Liquid-Like Li-Ion Conduction in Oxides Enabling Anomalously Stable Charge Transport across the Li/Electrolyte Interface in All-Solid-State Batteries

Jian Fang Wu, Zheyi Zou, Bowei Pu, Lukas Ladenstein, Shen Lin, Wenjing Xie, Shen Li, Bing He, Yameng Fan, Wei Kong Pang*, H. Martin R. Wilkening, Xin Guo*, Chaohe Xu, Tao Zhang, Siqi Shi*, Jilei Liu*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

The softness of sulfur sublattice and rotational PS4 tetrahedra in thiophosphates result in liquid-like ionic conduction, leading to enhanced ionic conductivities and stable electrode/thiophosphate interfacial ionic transport. However, the existence of liquid-like ionic conduction in rigid oxides remains unclear, and modifications are deemed necessary to achieve stable Li/oxide solid electrolyte interfacial charge transport. In this study, by combining the neutron diffraction survey, geometrical analysis, bond valence site energy analysis, and ab initio molecular dynamics simulation, 1D liquid-like Li-ion conduction is discovered in LiTa2PO8 and its derivatives, wherein Li-ion migration channels are connected by four- or five-fold oxygen-coordinated interstitial sites. This conduction features a low activation energy (0.2 eV) and short mean residence time (<1 ps) of Li ions on the interstitial sites, originating from the Li–O polyhedral distortion and Li-ion correlation, which are controlled by doping strategies. The liquid-like conduction enables a high ionic conductivity (1.2 mS cm−1 at 30 °C), and a 700 h anomalously stable cycling under 0.2 mA cm−2 for Li/LiTa2PO8/Li cells without interfacial modifications. These findings provide principles for the future discovery and design of improved solid electrolytes that do not require modifications to the Li/solid electrolyte interface to achieve stable ionic transport.

Originalspracheenglisch
Aufsatznummer2303730
FachzeitschriftAdvanced Materials
Jahrgang35
Ausgabenummer40
DOIs
PublikationsstatusVeröffentlicht - 5 Okt. 2023

ASJC Scopus subject areas

  • Allgemeine Materialwissenschaften
  • Werkstoffmechanik
  • Maschinenbau

Fingerprint

Untersuchen Sie die Forschungsthemen von „Liquid-Like Li-Ion Conduction in Oxides Enabling Anomalously Stable Charge Transport across the Li/Electrolyte Interface in All-Solid-State Batteries“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren