Sparse-view CT Reconstruction using Wasserstein GANs

Franz Thaler*, Kerstin Hammernik, Christian Payer, Martin Urschler, Darko Štern

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

We propose a 2D computed tomography (CT) slice image reconstruction method from a limited number of projection images using Wasserstein generative adversarial networks (wGAN). Our wGAN optimizes the 2D CT image reconstruction by utilizing an adversarial loss to improve the perceived image quality as well as an L1 content loss to enforce structural similarity to the target image. We evaluate our wGANs using different weight factors between the two loss functions and compare to a convolutional neural network (CNN) optimized on L1 and the Filtered Backprojection (FBP) method. The evaluation shows that the results generated by the machine learning based approaches are substantially better than those from the FBP method. In contrast to the blurrier looking images generated by the CNNs trained on L1, the wGANs results appear sharper and seem to contain more structural information. We show that a certain amount of projection data is needed to get a correct representation of the anatomical correspondences.

Originalspracheenglisch
TitelMachine Learning for Medical Image Reconstruction - First International Workshop, MLMIR 2018, Held in Conjunction with MICCAI 2018, Proceedings
Herausgeber (Verlag)Springer Verlag Heidelberg
Seiten75-82
Seitenumfang8
Band11074 LNCS
ISBN (Print)9783030001285
DOIs
PublikationsstatusVeröffentlicht - 16 Sept. 2018
Veranstaltung1st Workshop on Machine Learning for Medical Image Reconstruction, MLMIR 2018 Held in Conjunction with 21st Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spanien
Dauer: 16 Sept. 201816 Sept. 2018

Publikationsreihe

NameLecture Notes in Computer Science
Band11074
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz1st Workshop on Machine Learning for Medical Image Reconstruction, MLMIR 2018 Held in Conjunction with 21st Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
Land/GebietSpanien
OrtGranada
Zeitraum16/09/1816/09/18

ASJC Scopus subject areas

  • Theoretische Informatik
  • Informatik (insg.)

Fields of Expertise

  • Information, Communication & Computing

Kooperationen

  • BioTechMed-Graz

Fingerprint

Untersuchen Sie die Forschungsthemen von „Sparse-view CT Reconstruction using Wasserstein GANs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren