The Fermi energy as common parameter to describe charge compensation mechanisms: A path to Fermi level engineering of oxide electroceramics

Andreas Klein*, Karsten Albe, Nicole Bein, Oliver Clemens, Kim Alexander Creutz, Paul Erhart, Markus Frericks, Elaheh Ghorbani, Jan Philipp Hofmann, Binxiang Huang, Bernhard Kaiser, Ute Kolb, Jurij Koruza, Christian Kübel, Katharina N.S. Lohaus, Jürgen Rödel, Jochen Rohrer, Wolfgang Rheinheimer, Roger A. Souza, Verena StreibelAnke Weidenkaff, Marc Widenmeyer, Bai Xiang Xu, Hongbin Zhang

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Chemical substitution, which can be iso- or heterovalent, is the primary strategy to tailor material properties. There are various ways how a material can react to substitution. Isovalent substitution changes the density of states while heterovalent substitution, i.e. doping, can induce electronic compensation, ionic compensation, valence changes of cations or anions, or result in the segregation or neutralization of the dopant. While all these can, in principle, occur simultaneously, it is often desirable to select a certain mechanism in order to determine material properties. Being able to predict and control the individual compensation mechanism should therefore be a key target of materials science. This contribution outlines the perspective that this could be achieved by taking the Fermi energy as a common descriptor for the different compensation mechanisms. This generalization becomes possible since the formation enthalpies of the defects involved in the various compensation mechanisms do all depend on the Fermi energy. In order to control material properties, it is then necessary to adjust the formation enthalpies and charge transition levels of the involved defects. Understanding how these depend on material composition will open up a new path for the design of materials by Fermi level engineering.

Originalspracheenglisch
Seiten (von - bis)147-177
Seitenumfang31
FachzeitschriftJournal of Electroceramics
Jahrgang51
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - Nov. 2023

ASJC Scopus subject areas

  • Elektronische, optische und magnetische Materialien
  • Keramische und Verbundwerkstoffe
  • Physik der kondensierten Materie
  • Werkstoffmechanik
  • Werkstoffchemie
  • Elektrotechnik und Elektronik

Fields of Expertise

  • Advanced Materials Science

Fingerprint

Untersuchen Sie die Forschungsthemen von „The Fermi energy as common parameter to describe charge compensation mechanisms: A path to Fermi level engineering of oxide electroceramics“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren