High Miscibility-Induced Reduction of Trap Density in All-Polymer Solar Cells Using Hybrid Cyclohexyl-Hexyl Side Chains

Fengbo Sun, Xunchang Wang*, Ming Wan, Zhitian Liu*, Yixuan Luo, Jiajia Ren, Xufan Zheng, Thomas Rath*, Cong Xiao, Tianyu Hu, Gregor Trimmel, Renqiang Yang*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Reducing the trap density within organic solar cells is of vital importance to realize high power conversion efficiency (PCE); however, research focusing on this aspect is limited in all-polymer solar cells (All-PSCs). In this work, it is found that the trap density can be dramatically reduced by simultaneously obtaining high miscibility of donor and acceptor and ordered packing in blend films through substituting ethylhexyl with hybrid cyclohexyl-hexyl side chains in the design of the polymer donor. D18-ChCl with hybrid cyclohexyl-hexyl chains has a slightly lower aggregation behavior relative to the D18-Cl counterpart, but reveals synchronously higher miscibility and crystallinity in a blend with the acceptor PYF-T-o. Such a morphology evolution positively affects the electronic properties of the device—prolongs the carrier lifetime, facilitates exciton dissociation, and lowers the energy disorder. As a result, the All-PSC devices based on D18-ChCl exhibited a remarkable PCE of 17.1%, with a low trap density of 2.65 × 1015 cm−3, a low energy disorder of 47 meV as well as outstanding stability and mechanical durability. This result demonstrates that hybrid cyclohexyl-hexyl alkyl engineering delicately improves miscibility, drives low trap density, and refines device performance, which brings vibrancy to the All-PSC research field.

Originalspracheenglisch
Aufsatznummer2306791
FachzeitschriftAdvanced Functional Materials
Jahrgang33
Ausgabenummer40
DOIs
PublikationsstatusVeröffentlicht - 2 Okt. 2023

ASJC Scopus subject areas

  • Elektronische, optische und magnetische Materialien
  • Allgemeine Chemie
  • Biomaterialien
  • Allgemeine Materialwissenschaften
  • Physik der kondensierten Materie
  • Elektrochemie

Fields of Expertise

  • Advanced Materials Science

Fingerprint

Untersuchen Sie die Forschungsthemen von „High Miscibility-Induced Reduction of Trap Density in All-Polymer Solar Cells Using Hybrid Cyclohexyl-Hexyl Side Chains“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren