On fixity of arc-transitive graphs

Florian Lehner, Primož Potočnik, Pablo Spiga*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

The relative fixity of a permutation group is the maximum proportion of the points fixed by a non-trivial element of the group, and the relative fixity of a graph is the relative fixity of its automorphism group, viewed as a permutation group on the vertex-set of the graph. We prove in this paper that the relative fixity of connected 2-arc-transitive graphs of a fixed valence tends to 0 as the number of vertices grows to infinity. We prove the same result for the class of arc-transitive graphs of a fixed prime valence, and more generally, for any class of arc-transitive locally-L graphs, where L is a fixed quasiprimitive graph-restrictive permutation group.

Originalspracheenglisch
Seiten (von - bis)2603-2610
Seitenumfang8
FachzeitschriftScience China / Mathematics
Jahrgang64
Ausgabenummer12
DOIs
PublikationsstatusVeröffentlicht - Dez. 2021

ASJC Scopus subject areas

  • Allgemeine Mathematik

Fingerprint

Untersuchen Sie die Forschungsthemen von „On fixity of arc-transitive graphs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren