Enhanced gaseous hydrogen solubility in ferritic and martensitic steels at low temperatures

Andreas Drexler*, Florian Konert, Oded Sobol, Michael Rhode, Josef Domitner, Christof Sommitsch, Thomas Böllinghaus

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Metals that are exposed to high pressure hydrogen gas may undergo detrimental failure by embrittlement. Understanding the mechanisms and driving forces of hydrogen absorption on the surface of metals is crucial for avoiding hydrogen embrittlement. In this study, the effect of stress-enhanced gaseous hydrogen uptake in bulk metals is investigated in detail. For that purpose, a generalized form of Sievert's law is derived from thermodynamic potentials considering the effect of microstructural trapping sites and multiaxial stresses. This new equation is parametrized and verified using experimental data for carbon steels, which were charged under gaseous hydrogen atmosphere at pressures up to 1000 bar. The role of microstructural trapping sites on the parameter identification is critically discussed. Finally, the parametrized equation is applied to calculate the stress-enhanced hydrogen solubility of thin-walled pipelines and thick-walled pressure vessels during service.

Originalspracheenglisch
Seiten (von - bis)39639-39653
Seitenumfang15
FachzeitschriftInternational Journal of Hydrogen Energy
Jahrgang47
Ausgabenummer93
DOIs
PublikationsstatusVeröffentlicht - 2022

ASJC Scopus subject areas

  • Physik der kondensierten Materie
  • Energieanlagenbau und Kraftwerkstechnik
  • Feuerungstechnik
  • Erneuerbare Energien, Nachhaltigkeit und Umwelt

Fields of Expertise

  • Mobility & Production

Fingerprint

Untersuchen Sie die Forschungsthemen von „Enhanced gaseous hydrogen solubility in ferritic and martensitic steels at low temperatures“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren