Projekte pro Jahr
Abstract
In this work, we present a real-time robust edge-based visual odometry framework for RGBD sensors (REVO). Even though our method is independent of the edge detection algorithm, we show that the use of state-of-the-art machine-learned edges gives significant improvements in terms of robustness and accuracy compared to standard edge detection methods. In contrast to approaches that heavily rely on the photo-consistency assumption, edges are less influenced by lighting changes and the sparse edge representation offers a larger convergence basin while the pose estimates are also very fast to compute. Further, we introduce a measure for tracking quality, which we use to determine when to insert a new key frame. We show the feasibility of our system on real-world datasets and extensively evaluate on standard benchmark sequences to demonstrate the performance in a wide variety of scenes and camera motions. Our framework runs in real-time on the CPU of a laptop computer and is available online.
Originalsprache | englisch |
---|---|
Titel | Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS) |
Herausgeber (Verlag) | IEEE |
Seiten | 1297-1304 |
Seitenumfang | 8 |
ISBN (elektronisch) | 978-1-5386-2682-5 |
DOIs | |
Publikationsstatus | Veröffentlicht - 2017 |
Veranstaltung | International Conference on Intelligent Robots and Systems 2017 - Vancouver, Kanada Dauer: 24 Sept. 2017 → 28 Sept. 2017 |
Konferenz
Konferenz | International Conference on Intelligent Robots and Systems 2017 |
---|---|
Kurztitel | IEEE/RSJ |
Land/Gebiet | Kanada |
Ort | Vancouver |
Zeitraum | 24/09/17 → 28/09/17 |
Fingerprint
Untersuchen Sie die Forschungsthemen von „Robust Edge-based Visual Odometry using Machine-Learned Edges“. Zusammen bilden sie einen einzigartigen Fingerprint.Projekte
- 1 Abgeschlossen
-
CSISmartScan - Integrierte 3D-Tatortaufnahme und Dokumentation
Fraundorfer, F. (Teilnehmer (Co-Investigator))
1/11/15 → 30/06/18
Projekt: Forschungsprojekt