Privacy-Preserving Machine Learning for Time Series Data: PhD forum abstract

Franz Papst*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: KonferenzbeitragAbstractBegutachtung

Abstract

Machine learning has a lot of potential when applied to time series sensor data, yet a lot of this potential is currently not utilized, due to privacy concerns of parties in charge of this data. In this work I want to apply privacy-preserving techniques to machine learning for time series data, in order to unleash the dormant potential of this type of data.
Originalspracheenglisch
Seiten813-814
Seitenumfang2
DOIs
PublikationsstatusVeröffentlicht - 16 Nov. 2020
Veranstaltung18th ACM Conference on Embedded Networked Sensor Systems: SenSys 2020 - Online, Virtual, Yokohama, Japan
Dauer: 16 Nov. 202019 Nov. 2020
http://sensys.acm.org/2020/
http://sensys.acm.org/2020/index.html

Konferenz

Konferenz18th ACM Conference on Embedded Networked Sensor Systems
KurztitelSenSys
Land/GebietJapan
OrtVirtual, Yokohama
Zeitraum16/11/2019/11/20
Internetadresse

ASJC Scopus subject areas

  • Elektrotechnik und Elektronik
  • Steuerungs- und Systemtechnik
  • Computernetzwerke und -kommunikation

Fingerprint

Untersuchen Sie die Forschungsthemen von „Privacy-Preserving Machine Learning for Time Series Data: PhD forum abstract“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren