Spike-based symbolic computations on bit strings and numbers

Ceca Kraisnikovic, Wolfgang Maass*, Robert Legenstein*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in Buch/BerichtBegutachtung


The brain uses recurrent spiking neural networks for higher cognitive functions such as symbolic computations, in particular, mathematical computations. We review the current state of research on spike-based symbolic computations of this type. In addition, we present new results which show that surprisingly small spiking neural networks can perform symbolic computations on bit sequences and numbers and even learn such computations using a biologically plausible learning rule. The resulting networks operate in a rather low firing rate regime, where they could not simply emulate artificial neural networks by encoding continuous values through firing rates. Thus, we propose here a new paradigm for symbolic computation in neural networks that provides concrete hypotheses about the organization of symbolic computations in the brain. The employed spike-based network models are the basis for drastically more energy-efficient computer hardware - neuromorphic hardware. Hence, our results can be seen as creating a bridge from symbolic artificial intelligence to energy-efficient implementation in spike-based neuromorphic hardware.

TitelNeuro-Symbolic Artificial Intelligence
UntertitelThe State of the Art
Redakteure/-innenPascal Hitzler, Md Kamruzzaman Sarker
Herausgeber (Verlag)IOS Press
KapitelChapter 9
ISBN (elektronisch)9781643682440
PublikationsstatusVeröffentlicht - 2022


NameFrontiers in Artificial Intelligence and Applications
ISSN (Print)0922-6389

ASJC Scopus subject areas

  • Artificial intelligence


Untersuchen Sie die Forschungsthemen von „Spike-based symbolic computations on bit strings and numbers“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren