Optimal Pressure Recovery Using an Ultra-Weak Finite Element Method for the Pressure Poisson Equation and a Least-Squares Approach for the Gradient Equation

Douglas R.Q. Pacheco, Olaf Steinbach*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Reconstructing the pressure from given flow velocities is a task arising in various applications, and the standard approach uses the Navier-Stokes equations to derive a Poisson problem for the pressure p. That method, however, artificially increases the regularity requirements on both solution and data. In this context, we propose and analyze two alternative techniques to determine p ∈ L 2 ⁢ (ω) {p\in L^{2}(\Omega)}. The first is an ultra-weak variational formulation applying integration by parts to shift all derivatives to the test functions. We present conforming finite element discretizations and prove optimal convergence of the resulting Galerkin-Petrov method. The second approach is a least-squares method for the original gradient equation, reformulated and solved as an artificial Stokes system. To simplify the incorporation of the given velocity within the right-hand side, we assume in the derivations that the velocity field is solenoidal. Yet this assumption is not restrictive, as we can use non-divergence-free approximations and even compressible velocities. Numerical experiments confirm the optimal a priori error estimates for both methods considered.

Originalspracheenglisch
FachzeitschriftComputational Methods in Applied Mathematics
Frühes Online-Datum21 Nov. 2023
DOIs
PublikationsstatusElektronische Veröffentlichung vor Drucklegung. - 21 Nov. 2023

ASJC Scopus subject areas

  • Numerische Mathematik
  • Computational Mathematics
  • Angewandte Mathematik

Dieses zitieren