Solids with Two Mobile Ions: Proton H+ Self-Diffusion in Li-H Exchanged Garnet-Type Li6La3ZrTaO7 as Seen by Solid-State 1H NMR Relaxation

Maria Gombotz, Caroline Hiebl, Florian Stainer, H. Martin R. Wilkening*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

The development of ceramic proton conductors is currently attracting great attention, as they might be useful to construct new energy storage systems. Li6La3ZrTaO12 (LLZTO) is known for its rapid Li+ diffusivity as has been directly revealed by 7Li NMR measurements. Exchanging parts of the highly mobile Li+ ions by protons through treatment of a single crystal in water or glacial acetic acid yields a mixed proton-lithium ionic conductor. Here, H+ proton diffusivity and Li+ diffusivity have separately been studied with element-specific 1H and 7Li NMR spectroscopy. While long-range 7Li diffusion is noticeably slowed in Li-H exchanged LLZTO, we directly observe rather high H+ diffusivity, which is, however, significantly slower than Li+ dynamics. With the help of spin-lattice relaxation measurements we were able to measure local (and long-range) energy barriers (0.20(1) eV vs 0.45(3) eV) as well as the self-diffusion coefficient DH of H+ dynamics (1.2 × 10-15 m2 s-1 at 125 °C). These encouraging results are assumed to open new directories in designing ceramics offering fast transport pathways for protons.

Originalspracheenglisch
Seiten (von - bis)10960-10967
Seitenumfang8
FachzeitschriftJournal of Physical Chemistry C
Jahrgang127
Ausgabenummer23
Frühes Online-Datum3 Juni 2023
DOIs
PublikationsstatusVeröffentlicht - 15 Juni 2023

ASJC Scopus subject areas

  • Elektronische, optische und magnetische Materialien
  • Allgemeine Energie
  • Physikalische und Theoretische Chemie
  • Oberflächen, Beschichtungen und Folien

Fingerprint

Untersuchen Sie die Forschungsthemen von „Solids with Two Mobile Ions: Proton H+ Self-Diffusion in Li-H Exchanged Garnet-Type Li6La3ZrTaO7 as Seen by Solid-State 1H NMR Relaxation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren