TY - JOUR
T1 - Fusion of binding-domains to Thermobifida cellulosilytica cutinase to tune sorption characteristics and enhancing PET hydrolysis
AU - Ribitsch, Doris
AU - Antonio, Orcal Yebra
AU - Zitzenbacher, Sabine
AU - Wu, Jing
AU - Nowitsch, Susanne
AU - Steinkellner, Georg
AU - Greimel, Katrin Julia
AU - Aleš, Doliška
AU - Oberdorfer, Gustav
AU - Gruber, Christian
AU - Gruber, Karl
AU - Schwab, Helmut
AU - Karin, Stana-Kleinschek
AU - Herrero Acero, Enrique
AU - Gübitz, Georg
PY - 2013
Y1 - 2013
N2 - A cutinase from Thermomyces cellullosylitica (Thc_Cut1), hydrolyzing the synthetic polymer polyethylene terephthalate (PET), was fused with two different binding modules to improve sorption and thereby hydrolysis. The binding modules were from cellobiohydrolase I from Hypocrea jecorina (CBM) and from a polyhydroxyalkanoate depolymerase from Alcaligenes faecalis (PBM). Although both binding modules have a hydrophobic nature, it was possible to express the proteins in E. coli. Both fusion enzymes and the native one had comparable kcat values in the range of 311 to 342 s–1 on pNP-butyrate, while the catalytic efficiencies kcat/Km decreased from 0.41 s–1/ μM (native enzyme) to 0.21 and 0.33 s–1/μM for Thc_Cut1+PBM and Thc_Cut1+CBM, respectively. The fusion enzymes were active both on the insoluble PET model substrate bis(benzoyloxyethyl) terephthalate (3PET) and on PET although the hydrolysis pattern was differed when compared to Thc_Cut1. Enhanced adsorption of the fusion enzymes was visible by chemiluminescence after incubation with a 6xHisTag specific horseradish peroxidase (HRP) labeled probe. Increased adsorption to PET by the fusion enzymes was confirmed with Quarz Crystal Microbalance (QCM-D) analysis and indeed resulted in enhanced hydrolysis activity (3.8× for Thc_Cut1+CBM) on PET, as quantified, based on released mono/oligomers.
AB - A cutinase from Thermomyces cellullosylitica (Thc_Cut1), hydrolyzing the synthetic polymer polyethylene terephthalate (PET), was fused with two different binding modules to improve sorption and thereby hydrolysis. The binding modules were from cellobiohydrolase I from Hypocrea jecorina (CBM) and from a polyhydroxyalkanoate depolymerase from Alcaligenes faecalis (PBM). Although both binding modules have a hydrophobic nature, it was possible to express the proteins in E. coli. Both fusion enzymes and the native one had comparable kcat values in the range of 311 to 342 s–1 on pNP-butyrate, while the catalytic efficiencies kcat/Km decreased from 0.41 s–1/ μM (native enzyme) to 0.21 and 0.33 s–1/μM for Thc_Cut1+PBM and Thc_Cut1+CBM, respectively. The fusion enzymes were active both on the insoluble PET model substrate bis(benzoyloxyethyl) terephthalate (3PET) and on PET although the hydrolysis pattern was differed when compared to Thc_Cut1. Enhanced adsorption of the fusion enzymes was visible by chemiluminescence after incubation with a 6xHisTag specific horseradish peroxidase (HRP) labeled probe. Increased adsorption to PET by the fusion enzymes was confirmed with Quarz Crystal Microbalance (QCM-D) analysis and indeed resulted in enhanced hydrolysis activity (3.8× for Thc_Cut1+CBM) on PET, as quantified, based on released mono/oligomers.
U2 - 10.1021/bm400140u
DO - 10.1021/bm400140u
M3 - Article
SN - 1526-4602
VL - 14
SP - 1769
EP - 1776
JO - Biomacromolecules
JF - Biomacromolecules
IS - 6
ER -