Liquid metal embrittlement of advanced high strength steel: Experiments and damage modeling

Konstantin Manuel Prabitz*, Mohammad Z. Asadzadeh, Marlies Pichler, Thomas Antretter, Coline Beal, Holger Schubert, Benjamin Hilpert, Martin Gruber, Robert Sierlinger, Werner Ecker

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung


In the automotive industry, corrosion protected galvanized advanced high strength steels with high ductility (AHSS-HD) gain importance due to their good formability and their lightweight potential. Unfortunately, under specific thermomechanical loading conditions such as during resistance spot welding galvanized, AHSS-HD sheets tend to show liquid metal embrittlement (LME). LME is an intergranular decohesion phenomenon leading to a drastic loss of ductility of up to 95%. The occurrence of LME for a given galvanized material mainly depends on thermal and mechanical loading. These influences are investigated for a dual phase steel with an ultimate tensile strength of 1200 MPa, a fracture strain of 14% and high ductility (DP1200HD) by means of systematic isothermal hot tensile testing on a Gleeble® 3800 thermomechanical simulator. Based on the experimental findings, a machine learning procedure using symbolic regression is applied to calibrate an LME damage model that accounts for the governing quantities of temperature, plastic strain and strain rate. The finite element (FE) implementation of the damage model is validated based on the local damage distribution in the hot tensile tested samples and in an exemplary 2-sheet resistance spot weld. The developed LME damage model predicts the local position and the local intensity of liquid metal induced cracking in both cases very well.

PublikationsstatusVeröffentlicht - 1 Sep. 2021

ASJC Scopus subject areas

  • Werkstoffwissenschaften (insg.)
  • Physik der kondensierten Materie


Untersuchen Sie die Forschungsthemen von „Liquid metal embrittlement of advanced high strength steel: Experiments and damage modeling“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren