Highly conductive RuO2 thin films from novel facile aqueous chemical solution deposition

Martina Angermann*, Georg Jakopic, Christine Prietl, Thomas Griesser, Klaus Reichmann, Marco Deluca

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Ruthenium dioxide (RuO2) thin films were synthesized by Chemical Solution Deposition (CSD) on silicon substrates using only water and acetic acid as solvents. The microstructure, phase purity, electrical and optical properties as well as the thermal stability of the thin films have been characterized. The microstructure of the thin films strongly depends on the annealing temperature: A smooth thin film was achieved at an annealing temperature of 600 °C. Higher annealing temperatures (800 °C) led to radial grain growth and an inhomogeneous thin film. A very low resistivity of 0.89 µΩm was measured for a 220 nm-thick thin film prepared at 600 °C. The resistivity of the thin films increases with temperature, which indicates metallic behavior. Phase purity of the thin films was confirmed with X-ray Diffraction (XRD) measurements, X-ray Photoelectron Spectroscopy (XPS) and Raman spectroscopy. Transmission and reflectivity measurements indicate that RuO2 efficiently blocks the UV-VIS and IR wavelengths. The optical constants determined via spectroscopic ellipsometry show high absorption in the near-IR region as well as a lower one in the UV-VIS region. The thermal stability was investigated by post-annealing, confirming that the thin films are stable up to 750 °C in synthetic air. Graphical Abstract: [Figure not available: see fulltext.]

Originalspracheenglisch
Seiten (von - bis)575-587
Seitenumfang13
FachzeitschriftJournal of Sol-Gel Science and Technology
Jahrgang108
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - Dez. 2023

ASJC Scopus subject areas

  • Elektronische, optische und magnetische Materialien
  • Keramische und Verbundwerkstoffe
  • Allgemeine Chemie
  • Biomaterialien
  • Physik der kondensierten Materie
  • Werkstoffchemie

Dieses zitieren