On the analytical approach to the linear analysis of an arbitrarily curved spatial Bernoulli-Euler beam

G. Radenkovic, A. Borkovic*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

The equilibrium and kinematic equations of an arbitrarily curved spatial Bernoulli–Euler beam are derived with respect to a parametric coordinate and compared with those of the Timoshenko beam. It is shown that the beam analogy follows from the fact that the left-hand side in all the four sets of beam equations are the covariant derivatives of unknown vector. Furthermore, an elegant primal form of the equilibrium equations is composed. No additional assumptions, besides those of the linear Bernoulli–Euler theory, are introduced, which makes the theory ideally suited for the analytical assessment of big-curvature beams. The curvature change is derived with respect to both convective and material/spatial coordinates, and some aspects of its definition are discussed. Additionally, the stiffness matrix of an arbitrarily curved spatial beam is calculated with the flexibility approach utilizing the relative coordinate system. The numerical analysis of the carefully selected set of examples proved that the present analytical formulation can deliver valid benchmark results for testing of the purely numeric methods.
Originalspracheenglisch
Seiten (von - bis)1603-1624
Seitenumfang22
FachzeitschriftApplied Mathematical Modelling
Jahrgang77
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - Jan. 2020
Extern publiziertJa

ASJC Scopus subject areas

  • Angewandte Mathematik
  • Modellierung und Simulation

Fingerprint

Untersuchen Sie die Forschungsthemen von „On the analytical approach to the linear analysis of an arbitrarily curved spatial Bernoulli-Euler beam“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren