG data that are participant-and/or emotion-specific. We propose a conditional variational autoencoder based framework, EEG2Vec, to learn generative-discriminative representations from EEG data. Experimental results on affective EEG recording datasets demonstrate that our model is suitable for unsupervised EEG modeling, classification of three distinct emotion categories (positive, neutral, negative) based on the latent representation achieves a robust performance of 68.49%, and generated synthetic EEG sequences resemble real EEG data inputs to particularly reconstruct low-frequency signal components. Our work advances areas where affective EEG representations can be useful in e.g., generating artificial (labeled) training data or alleviating manual feature extraction, and provide efficiency for memory constrained edge computing applications.
Titel2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
ISBN (elektronisch)978-1-6654-5258-8
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 IEEE International Conference on Systems, Man, and Cybernetics: SMC 2022 - Prague, Tschechische Republik
Dauer: 9 Okt. 202212 Okt. 2022


Konferenz2022 IEEE International Conference on Systems, Man, and Cybernetics
KurztitelSMC 2022
Land/GebietTschechische Republik

ASJC Scopus subject areas

  • Artificial intelligence
  • Signalverarbeitung
  • Biomedizintechnik

Fields of Expertise

  • Human- & Biotechnology
  • Information, Communication & Computing


Untersuchen Sie die Forschungsthemen von „EEG2Vec: Learning affective EEG representations via variational autoencoders“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren